Abstract

The transfer of optical angular momentum to birefringent particles via circularly polarized light is common. We report here on the unexpected, continuous rotation of chiral nematic liquid crystal droplets in a linearly polarized optical trap. The rotation is non-uniform, occurs over a timescale of seconds, and is observed only for very specific droplet sizes. Synchronized vertical motion of the droplet occurs during the rotation. The motion is the result of photo-induced molecular reorganization, providing a micron sized opto-mechanical transducer that twists and translates.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. A. Beth, "Mechanical detection and measurement of the angular momentum of light," Phys. Rev. 50, 115-125 (1936).
    [CrossRef]
  2. A. Ashkin, M. Dziedzic, J. E. Bjorkholm, and S. Chu, "Observation of a single-beam gradient force optical trap for dielectric particles," Opt. Lett. 11, 288-290 (1986).
    [CrossRef] [PubMed]
  3. M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, "Optical alignment and spinning of laser-trapped microscopic particles," Nature 394, 348 (1998).
    [CrossRef]
  4. E. Santamato, B. Daino, M. Romagnoli, M. Settembre, and Y. R. Shen, "Collective rotation of molecules driven by the angular momentum of light in a nematic film," Phys. Rev. Lett. 57, 2423-2426 (1986).
    [CrossRef] [PubMed]
  5. S. Juodkazis, M. Shikata, T. Takahashi, S. Matsuo, and H. Misawa, "Fast optical switching by a laser-manipulated microdroplet of liquid crystal," Appl. Phys. Lett. 74, 3627-3629 (1999).
    [CrossRef]
  6. A. Yu. Savchenko, N. V. Tabiryan, and B. Ya. Zel�??dovih, "Transfer of momentum and torque from a light beam to a liquid." Phys. Rev. E. 56, 4773-4779 (1997).
    [CrossRef]
  7. T. A. Wood, H. F. Gleeson, M. R. Dickinson, and A. J. Wright, "Mechanisms of optical angular momentum transfer to nematic liquid crystalline droplets," Appl. Phys. Lett. 84, 4292-4294 (2004).
    [CrossRef]
  8. E. Dubois-Violett and O. Parodi, J. Physique 30, C4 57 (1969).
  9. N. Ji, M. Liu, J. Zhou, and Z. Lin, "Radiation torque on a spherical birefringent particle in the long wavelength limit: analyitical calculation," Opt. Express 13, 5192-5204 (2005).
    [CrossRef] [PubMed]
  10. H. F. Gleeson, T. A. Wood, and M. R. Dickinson, "Laser manipulation in liquid crystals: an approach to microfluidics and micromachines," Phil. Trans. R. Soc. A. 364, 2789-2805 (2006).
    [CrossRef] [PubMed]
  11. Merck KgaA, Frankfurter Str. 250, 64293 Darmstadt, Germany.
  12. N. W. Roberts, J.-P. S. Guillou, H. F. Gleeson, I. Kirar, S. J. Watson, and E. O. Arikainen, "Optical properties of cholesteric materials used in surface stabilised cholesteric texture devices," Mol. Cryst. Liq. Cryst. 411, 57-69 (2004).
    [CrossRef]
  13. R. D. Williams, "2 transitions in tangentially anchored nematic droplets," J. Phys. A, Math Gen. 19, 3211-3222 (1985).
    [CrossRef]
  14. F. Xu and P. P. Crooker, "Chiral nematic droplets with parallel surface anchoring," Phys. Rev. E. 56, 6853-6860 (1997).
    [CrossRef]
  15. P. G. de Gennes and J. Prost, The Physics of Liquid Crystals, (Clarendon Press, Oxford, 1993).
  16. E. Brasselet, D. O. Krimer, and L Kramer, "Light induced instabilities driven by competing helical patterns in long-pitch cholesterics," Eur. Phys. J. E 17, 403-411 (2005).
    [CrossRef] [PubMed]
  17. L. D. Landau and E. M. Lifschitz, Electrodynamics of continuous media, (Pergamon, Oxford, 1984).
  18. N. Murazawa, S. Juodkazis, and H Misawa, "Laser manipulation based on a light-induced molecular reordering," Opt. Express 14, 2481 (2006).
    [CrossRef] [PubMed]

2006 (2)

H. F. Gleeson, T. A. Wood, and M. R. Dickinson, "Laser manipulation in liquid crystals: an approach to microfluidics and micromachines," Phil. Trans. R. Soc. A. 364, 2789-2805 (2006).
[CrossRef] [PubMed]

N. Murazawa, S. Juodkazis, and H Misawa, "Laser manipulation based on a light-induced molecular reordering," Opt. Express 14, 2481 (2006).
[CrossRef] [PubMed]

2005 (2)

E. Brasselet, D. O. Krimer, and L Kramer, "Light induced instabilities driven by competing helical patterns in long-pitch cholesterics," Eur. Phys. J. E 17, 403-411 (2005).
[CrossRef] [PubMed]

N. Ji, M. Liu, J. Zhou, and Z. Lin, "Radiation torque on a spherical birefringent particle in the long wavelength limit: analyitical calculation," Opt. Express 13, 5192-5204 (2005).
[CrossRef] [PubMed]

2004 (2)

N. W. Roberts, J.-P. S. Guillou, H. F. Gleeson, I. Kirar, S. J. Watson, and E. O. Arikainen, "Optical properties of cholesteric materials used in surface stabilised cholesteric texture devices," Mol. Cryst. Liq. Cryst. 411, 57-69 (2004).
[CrossRef]

T. A. Wood, H. F. Gleeson, M. R. Dickinson, and A. J. Wright, "Mechanisms of optical angular momentum transfer to nematic liquid crystalline droplets," Appl. Phys. Lett. 84, 4292-4294 (2004).
[CrossRef]

1999 (1)

S. Juodkazis, M. Shikata, T. Takahashi, S. Matsuo, and H. Misawa, "Fast optical switching by a laser-manipulated microdroplet of liquid crystal," Appl. Phys. Lett. 74, 3627-3629 (1999).
[CrossRef]

1998 (1)

M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, "Optical alignment and spinning of laser-trapped microscopic particles," Nature 394, 348 (1998).
[CrossRef]

1997 (2)

A. Yu. Savchenko, N. V. Tabiryan, and B. Ya. Zel�??dovih, "Transfer of momentum and torque from a light beam to a liquid." Phys. Rev. E. 56, 4773-4779 (1997).
[CrossRef]

F. Xu and P. P. Crooker, "Chiral nematic droplets with parallel surface anchoring," Phys. Rev. E. 56, 6853-6860 (1997).
[CrossRef]

1986 (2)

E. Santamato, B. Daino, M. Romagnoli, M. Settembre, and Y. R. Shen, "Collective rotation of molecules driven by the angular momentum of light in a nematic film," Phys. Rev. Lett. 57, 2423-2426 (1986).
[CrossRef] [PubMed]

A. Ashkin, M. Dziedzic, J. E. Bjorkholm, and S. Chu, "Observation of a single-beam gradient force optical trap for dielectric particles," Opt. Lett. 11, 288-290 (1986).
[CrossRef] [PubMed]

1985 (1)

R. D. Williams, "2 transitions in tangentially anchored nematic droplets," J. Phys. A, Math Gen. 19, 3211-3222 (1985).
[CrossRef]

1936 (1)

R. A. Beth, "Mechanical detection and measurement of the angular momentum of light," Phys. Rev. 50, 115-125 (1936).
[CrossRef]

Arikainen, E. O.

N. W. Roberts, J.-P. S. Guillou, H. F. Gleeson, I. Kirar, S. J. Watson, and E. O. Arikainen, "Optical properties of cholesteric materials used in surface stabilised cholesteric texture devices," Mol. Cryst. Liq. Cryst. 411, 57-69 (2004).
[CrossRef]

Ashkin, A.

Beth, R. A.

R. A. Beth, "Mechanical detection and measurement of the angular momentum of light," Phys. Rev. 50, 115-125 (1936).
[CrossRef]

Bjorkholm, J. E.

Brasselet, E.

E. Brasselet, D. O. Krimer, and L Kramer, "Light induced instabilities driven by competing helical patterns in long-pitch cholesterics," Eur. Phys. J. E 17, 403-411 (2005).
[CrossRef] [PubMed]

Chu, S.

Crooker, P. P.

F. Xu and P. P. Crooker, "Chiral nematic droplets with parallel surface anchoring," Phys. Rev. E. 56, 6853-6860 (1997).
[CrossRef]

Daino, B.

E. Santamato, B. Daino, M. Romagnoli, M. Settembre, and Y. R. Shen, "Collective rotation of molecules driven by the angular momentum of light in a nematic film," Phys. Rev. Lett. 57, 2423-2426 (1986).
[CrossRef] [PubMed]

Dickinson, M. R.

H. F. Gleeson, T. A. Wood, and M. R. Dickinson, "Laser manipulation in liquid crystals: an approach to microfluidics and micromachines," Phil. Trans. R. Soc. A. 364, 2789-2805 (2006).
[CrossRef] [PubMed]

T. A. Wood, H. F. Gleeson, M. R. Dickinson, and A. J. Wright, "Mechanisms of optical angular momentum transfer to nematic liquid crystalline droplets," Appl. Phys. Lett. 84, 4292-4294 (2004).
[CrossRef]

Dubois-Violett, E.

E. Dubois-Violett and O. Parodi, J. Physique 30, C4 57 (1969).

Dziedzic, M.

Friese, M. E. J.

M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, "Optical alignment and spinning of laser-trapped microscopic particles," Nature 394, 348 (1998).
[CrossRef]

Gleeson, H. F.

H. F. Gleeson, T. A. Wood, and M. R. Dickinson, "Laser manipulation in liquid crystals: an approach to microfluidics and micromachines," Phil. Trans. R. Soc. A. 364, 2789-2805 (2006).
[CrossRef] [PubMed]

T. A. Wood, H. F. Gleeson, M. R. Dickinson, and A. J. Wright, "Mechanisms of optical angular momentum transfer to nematic liquid crystalline droplets," Appl. Phys. Lett. 84, 4292-4294 (2004).
[CrossRef]

N. W. Roberts, J.-P. S. Guillou, H. F. Gleeson, I. Kirar, S. J. Watson, and E. O. Arikainen, "Optical properties of cholesteric materials used in surface stabilised cholesteric texture devices," Mol. Cryst. Liq. Cryst. 411, 57-69 (2004).
[CrossRef]

Guillou, J.-P. S.

N. W. Roberts, J.-P. S. Guillou, H. F. Gleeson, I. Kirar, S. J. Watson, and E. O. Arikainen, "Optical properties of cholesteric materials used in surface stabilised cholesteric texture devices," Mol. Cryst. Liq. Cryst. 411, 57-69 (2004).
[CrossRef]

Heckenberg, N. R.

M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, "Optical alignment and spinning of laser-trapped microscopic particles," Nature 394, 348 (1998).
[CrossRef]

Ji, N.

Juodkazis, S.

N. Murazawa, S. Juodkazis, and H Misawa, "Laser manipulation based on a light-induced molecular reordering," Opt. Express 14, 2481 (2006).
[CrossRef] [PubMed]

S. Juodkazis, M. Shikata, T. Takahashi, S. Matsuo, and H. Misawa, "Fast optical switching by a laser-manipulated microdroplet of liquid crystal," Appl. Phys. Lett. 74, 3627-3629 (1999).
[CrossRef]

Kirar, I.

N. W. Roberts, J.-P. S. Guillou, H. F. Gleeson, I. Kirar, S. J. Watson, and E. O. Arikainen, "Optical properties of cholesteric materials used in surface stabilised cholesteric texture devices," Mol. Cryst. Liq. Cryst. 411, 57-69 (2004).
[CrossRef]

Kramer, L

E. Brasselet, D. O. Krimer, and L Kramer, "Light induced instabilities driven by competing helical patterns in long-pitch cholesterics," Eur. Phys. J. E 17, 403-411 (2005).
[CrossRef] [PubMed]

Krimer, D. O.

E. Brasselet, D. O. Krimer, and L Kramer, "Light induced instabilities driven by competing helical patterns in long-pitch cholesterics," Eur. Phys. J. E 17, 403-411 (2005).
[CrossRef] [PubMed]

Lin, Z.

Liu, M.

Matsuo, S.

S. Juodkazis, M. Shikata, T. Takahashi, S. Matsuo, and H. Misawa, "Fast optical switching by a laser-manipulated microdroplet of liquid crystal," Appl. Phys. Lett. 74, 3627-3629 (1999).
[CrossRef]

Misawa, H.

N. Murazawa, S. Juodkazis, and H Misawa, "Laser manipulation based on a light-induced molecular reordering," Opt. Express 14, 2481 (2006).
[CrossRef] [PubMed]

S. Juodkazis, M. Shikata, T. Takahashi, S. Matsuo, and H. Misawa, "Fast optical switching by a laser-manipulated microdroplet of liquid crystal," Appl. Phys. Lett. 74, 3627-3629 (1999).
[CrossRef]

Murazawa, N.

Nieminen, T. A.

M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, "Optical alignment and spinning of laser-trapped microscopic particles," Nature 394, 348 (1998).
[CrossRef]

Parodi, O.

E. Dubois-Violett and O. Parodi, J. Physique 30, C4 57 (1969).

Roberts, N. W.

N. W. Roberts, J.-P. S. Guillou, H. F. Gleeson, I. Kirar, S. J. Watson, and E. O. Arikainen, "Optical properties of cholesteric materials used in surface stabilised cholesteric texture devices," Mol. Cryst. Liq. Cryst. 411, 57-69 (2004).
[CrossRef]

Romagnoli, M.

E. Santamato, B. Daino, M. Romagnoli, M. Settembre, and Y. R. Shen, "Collective rotation of molecules driven by the angular momentum of light in a nematic film," Phys. Rev. Lett. 57, 2423-2426 (1986).
[CrossRef] [PubMed]

Rubinsztein-Dunlop, H.

M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, "Optical alignment and spinning of laser-trapped microscopic particles," Nature 394, 348 (1998).
[CrossRef]

Santamato, E.

E. Santamato, B. Daino, M. Romagnoli, M. Settembre, and Y. R. Shen, "Collective rotation of molecules driven by the angular momentum of light in a nematic film," Phys. Rev. Lett. 57, 2423-2426 (1986).
[CrossRef] [PubMed]

Savchenko, A. Yu.

A. Yu. Savchenko, N. V. Tabiryan, and B. Ya. Zel�??dovih, "Transfer of momentum and torque from a light beam to a liquid." Phys. Rev. E. 56, 4773-4779 (1997).
[CrossRef]

Settembre, M.

E. Santamato, B. Daino, M. Romagnoli, M. Settembre, and Y. R. Shen, "Collective rotation of molecules driven by the angular momentum of light in a nematic film," Phys. Rev. Lett. 57, 2423-2426 (1986).
[CrossRef] [PubMed]

Shen, Y. R.

E. Santamato, B. Daino, M. Romagnoli, M. Settembre, and Y. R. Shen, "Collective rotation of molecules driven by the angular momentum of light in a nematic film," Phys. Rev. Lett. 57, 2423-2426 (1986).
[CrossRef] [PubMed]

Shikata, M.

S. Juodkazis, M. Shikata, T. Takahashi, S. Matsuo, and H. Misawa, "Fast optical switching by a laser-manipulated microdroplet of liquid crystal," Appl. Phys. Lett. 74, 3627-3629 (1999).
[CrossRef]

Tabiryan, N. V.

A. Yu. Savchenko, N. V. Tabiryan, and B. Ya. Zel�??dovih, "Transfer of momentum and torque from a light beam to a liquid." Phys. Rev. E. 56, 4773-4779 (1997).
[CrossRef]

Takahashi, T.

S. Juodkazis, M. Shikata, T. Takahashi, S. Matsuo, and H. Misawa, "Fast optical switching by a laser-manipulated microdroplet of liquid crystal," Appl. Phys. Lett. 74, 3627-3629 (1999).
[CrossRef]

Watson, S. J.

N. W. Roberts, J.-P. S. Guillou, H. F. Gleeson, I. Kirar, S. J. Watson, and E. O. Arikainen, "Optical properties of cholesteric materials used in surface stabilised cholesteric texture devices," Mol. Cryst. Liq. Cryst. 411, 57-69 (2004).
[CrossRef]

Williams, R. D

R. D. Williams, "2 transitions in tangentially anchored nematic droplets," J. Phys. A, Math Gen. 19, 3211-3222 (1985).
[CrossRef]

Wood, T. A.

H. F. Gleeson, T. A. Wood, and M. R. Dickinson, "Laser manipulation in liquid crystals: an approach to microfluidics and micromachines," Phil. Trans. R. Soc. A. 364, 2789-2805 (2006).
[CrossRef] [PubMed]

T. A. Wood, H. F. Gleeson, M. R. Dickinson, and A. J. Wright, "Mechanisms of optical angular momentum transfer to nematic liquid crystalline droplets," Appl. Phys. Lett. 84, 4292-4294 (2004).
[CrossRef]

Wright, A. J.

T. A. Wood, H. F. Gleeson, M. R. Dickinson, and A. J. Wright, "Mechanisms of optical angular momentum transfer to nematic liquid crystalline droplets," Appl. Phys. Lett. 84, 4292-4294 (2004).
[CrossRef]

Xu, F.

F. Xu and P. P. Crooker, "Chiral nematic droplets with parallel surface anchoring," Phys. Rev. E. 56, 6853-6860 (1997).
[CrossRef]

Zel???dovih, B. Ya.

A. Yu. Savchenko, N. V. Tabiryan, and B. Ya. Zel�??dovih, "Transfer of momentum and torque from a light beam to a liquid." Phys. Rev. E. 56, 4773-4779 (1997).
[CrossRef]

Zhou, J

Appl. Phys. Lett. (2)

S. Juodkazis, M. Shikata, T. Takahashi, S. Matsuo, and H. Misawa, "Fast optical switching by a laser-manipulated microdroplet of liquid crystal," Appl. Phys. Lett. 74, 3627-3629 (1999).
[CrossRef]

T. A. Wood, H. F. Gleeson, M. R. Dickinson, and A. J. Wright, "Mechanisms of optical angular momentum transfer to nematic liquid crystalline droplets," Appl. Phys. Lett. 84, 4292-4294 (2004).
[CrossRef]

Eur. Phys. J. E. (1)

E. Brasselet, D. O. Krimer, and L Kramer, "Light induced instabilities driven by competing helical patterns in long-pitch cholesterics," Eur. Phys. J. E 17, 403-411 (2005).
[CrossRef] [PubMed]

J. Phys. A, Math Gen. (1)

R. D. Williams, "2 transitions in tangentially anchored nematic droplets," J. Phys. A, Math Gen. 19, 3211-3222 (1985).
[CrossRef]

Mol. Cryst. Liq. Cryst. (1)

N. W. Roberts, J.-P. S. Guillou, H. F. Gleeson, I. Kirar, S. J. Watson, and E. O. Arikainen, "Optical properties of cholesteric materials used in surface stabilised cholesteric texture devices," Mol. Cryst. Liq. Cryst. 411, 57-69 (2004).
[CrossRef]

Nature (1)

M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, "Optical alignment and spinning of laser-trapped microscopic particles," Nature 394, 348 (1998).
[CrossRef]

Opt. Express (2)

Opt. Lett. (1)

Phil. Trans. R. Soc. A. (1)

H. F. Gleeson, T. A. Wood, and M. R. Dickinson, "Laser manipulation in liquid crystals: an approach to microfluidics and micromachines," Phil. Trans. R. Soc. A. 364, 2789-2805 (2006).
[CrossRef] [PubMed]

Phys. Rev. (1)

R. A. Beth, "Mechanical detection and measurement of the angular momentum of light," Phys. Rev. 50, 115-125 (1936).
[CrossRef]

Phys. Rev. E. (2)

A. Yu. Savchenko, N. V. Tabiryan, and B. Ya. Zel�??dovih, "Transfer of momentum and torque from a light beam to a liquid." Phys. Rev. E. 56, 4773-4779 (1997).
[CrossRef]

F. Xu and P. P. Crooker, "Chiral nematic droplets with parallel surface anchoring," Phys. Rev. E. 56, 6853-6860 (1997).
[CrossRef]

Phys. Rev. Lett. (1)

E. Santamato, B. Daino, M. Romagnoli, M. Settembre, and Y. R. Shen, "Collective rotation of molecules driven by the angular momentum of light in a nematic film," Phys. Rev. Lett. 57, 2423-2426 (1986).
[CrossRef] [PubMed]

Other (4)

L. D. Landau and E. M. Lifschitz, Electrodynamics of continuous media, (Pergamon, Oxford, 1984).

P. G. de Gennes and J. Prost, The Physics of Liquid Crystals, (Clarendon Press, Oxford, 1993).

Merck KgaA, Frankfurter Str. 250, 64293 Darmstadt, Germany.

E. Dubois-Violett and O. Parodi, J. Physique 30, C4 57 (1969).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

The relative orientation of the droplet axis (dashed line) to the polarization axis of the light, φ (the range of φ has been restricted to ±90°). The open and closed squares represent data for materials of natural pitch 11.4 µm and 7.8 µm respectively. The two droplets shown in the insets have measured diameters of 8.4±0.4µm, and adopt different preferred orientations in the trapping beam.

Fig. 2.
Fig. 2.

Details of the time-evolution of rotation for a twisted bipolar chiral nematic droplet in a linearly-polarized laser trap. The natural pitch of the droplet is 7.8 µm and the droplet diameter is 8.2±0.4 µm. (a) shows images with uncrossed polarizers in which the vertical motion of the droplet is apparent, z is the beam axis; (b) shows equivalent images under crossed polarizers; the white arrows indicate the orientation of the droplet director. (c) shows the light transmission of the rotating droplet measured between crossed polarizers, corresponding to the photomicrographs in (a) and (b).

Fig. 3.
Fig. 3.

(a) The proposed cyclic mechanism for droplet rotation. The electric field from the laser trap induces helix unwinding in the droplet, shown in (b). This causes a change in D/p which then changes the stable droplet orientation (see Figure 1). Once the new stable orientation has been reached, the helix resumes its natural state, once again moving the stable droplet orientation and the process continues indefinitely.

Metrics