Abstract

Epitaxial Laterally overgrown (ELOG) InGaN materials are investigated using a polarization modulated scanning near-field optical microscope. The authors found that luminescence has spatial inhomogeneities and it is partially polarized. Near-field photoluminescence shows polarization phase fluctuation up to 45 degrees over adjacent domains. These results point toward the existence of asymmetries in carrier confinement due to structural anisotropic strain within the framework of the ELOG structure.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S.�Nakamura, "The roles of structural imperfections in InGaN-based blue light emittind diodes and Lasers Diodes," Science�281, 956-961 (1998).
    [CrossRef]
  2. A.�Usui, H.�Sunakawa, A.�Sakai, and A. A.�Yamaguchi, "Thick GaN epitaxial growth with low dislocation density by hydride vapor phase epitaxy," Jpn. J. Appl. Phys.�36, L899-L902 (1997).
    [CrossRef]
  3. T. S.�Zheleva, O. H.�Nam, M. D.�Bremser, and R. F.�Davis, "Dislocation density reduction via lateral epitaxy in selectively grown GaN structures," Appl. Phys. Lett.�71, 2472-2474 (1997).
    [CrossRef]
  4. M. D.�Craven, S. H.�Lim, F.�Wu, J. S.�Speck, and S. P.�DenBaars, "Threading dislocation reduction via laterally overgrown nonpolar (11(2)over-bar0) a-plane GaN," Appl. Phys. Lett.�81, 1201-1203 (2002).
    [CrossRef]
  5. O.�Stier, M.�Grundmann, and D.�Bimberg, "Electronic and optical properties of strained quantum dots modeled by 8-band k center dot p theory," Phys. Rev. B�59, 5688-5701 (1999).
    [CrossRef]
  6. M.�Matthews, J.�Hsu, S.�Gu, and T.�Kuech, "Carrier density imaging of lateral epitaxially overgrown GaN using scanning confocal Raman microscopy," Appl. Phys. Lett.�79, 3086-3088 (2001).
    [CrossRef]
  7. J.�Hsu, M.�Matthews, D.�Abusch-Magder, R.�Kleiman, D.�Lang, S.�Richter, S.�Gu, and T.�Kuech, "Spatial variation of electrical properties in lateral epitaxially overgrown GaN," Appl. Phys. Lett.�79, 761-763 (2001).
    [CrossRef]
  8. A.�Kaneta, M.�Funato, Y.�Narukawa, T.�Mukai, and Y.�Kawakami, "Direct correlation between nonradiative recombination centers and threading dislocations in InGaN quantum wells by near-field photoluminescence spectroscopy," Phys. Status Solidi C�3, 1897-1901 (2006).
    [CrossRef]
  9. R.�Micheletto, Y.�Kawakami, C.�Manfredotti, Y.�Garino, and M.�Allegrini, "Dichroism of diamond grains by a polarization modulated near field optical setup," Appl. Phys. Lett.�89, 121125 (2006).
    [CrossRef]
  10. P. G.�Gucciardi, M.�Allegrini, R.�Micheletto, T.�Kotani, T.�Hatada, and Y.�Kawakami, "Waveguide behavior of Distributed Bragg Reflectors probed by polarization-modulated near-field optical microscopy," J. Korean Phys. Soc.�47, S101-S108 (2005).
  11. B.�Bhushan and H.�Fuchs, eds., Applied Scanning Probe Methods II: Scanning Probe Microscopy Techniques (Springer, 2005).
  12. R.�Micheletto, M.�Allegrini, and Y.�Kawakami, "Artifacts in Polarization Modulation Scanning Near-field Optical Microscopes," J. Opt. A�9, 431-434 (2007).
    [CrossRef]
  13. S.�Mononobe and M.�Ohtsu, "Development of a fiber used for fabricating application oriented near-field optical probes," IEEE Photon. Technol. Lett.�10, 99-101 (1998).
    [CrossRef]
  14. S.�Mononobe, M.�Naya, T.�Saiki, and M.�Ohtsu, "Reproducible fabrication of a fiber probe with a nanometric protrusion for near-field optics," Appl. Opt.�36, 1496-1500 (1997).
    [CrossRef] [PubMed]
  15. T.�Matsumoto, T.�Ichimura, T.�Yatsui, M.�Kourogi, T.�Saiki, and M.�Ohtsu, "Fabrication of a near-field optical fiber probe with a nanometric metallized protrusion," Opt. Rev.�5, 369-373 (1998).
    [CrossRef]

2007

R.�Micheletto, M.�Allegrini, and Y.�Kawakami, "Artifacts in Polarization Modulation Scanning Near-field Optical Microscopes," J. Opt. A�9, 431-434 (2007).
[CrossRef]

2006

A.�Kaneta, M.�Funato, Y.�Narukawa, T.�Mukai, and Y.�Kawakami, "Direct correlation between nonradiative recombination centers and threading dislocations in InGaN quantum wells by near-field photoluminescence spectroscopy," Phys. Status Solidi C�3, 1897-1901 (2006).
[CrossRef]

R.�Micheletto, Y.�Kawakami, C.�Manfredotti, Y.�Garino, and M.�Allegrini, "Dichroism of diamond grains by a polarization modulated near field optical setup," Appl. Phys. Lett.�89, 121125 (2006).
[CrossRef]

2005

P. G.�Gucciardi, M.�Allegrini, R.�Micheletto, T.�Kotani, T.�Hatada, and Y.�Kawakami, "Waveguide behavior of Distributed Bragg Reflectors probed by polarization-modulated near-field optical microscopy," J. Korean Phys. Soc.�47, S101-S108 (2005).

2002

M. D.�Craven, S. H.�Lim, F.�Wu, J. S.�Speck, and S. P.�DenBaars, "Threading dislocation reduction via laterally overgrown nonpolar (11(2)over-bar0) a-plane GaN," Appl. Phys. Lett.�81, 1201-1203 (2002).
[CrossRef]

2001

M.�Matthews, J.�Hsu, S.�Gu, and T.�Kuech, "Carrier density imaging of lateral epitaxially overgrown GaN using scanning confocal Raman microscopy," Appl. Phys. Lett.�79, 3086-3088 (2001).
[CrossRef]

J.�Hsu, M.�Matthews, D.�Abusch-Magder, R.�Kleiman, D.�Lang, S.�Richter, S.�Gu, and T.�Kuech, "Spatial variation of electrical properties in lateral epitaxially overgrown GaN," Appl. Phys. Lett.�79, 761-763 (2001).
[CrossRef]

1999

O.�Stier, M.�Grundmann, and D.�Bimberg, "Electronic and optical properties of strained quantum dots modeled by 8-band k center dot p theory," Phys. Rev. B�59, 5688-5701 (1999).
[CrossRef]

1998

S.�Nakamura, "The roles of structural imperfections in InGaN-based blue light emittind diodes and Lasers Diodes," Science�281, 956-961 (1998).
[CrossRef]

S.�Mononobe and M.�Ohtsu, "Development of a fiber used for fabricating application oriented near-field optical probes," IEEE Photon. Technol. Lett.�10, 99-101 (1998).
[CrossRef]

T.�Matsumoto, T.�Ichimura, T.�Yatsui, M.�Kourogi, T.�Saiki, and M.�Ohtsu, "Fabrication of a near-field optical fiber probe with a nanometric metallized protrusion," Opt. Rev.�5, 369-373 (1998).
[CrossRef]

1997

S.�Mononobe, M.�Naya, T.�Saiki, and M.�Ohtsu, "Reproducible fabrication of a fiber probe with a nanometric protrusion for near-field optics," Appl. Opt.�36, 1496-1500 (1997).
[CrossRef] [PubMed]

A.�Usui, H.�Sunakawa, A.�Sakai, and A. A.�Yamaguchi, "Thick GaN epitaxial growth with low dislocation density by hydride vapor phase epitaxy," Jpn. J. Appl. Phys.�36, L899-L902 (1997).
[CrossRef]

T. S.�Zheleva, O. H.�Nam, M. D.�Bremser, and R. F.�Davis, "Dislocation density reduction via lateral epitaxy in selectively grown GaN structures," Appl. Phys. Lett.�71, 2472-2474 (1997).
[CrossRef]

Abusch-Magder, D.

J.�Hsu, M.�Matthews, D.�Abusch-Magder, R.�Kleiman, D.�Lang, S.�Richter, S.�Gu, and T.�Kuech, "Spatial variation of electrical properties in lateral epitaxially overgrown GaN," Appl. Phys. Lett.�79, 761-763 (2001).
[CrossRef]

Allegrini, M.

R.�Micheletto, M.�Allegrini, and Y.�Kawakami, "Artifacts in Polarization Modulation Scanning Near-field Optical Microscopes," J. Opt. A�9, 431-434 (2007).
[CrossRef]

R.�Micheletto, Y.�Kawakami, C.�Manfredotti, Y.�Garino, and M.�Allegrini, "Dichroism of diamond grains by a polarization modulated near field optical setup," Appl. Phys. Lett.�89, 121125 (2006).
[CrossRef]

P. G.�Gucciardi, M.�Allegrini, R.�Micheletto, T.�Kotani, T.�Hatada, and Y.�Kawakami, "Waveguide behavior of Distributed Bragg Reflectors probed by polarization-modulated near-field optical microscopy," J. Korean Phys. Soc.�47, S101-S108 (2005).

Bimberg, D.

O.�Stier, M.�Grundmann, and D.�Bimberg, "Electronic and optical properties of strained quantum dots modeled by 8-band k center dot p theory," Phys. Rev. B�59, 5688-5701 (1999).
[CrossRef]

Bremser, M. D.

T. S.�Zheleva, O. H.�Nam, M. D.�Bremser, and R. F.�Davis, "Dislocation density reduction via lateral epitaxy in selectively grown GaN structures," Appl. Phys. Lett.�71, 2472-2474 (1997).
[CrossRef]

Craven, M. D.

M. D.�Craven, S. H.�Lim, F.�Wu, J. S.�Speck, and S. P.�DenBaars, "Threading dislocation reduction via laterally overgrown nonpolar (11(2)over-bar0) a-plane GaN," Appl. Phys. Lett.�81, 1201-1203 (2002).
[CrossRef]

Davis, R. F.

T. S.�Zheleva, O. H.�Nam, M. D.�Bremser, and R. F.�Davis, "Dislocation density reduction via lateral epitaxy in selectively grown GaN structures," Appl. Phys. Lett.�71, 2472-2474 (1997).
[CrossRef]

DenBaars, S. P.

M. D.�Craven, S. H.�Lim, F.�Wu, J. S.�Speck, and S. P.�DenBaars, "Threading dislocation reduction via laterally overgrown nonpolar (11(2)over-bar0) a-plane GaN," Appl. Phys. Lett.�81, 1201-1203 (2002).
[CrossRef]

Funato, M.

A.�Kaneta, M.�Funato, Y.�Narukawa, T.�Mukai, and Y.�Kawakami, "Direct correlation between nonradiative recombination centers and threading dislocations in InGaN quantum wells by near-field photoluminescence spectroscopy," Phys. Status Solidi C�3, 1897-1901 (2006).
[CrossRef]

Garino, Y.

R.�Micheletto, Y.�Kawakami, C.�Manfredotti, Y.�Garino, and M.�Allegrini, "Dichroism of diamond grains by a polarization modulated near field optical setup," Appl. Phys. Lett.�89, 121125 (2006).
[CrossRef]

Grundmann, M.

O.�Stier, M.�Grundmann, and D.�Bimberg, "Electronic and optical properties of strained quantum dots modeled by 8-band k center dot p theory," Phys. Rev. B�59, 5688-5701 (1999).
[CrossRef]

Gu, S.

J.�Hsu, M.�Matthews, D.�Abusch-Magder, R.�Kleiman, D.�Lang, S.�Richter, S.�Gu, and T.�Kuech, "Spatial variation of electrical properties in lateral epitaxially overgrown GaN," Appl. Phys. Lett.�79, 761-763 (2001).
[CrossRef]

M.�Matthews, J.�Hsu, S.�Gu, and T.�Kuech, "Carrier density imaging of lateral epitaxially overgrown GaN using scanning confocal Raman microscopy," Appl. Phys. Lett.�79, 3086-3088 (2001).
[CrossRef]

Gucciardi, P. G.

P. G.�Gucciardi, M.�Allegrini, R.�Micheletto, T.�Kotani, T.�Hatada, and Y.�Kawakami, "Waveguide behavior of Distributed Bragg Reflectors probed by polarization-modulated near-field optical microscopy," J. Korean Phys. Soc.�47, S101-S108 (2005).

Hatada, T.

P. G.�Gucciardi, M.�Allegrini, R.�Micheletto, T.�Kotani, T.�Hatada, and Y.�Kawakami, "Waveguide behavior of Distributed Bragg Reflectors probed by polarization-modulated near-field optical microscopy," J. Korean Phys. Soc.�47, S101-S108 (2005).

Hsu, J.

M.�Matthews, J.�Hsu, S.�Gu, and T.�Kuech, "Carrier density imaging of lateral epitaxially overgrown GaN using scanning confocal Raman microscopy," Appl. Phys. Lett.�79, 3086-3088 (2001).
[CrossRef]

J.�Hsu, M.�Matthews, D.�Abusch-Magder, R.�Kleiman, D.�Lang, S.�Richter, S.�Gu, and T.�Kuech, "Spatial variation of electrical properties in lateral epitaxially overgrown GaN," Appl. Phys. Lett.�79, 761-763 (2001).
[CrossRef]

Ichimura, T.

T.�Matsumoto, T.�Ichimura, T.�Yatsui, M.�Kourogi, T.�Saiki, and M.�Ohtsu, "Fabrication of a near-field optical fiber probe with a nanometric metallized protrusion," Opt. Rev.�5, 369-373 (1998).
[CrossRef]

Kaneta, A.

A.�Kaneta, M.�Funato, Y.�Narukawa, T.�Mukai, and Y.�Kawakami, "Direct correlation between nonradiative recombination centers and threading dislocations in InGaN quantum wells by near-field photoluminescence spectroscopy," Phys. Status Solidi C�3, 1897-1901 (2006).
[CrossRef]

Kawakami, Y.

R.�Micheletto, M.�Allegrini, and Y.�Kawakami, "Artifacts in Polarization Modulation Scanning Near-field Optical Microscopes," J. Opt. A�9, 431-434 (2007).
[CrossRef]

R.�Micheletto, Y.�Kawakami, C.�Manfredotti, Y.�Garino, and M.�Allegrini, "Dichroism of diamond grains by a polarization modulated near field optical setup," Appl. Phys. Lett.�89, 121125 (2006).
[CrossRef]

A.�Kaneta, M.�Funato, Y.�Narukawa, T.�Mukai, and Y.�Kawakami, "Direct correlation between nonradiative recombination centers and threading dislocations in InGaN quantum wells by near-field photoluminescence spectroscopy," Phys. Status Solidi C�3, 1897-1901 (2006).
[CrossRef]

P. G.�Gucciardi, M.�Allegrini, R.�Micheletto, T.�Kotani, T.�Hatada, and Y.�Kawakami, "Waveguide behavior of Distributed Bragg Reflectors probed by polarization-modulated near-field optical microscopy," J. Korean Phys. Soc.�47, S101-S108 (2005).

Kleiman, R.

J.�Hsu, M.�Matthews, D.�Abusch-Magder, R.�Kleiman, D.�Lang, S.�Richter, S.�Gu, and T.�Kuech, "Spatial variation of electrical properties in lateral epitaxially overgrown GaN," Appl. Phys. Lett.�79, 761-763 (2001).
[CrossRef]

Kotani, T.

P. G.�Gucciardi, M.�Allegrini, R.�Micheletto, T.�Kotani, T.�Hatada, and Y.�Kawakami, "Waveguide behavior of Distributed Bragg Reflectors probed by polarization-modulated near-field optical microscopy," J. Korean Phys. Soc.�47, S101-S108 (2005).

Kourogi, M.

T.�Matsumoto, T.�Ichimura, T.�Yatsui, M.�Kourogi, T.�Saiki, and M.�Ohtsu, "Fabrication of a near-field optical fiber probe with a nanometric metallized protrusion," Opt. Rev.�5, 369-373 (1998).
[CrossRef]

Kuech, T.

M.�Matthews, J.�Hsu, S.�Gu, and T.�Kuech, "Carrier density imaging of lateral epitaxially overgrown GaN using scanning confocal Raman microscopy," Appl. Phys. Lett.�79, 3086-3088 (2001).
[CrossRef]

J.�Hsu, M.�Matthews, D.�Abusch-Magder, R.�Kleiman, D.�Lang, S.�Richter, S.�Gu, and T.�Kuech, "Spatial variation of electrical properties in lateral epitaxially overgrown GaN," Appl. Phys. Lett.�79, 761-763 (2001).
[CrossRef]

Lang, D.

J.�Hsu, M.�Matthews, D.�Abusch-Magder, R.�Kleiman, D.�Lang, S.�Richter, S.�Gu, and T.�Kuech, "Spatial variation of electrical properties in lateral epitaxially overgrown GaN," Appl. Phys. Lett.�79, 761-763 (2001).
[CrossRef]

Lim, S. H.

M. D.�Craven, S. H.�Lim, F.�Wu, J. S.�Speck, and S. P.�DenBaars, "Threading dislocation reduction via laterally overgrown nonpolar (11(2)over-bar0) a-plane GaN," Appl. Phys. Lett.�81, 1201-1203 (2002).
[CrossRef]

Manfredotti, C.

R.�Micheletto, Y.�Kawakami, C.�Manfredotti, Y.�Garino, and M.�Allegrini, "Dichroism of diamond grains by a polarization modulated near field optical setup," Appl. Phys. Lett.�89, 121125 (2006).
[CrossRef]

Matsumoto, T.

T.�Matsumoto, T.�Ichimura, T.�Yatsui, M.�Kourogi, T.�Saiki, and M.�Ohtsu, "Fabrication of a near-field optical fiber probe with a nanometric metallized protrusion," Opt. Rev.�5, 369-373 (1998).
[CrossRef]

Matthews, M.

M.�Matthews, J.�Hsu, S.�Gu, and T.�Kuech, "Carrier density imaging of lateral epitaxially overgrown GaN using scanning confocal Raman microscopy," Appl. Phys. Lett.�79, 3086-3088 (2001).
[CrossRef]

J.�Hsu, M.�Matthews, D.�Abusch-Magder, R.�Kleiman, D.�Lang, S.�Richter, S.�Gu, and T.�Kuech, "Spatial variation of electrical properties in lateral epitaxially overgrown GaN," Appl. Phys. Lett.�79, 761-763 (2001).
[CrossRef]

Micheletto, R.

R.�Micheletto, M.�Allegrini, and Y.�Kawakami, "Artifacts in Polarization Modulation Scanning Near-field Optical Microscopes," J. Opt. A�9, 431-434 (2007).
[CrossRef]

R.�Micheletto, Y.�Kawakami, C.�Manfredotti, Y.�Garino, and M.�Allegrini, "Dichroism of diamond grains by a polarization modulated near field optical setup," Appl. Phys. Lett.�89, 121125 (2006).
[CrossRef]

P. G.�Gucciardi, M.�Allegrini, R.�Micheletto, T.�Kotani, T.�Hatada, and Y.�Kawakami, "Waveguide behavior of Distributed Bragg Reflectors probed by polarization-modulated near-field optical microscopy," J. Korean Phys. Soc.�47, S101-S108 (2005).

Mononobe, S.

S.�Mononobe and M.�Ohtsu, "Development of a fiber used for fabricating application oriented near-field optical probes," IEEE Photon. Technol. Lett.�10, 99-101 (1998).
[CrossRef]

S.�Mononobe, M.�Naya, T.�Saiki, and M.�Ohtsu, "Reproducible fabrication of a fiber probe with a nanometric protrusion for near-field optics," Appl. Opt.�36, 1496-1500 (1997).
[CrossRef] [PubMed]

Mukai, T.

A.�Kaneta, M.�Funato, Y.�Narukawa, T.�Mukai, and Y.�Kawakami, "Direct correlation between nonradiative recombination centers and threading dislocations in InGaN quantum wells by near-field photoluminescence spectroscopy," Phys. Status Solidi C�3, 1897-1901 (2006).
[CrossRef]

Nakamura, S.

S.�Nakamura, "The roles of structural imperfections in InGaN-based blue light emittind diodes and Lasers Diodes," Science�281, 956-961 (1998).
[CrossRef]

Nam, O. H.

T. S.�Zheleva, O. H.�Nam, M. D.�Bremser, and R. F.�Davis, "Dislocation density reduction via lateral epitaxy in selectively grown GaN structures," Appl. Phys. Lett.�71, 2472-2474 (1997).
[CrossRef]

Narukawa, Y.

A.�Kaneta, M.�Funato, Y.�Narukawa, T.�Mukai, and Y.�Kawakami, "Direct correlation between nonradiative recombination centers and threading dislocations in InGaN quantum wells by near-field photoluminescence spectroscopy," Phys. Status Solidi C�3, 1897-1901 (2006).
[CrossRef]

Naya, M.

Ohtsu, M.

T.�Matsumoto, T.�Ichimura, T.�Yatsui, M.�Kourogi, T.�Saiki, and M.�Ohtsu, "Fabrication of a near-field optical fiber probe with a nanometric metallized protrusion," Opt. Rev.�5, 369-373 (1998).
[CrossRef]

S.�Mononobe and M.�Ohtsu, "Development of a fiber used for fabricating application oriented near-field optical probes," IEEE Photon. Technol. Lett.�10, 99-101 (1998).
[CrossRef]

S.�Mononobe, M.�Naya, T.�Saiki, and M.�Ohtsu, "Reproducible fabrication of a fiber probe with a nanometric protrusion for near-field optics," Appl. Opt.�36, 1496-1500 (1997).
[CrossRef] [PubMed]

Richter, S.

J.�Hsu, M.�Matthews, D.�Abusch-Magder, R.�Kleiman, D.�Lang, S.�Richter, S.�Gu, and T.�Kuech, "Spatial variation of electrical properties in lateral epitaxially overgrown GaN," Appl. Phys. Lett.�79, 761-763 (2001).
[CrossRef]

Saiki, T.

T.�Matsumoto, T.�Ichimura, T.�Yatsui, M.�Kourogi, T.�Saiki, and M.�Ohtsu, "Fabrication of a near-field optical fiber probe with a nanometric metallized protrusion," Opt. Rev.�5, 369-373 (1998).
[CrossRef]

S.�Mononobe, M.�Naya, T.�Saiki, and M.�Ohtsu, "Reproducible fabrication of a fiber probe with a nanometric protrusion for near-field optics," Appl. Opt.�36, 1496-1500 (1997).
[CrossRef] [PubMed]

Sakai, A.

A.�Usui, H.�Sunakawa, A.�Sakai, and A. A.�Yamaguchi, "Thick GaN epitaxial growth with low dislocation density by hydride vapor phase epitaxy," Jpn. J. Appl. Phys.�36, L899-L902 (1997).
[CrossRef]

Speck, J. S.

M. D.�Craven, S. H.�Lim, F.�Wu, J. S.�Speck, and S. P.�DenBaars, "Threading dislocation reduction via laterally overgrown nonpolar (11(2)over-bar0) a-plane GaN," Appl. Phys. Lett.�81, 1201-1203 (2002).
[CrossRef]

Stier, O.

O.�Stier, M.�Grundmann, and D.�Bimberg, "Electronic and optical properties of strained quantum dots modeled by 8-band k center dot p theory," Phys. Rev. B�59, 5688-5701 (1999).
[CrossRef]

Sunakawa, H.

A.�Usui, H.�Sunakawa, A.�Sakai, and A. A.�Yamaguchi, "Thick GaN epitaxial growth with low dislocation density by hydride vapor phase epitaxy," Jpn. J. Appl. Phys.�36, L899-L902 (1997).
[CrossRef]

Usui, A.

A.�Usui, H.�Sunakawa, A.�Sakai, and A. A.�Yamaguchi, "Thick GaN epitaxial growth with low dislocation density by hydride vapor phase epitaxy," Jpn. J. Appl. Phys.�36, L899-L902 (1997).
[CrossRef]

Wu, F.

M. D.�Craven, S. H.�Lim, F.�Wu, J. S.�Speck, and S. P.�DenBaars, "Threading dislocation reduction via laterally overgrown nonpolar (11(2)over-bar0) a-plane GaN," Appl. Phys. Lett.�81, 1201-1203 (2002).
[CrossRef]

Yamaguchi, A. A.

A.�Usui, H.�Sunakawa, A.�Sakai, and A. A.�Yamaguchi, "Thick GaN epitaxial growth with low dislocation density by hydride vapor phase epitaxy," Jpn. J. Appl. Phys.�36, L899-L902 (1997).
[CrossRef]

Yatsui, T.

T.�Matsumoto, T.�Ichimura, T.�Yatsui, M.�Kourogi, T.�Saiki, and M.�Ohtsu, "Fabrication of a near-field optical fiber probe with a nanometric metallized protrusion," Opt. Rev.�5, 369-373 (1998).
[CrossRef]

Zheleva, T. S.

T. S.�Zheleva, O. H.�Nam, M. D.�Bremser, and R. F.�Davis, "Dislocation density reduction via lateral epitaxy in selectively grown GaN structures," Appl. Phys. Lett.�71, 2472-2474 (1997).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

T. S.�Zheleva, O. H.�Nam, M. D.�Bremser, and R. F.�Davis, "Dislocation density reduction via lateral epitaxy in selectively grown GaN structures," Appl. Phys. Lett.�71, 2472-2474 (1997).
[CrossRef]

M. D.�Craven, S. H.�Lim, F.�Wu, J. S.�Speck, and S. P.�DenBaars, "Threading dislocation reduction via laterally overgrown nonpolar (11(2)over-bar0) a-plane GaN," Appl. Phys. Lett.�81, 1201-1203 (2002).
[CrossRef]

M.�Matthews, J.�Hsu, S.�Gu, and T.�Kuech, "Carrier density imaging of lateral epitaxially overgrown GaN using scanning confocal Raman microscopy," Appl. Phys. Lett.�79, 3086-3088 (2001).
[CrossRef]

J.�Hsu, M.�Matthews, D.�Abusch-Magder, R.�Kleiman, D.�Lang, S.�Richter, S.�Gu, and T.�Kuech, "Spatial variation of electrical properties in lateral epitaxially overgrown GaN," Appl. Phys. Lett.�79, 761-763 (2001).
[CrossRef]

R.�Micheletto, Y.�Kawakami, C.�Manfredotti, Y.�Garino, and M.�Allegrini, "Dichroism of diamond grains by a polarization modulated near field optical setup," Appl. Phys. Lett.�89, 121125 (2006).
[CrossRef]

IEEE Photon. Technol. Lett.

S.�Mononobe and M.�Ohtsu, "Development of a fiber used for fabricating application oriented near-field optical probes," IEEE Photon. Technol. Lett.�10, 99-101 (1998).
[CrossRef]

J. Korean Phys. Soc.

P. G.�Gucciardi, M.�Allegrini, R.�Micheletto, T.�Kotani, T.�Hatada, and Y.�Kawakami, "Waveguide behavior of Distributed Bragg Reflectors probed by polarization-modulated near-field optical microscopy," J. Korean Phys. Soc.�47, S101-S108 (2005).

J. Opt. A

R.�Micheletto, M.�Allegrini, and Y.�Kawakami, "Artifacts in Polarization Modulation Scanning Near-field Optical Microscopes," J. Opt. A�9, 431-434 (2007).
[CrossRef]

Jpn. J. Appl. Phys.

A.�Usui, H.�Sunakawa, A.�Sakai, and A. A.�Yamaguchi, "Thick GaN epitaxial growth with low dislocation density by hydride vapor phase epitaxy," Jpn. J. Appl. Phys.�36, L899-L902 (1997).
[CrossRef]

Opt. Rev.

T.�Matsumoto, T.�Ichimura, T.�Yatsui, M.�Kourogi, T.�Saiki, and M.�Ohtsu, "Fabrication of a near-field optical fiber probe with a nanometric metallized protrusion," Opt. Rev.�5, 369-373 (1998).
[CrossRef]

Phys. Rev. B

O.�Stier, M.�Grundmann, and D.�Bimberg, "Electronic and optical properties of strained quantum dots modeled by 8-band k center dot p theory," Phys. Rev. B�59, 5688-5701 (1999).
[CrossRef]

Phys. Status Solidi C

A.�Kaneta, M.�Funato, Y.�Narukawa, T.�Mukai, and Y.�Kawakami, "Direct correlation between nonradiative recombination centers and threading dislocations in InGaN quantum wells by near-field photoluminescence spectroscopy," Phys. Status Solidi C�3, 1897-1901 (2006).
[CrossRef]

Science

S.�Nakamura, "The roles of structural imperfections in InGaN-based blue light emittind diodes and Lasers Diodes," Science�281, 956-961 (1998).
[CrossRef]

Other

B.�Bhushan and H.�Fuchs, eds., Applied Scanning Probe Methods II: Scanning Probe Microscopy Techniques (Springer, 2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

(a) The structure of the ELOG samples tested. The arrows show the growth orientation in the proximity of the SiO2 mask. Non-masked regions are indicated with the letter “S” (seed), and the remaining areas where lateral growth occurs are named “W” (wings). (b) Two PL 40×40µm images taken with a fluorescence optical microscope with excitation wavelength λ=405nm. The striped SiO2 structure is evident with its bright boundary between two adjacent wings domains marked as “C”. Image is focused on the mask plane 15µm below surface. A number of brighter dots are noticeable in the wing region, these are inhomogeneities in the glass mask. Images are taken through polars oriented at 0 and 90 degrees. No appreciable contrast difference is observed, indicating that the polarization properties in far-field are very small.

Fig. 2.
Fig. 2.

The far-field dichroic properties of different growth domains in the crystal as described in table 1. Intensity is evaluated integrating regions of an 8 bit gray level image (RGB values are averaged) taken by a CCD camera mounted on a PL-optical microscope, see Table 1 for details.

Fig. 3.
Fig. 3.

The configuration of the PM-SNOM setup: a 442 nm Laser generates a beam of light that is expanded and circularly polarized by a λ/4 plate. A rotating polars film placed in front of the resulting beam linearizes the light, imposing an angle of orientation variable in time (ω≈60 H z ). This linearly polarized light excites the sample and induces photoluminescence. A near-field tip probes the sample, the resulting signal is collected by a photomultiplier (PM) and it is filtered by a lock-in amplifier tuned to the rotation frequency.

Fig. 4.
Fig. 4.

Near field maps: (a) the photoluminescence is mapped locally with a 100nm apertured SNOM probe, image is 7.5×7.5µ m, intensity scale is arbitrary. (b) For every pixel of image (a) the polarization angle is reported in this map. “Seed” and “Wing” regions are indicated in the bottom of the images. Intensity scale in (b) represents the polarization phase as shown by the cross sections over r1 and r2 in Fig. 5(b).

Fig. 5.
Fig. 5.

Proximity phase properties of ELOG crystals: (a) the map in Fig. 4(b) is numerically treated to show phase differences, polarization is indefinite in “seed” regions whereas strong polarization changing effects are observed in the adjacent “wing” domain. The image is 7.5×7.5µ m. (b) Profiles with calibrated phase values corresponding to the cross sections r1 and r2 of Fig. 4.

Tables (1)

Tables Icon

Table 1. The far-field polarization relationship of different growth areas in the crystal. Intensity is evaluated taking PL-microscope pictures with a CCD camera and integrating the intensity of 2×2µm rectangles located in the “Seed”, “Wing” and “C” domains. Small intensity variations related to the polarization angle can be observed. This dependence exists also among the shown intensity ratios proving slight dichroism phenomena between crystal domains. Measurements are taken focusing on the sample surface.

Metrics