Abstract

Fluorescence lidar techniques offer considerable potential for remote, non-invasive diagnostics of stone cultural heritage in the outdoor environment. Here we present the results of a joint Italian-Swedish experiment, deploying two hyperspectral fluorescence lidar imaging systems, for the documentation of past conservation interventions on the Colosseum, Rome. Several portions of the monument were scanned and we show that it was possible to discriminate among masonry materials, reinforcement structures and protective coatings inserted during past conservation interventions, on the basis of their fluorescence signatures, providing useful information for a first quick, large-scale in situ screening of the monument.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Moropoulou, N. P. Avdelidis, and E. T. Delegou, "NDT and planning on historical buildings and complexes for the protection of cultural heritage," in Cultural Heritage Conservation and Environmental Impact Assessment by Non-Destructive Testing and Micro-Analysis, R. Van Grieken, K. Janssens, eds. (Taylor & Francis Group, London, UK, 2005), pp. 67-76.
  2. R. Dallas, Guide for Practitioners 4: Measured Survey and Building Recording for Historic Buildings and Structures, (Historic Scotland, Edinburgh, 2004).
    [PubMed]
  3. A. Aldrovandi, E. Buzzegoli, A. Keller, and D. Kunzelman, "Investigation of painted surfaces with a reflected UV false color technique," in Proceedings of Art�??05 - 8th International Conference on Non Destructive Investigations and Microanalysis for the Diagnostics and Conservation of the Cultural and Environmental Heritage, C. Parisi ed. (ICR, Brescia, Italy, 2005), pp. 3-18.
  4. C. Fischer and I. Kakoulli, "Multispectral and hyperspectral imaging technologies in conservation: current research and potential applications," Reviews in Conservation 7, 3-16 (2006).
  5. E. Ciliberto and G. Spoto, Modern Analytical Methods in Art and Archaeology - Vol. 155 in Chemical Analyses (John Wiley & Sons, New York, 2000).
  6. M. Laurenzi Tabasso and S. Simon, "Testing methods and criteria for the selection/evaluation of products for the conservation of porous building materials," Reviews in Conservation 7, 67-82 (2006).
  7. S. Svanberg, "Fluorescence spectroscopy and imaging of lidar targets," in Laser Remote Sensing, T. Fujii and T. Fukuchi, eds. (CRC Press, Boca Raton, 2005), pp. 433-467.
  8. F.E. Hoge, "Oceanic and terrestrial lidar measurement," in Laser Remote Chemical Analysis, R.M. Measures, ed. (John Wiley&Sons, New York, 1988), pp. 409-503.
  9. V. Raimondi, L. Masotti, G. Cecchi, and L. Pantani, "Remote sensing of cultural heritage: a new field for lidar fluorosensors," in Proceedings of the 1st International Congress on Science and Technology for the Safeguard of Cultural Heritage in the Mediterranean Basin (Tipolitografia Luxograph s.r.l., Palermo, Italy, 1998) vol. II, pp. 935-938.
  10. V. Raimondi, G. Cecchi, L. Pantani, and R. Chiari, "Fluorescence lidar monitoring of historic buildings," Appl. Opt. 37, 1089-1098 (1998).
    [CrossRef]
  11. P. Weibring, T. Johansson, H. Edner, S. Svanberg, B. Sundnér, V. Raimondi, G. Cecchi, and L. Pantani, "Fluorescence lidar imaging of historical monuments," Appl. Opt. 40, 6111-6120 (2001).
    [CrossRef]
  12. D. Lognoli, G. Cecchi, I. Mochi, L. Pantani, V. Raimondi, R. Chiari, Th. Johansson, P. Weibring, H. Edner, and S. Svanberg, "Fluorescence lidar imaging of the cathedral and baptistery of Parma," Appl. Phys. B 76, 457-465 (2003).
    [CrossRef]
  13. L. Pantani, G. Cecchi, D. Lognoli, I. Mochi, V. Raimondi, D. Tirelli, M. Trambusti, G. Valmori, P. Weibring, H. Edner, T. Johansson, and S. Svanberg, "Lithotypes characterization with a fluorescence lidar imaging system using a multi-wavelength excitation source," Proc. SPIE 4886, 151-159 (2003).
    [CrossRef]
  14. G. Cecchi, L. Pantani, V. Raimondi, L. Tomaselli, G. Lamenti, P. Tiano, and R. Chiari, "Fluorescence lidar technique for the remote sensing of stone monuments," J. Cult. Heritage 1, 29-36 (2000).
    [CrossRef]
  15. G. Cecchi, L. Pantani, V. Raimondi, D. Tirelli, L. Tomaselli, G. Lamenti, M. Bosco, and P. Tiano, "Fluorescence lidar technique for the monitoring of biodeteriogens on the cultural heritage," Proc. SPIE 2960, 137-147 (1996).
    [CrossRef]
  16. D. Lognoli, G. Lamenti, L. Pantani, D. Tirelli, P. Tiano, and L. Tomaselli, "Detection and characterisation of biodeteriogens on stone cultural heritage by fluorescence lidar," Appl. Opt. 41, 1780-1787 (2002).
    [CrossRef] [PubMed]
  17. G. Ballerini, S. Bracci, L. Pantani, and P. Tiano, "Lidar remote sensing of stone cultural heritage: Detection of protective treatments," Opt. Eng. 40, 1579-1583 (2001).
    [CrossRef]
  18. J. Hällström, Architectural Conservation and Restoration, Lund University, P.O. Box 118, SE- 221 00 Lund, Sweden, and K. Barup, R. Grönlund, A. Johansson, S. Svanberg, L. Palombi, D. Lognoli, V. Raimondi, G. Cecchi, C. Conti, are preparing a manuscript to be called "Documentation of façades previously cleaned: A case study on the Colosseum, Rome, using hyperspectral imaging fluorescence lidars".
  19. A. Gabucci, The Colosseum, (Electa, Milan, 2000).
  20. M. Jonsson, La Cura dei Monumenti alle Origini. Restauro e Scavo di Monumenti Antichi a Roma 1800-1830, Acta Instituti Romani Regni Sueciae, Series altera in 8°, XIV (Stockholm, 1986).
  21. C. Conti, "Anfiteatro Flavio: Il restauro delle superfici in travertino," Arkos: Scienza e Restauro 2, 22-27 (2001).
  22. G. Cecchi, P. Mazzinghi, L. Pantani, R. Valentini, D. Tirelli, and P. De Angelis, "Remote sensing of chlorophyll a fluorescence of vegetation canopies: 1. Near and far field measurement techniques," Remote Sens. Environ. 47, 18-28 (1994).
    [CrossRef]
  23. G. Cecchi, L. Pantani, B. Breschi, D. Tirelli, and G. Valmori, "FLIDAR: A multipurpose fluorosensor-spectrometer," EARSeL Advances in Remote Sensing 1, 72-78 (1992).
  24. H. Edner, J. Johansson, S. Svanberg, E. Wallinder, M. Bazzani, B. Breschi, G. Cecchi, L. Pantani, B.  Radicati, V. Raimondi, D. Tirelli, G. Valmori, and P. Mazzinghi, "Laser-induced fluorescence monitoring of vegetation in Tuscany," EARSeL Advances in Remote Sensing 1, 119-130 (1992).
  25. H. Edner, J. Johansson, S. Svanberg, and E. Wallinder, "Fluorescence lidar multicolor imaging of vegetation," Appl. Opt. 33, 2471-2479 (1994).
    [CrossRef] [PubMed]
  26. R. Grönlund, J. Hällström, S. Svanberg, and K. Barup, "Fluorescence lidar imaging of historical monuments - �?vedskloster, a Swedish case study," in Lasers in the Conservation of Artworks: LACONA VI Proceedings, Vienna/Austria, Sept. 21-25, 2005, J. Nimmrichter, W. Kautek, and M. Schreiner, eds. (Springer, Berlin, Germany, 2007) pp. 583-592.
  27. P. Weibring, H. Edner, and S. Svanberg, "Versatile mobile lidar system for environmental monitoring," Appl. Opt. 42, 3583-3594 (2003).
    [CrossRef] [PubMed]
  28. P. Weibring, J.N. Smith, H. Edner, and S. Svanberg, "Development and testing of a frequency-agile optical parametric oscillator system for differential absorption lidar," Rev. Sci. Instrum. 74, 4478-4484 (2003).
    [CrossRef]
  29. C . af Klinteberg, M. Andreasson, O. Sandström, S. Andersson-Engels, and S. Svanberg, "Compact medical fluorosensor for minimally invasive tissue characterization," Rev. Sci. Instrum. 76, 034303 (2005).
    [CrossRef]
  30. A. C. Rencher, Methods of Multivariate Analysis (Wiley Interscience, New York, 2002).
    [CrossRef]
  31. P. F. Velleman and D. C. Hoaglin, Applications, Basics, and Computing of Exploratory Data Analysis, (Duxberry Press, Boston, 1981).
  32. Y. Hochberg and A. C. Tamhane, Multiple Comparison Procedures (Wiley Interscience, New York, 1987).
    [CrossRef]

2006

C. Fischer and I. Kakoulli, "Multispectral and hyperspectral imaging technologies in conservation: current research and potential applications," Reviews in Conservation 7, 3-16 (2006).

M. Laurenzi Tabasso and S. Simon, "Testing methods and criteria for the selection/evaluation of products for the conservation of porous building materials," Reviews in Conservation 7, 67-82 (2006).

2005

C . af Klinteberg, M. Andreasson, O. Sandström, S. Andersson-Engels, and S. Svanberg, "Compact medical fluorosensor for minimally invasive tissue characterization," Rev. Sci. Instrum. 76, 034303 (2005).
[CrossRef]

2003

P. Weibring, J.N. Smith, H. Edner, and S. Svanberg, "Development and testing of a frequency-agile optical parametric oscillator system for differential absorption lidar," Rev. Sci. Instrum. 74, 4478-4484 (2003).
[CrossRef]

P. Weibring, H. Edner, and S. Svanberg, "Versatile mobile lidar system for environmental monitoring," Appl. Opt. 42, 3583-3594 (2003).
[CrossRef] [PubMed]

D. Lognoli, G. Cecchi, I. Mochi, L. Pantani, V. Raimondi, R. Chiari, Th. Johansson, P. Weibring, H. Edner, and S. Svanberg, "Fluorescence lidar imaging of the cathedral and baptistery of Parma," Appl. Phys. B 76, 457-465 (2003).
[CrossRef]

L. Pantani, G. Cecchi, D. Lognoli, I. Mochi, V. Raimondi, D. Tirelli, M. Trambusti, G. Valmori, P. Weibring, H. Edner, T. Johansson, and S. Svanberg, "Lithotypes characterization with a fluorescence lidar imaging system using a multi-wavelength excitation source," Proc. SPIE 4886, 151-159 (2003).
[CrossRef]

2002

2001

P. Weibring, T. Johansson, H. Edner, S. Svanberg, B. Sundnér, V. Raimondi, G. Cecchi, and L. Pantani, "Fluorescence lidar imaging of historical monuments," Appl. Opt. 40, 6111-6120 (2001).
[CrossRef]

G. Ballerini, S. Bracci, L. Pantani, and P. Tiano, "Lidar remote sensing of stone cultural heritage: Detection of protective treatments," Opt. Eng. 40, 1579-1583 (2001).
[CrossRef]

C. Conti, "Anfiteatro Flavio: Il restauro delle superfici in travertino," Arkos: Scienza e Restauro 2, 22-27 (2001).

2000

G. Cecchi, L. Pantani, V. Raimondi, L. Tomaselli, G. Lamenti, P. Tiano, and R. Chiari, "Fluorescence lidar technique for the remote sensing of stone monuments," J. Cult. Heritage 1, 29-36 (2000).
[CrossRef]

1998

1996

G. Cecchi, L. Pantani, V. Raimondi, D. Tirelli, L. Tomaselli, G. Lamenti, M. Bosco, and P. Tiano, "Fluorescence lidar technique for the monitoring of biodeteriogens on the cultural heritage," Proc. SPIE 2960, 137-147 (1996).
[CrossRef]

1994

G. Cecchi, P. Mazzinghi, L. Pantani, R. Valentini, D. Tirelli, and P. De Angelis, "Remote sensing of chlorophyll a fluorescence of vegetation canopies: 1. Near and far field measurement techniques," Remote Sens. Environ. 47, 18-28 (1994).
[CrossRef]

H. Edner, J. Johansson, S. Svanberg, and E. Wallinder, "Fluorescence lidar multicolor imaging of vegetation," Appl. Opt. 33, 2471-2479 (1994).
[CrossRef] [PubMed]

1992

G. Cecchi, L. Pantani, B. Breschi, D. Tirelli, and G. Valmori, "FLIDAR: A multipurpose fluorosensor-spectrometer," EARSeL Advances in Remote Sensing 1, 72-78 (1992).

H. Edner, J. Johansson, S. Svanberg, E. Wallinder, M. Bazzani, B. Breschi, G. Cecchi, L. Pantani, B.  Radicati, V. Raimondi, D. Tirelli, G. Valmori, and P. Mazzinghi, "Laser-induced fluorescence monitoring of vegetation in Tuscany," EARSeL Advances in Remote Sensing 1, 119-130 (1992).

af Klinteberg, C

C . af Klinteberg, M. Andreasson, O. Sandström, S. Andersson-Engels, and S. Svanberg, "Compact medical fluorosensor for minimally invasive tissue characterization," Rev. Sci. Instrum. 76, 034303 (2005).
[CrossRef]

Andersson-Engels, S.

C . af Klinteberg, M. Andreasson, O. Sandström, S. Andersson-Engels, and S. Svanberg, "Compact medical fluorosensor for minimally invasive tissue characterization," Rev. Sci. Instrum. 76, 034303 (2005).
[CrossRef]

Andreasson, M.

C . af Klinteberg, M. Andreasson, O. Sandström, S. Andersson-Engels, and S. Svanberg, "Compact medical fluorosensor for minimally invasive tissue characterization," Rev. Sci. Instrum. 76, 034303 (2005).
[CrossRef]

Ballerini, G.

G. Ballerini, S. Bracci, L. Pantani, and P. Tiano, "Lidar remote sensing of stone cultural heritage: Detection of protective treatments," Opt. Eng. 40, 1579-1583 (2001).
[CrossRef]

Bazzani, M.

H. Edner, J. Johansson, S. Svanberg, E. Wallinder, M. Bazzani, B. Breschi, G. Cecchi, L. Pantani, B.  Radicati, V. Raimondi, D. Tirelli, G. Valmori, and P. Mazzinghi, "Laser-induced fluorescence monitoring of vegetation in Tuscany," EARSeL Advances in Remote Sensing 1, 119-130 (1992).

Bosco, M.

G. Cecchi, L. Pantani, V. Raimondi, D. Tirelli, L. Tomaselli, G. Lamenti, M. Bosco, and P. Tiano, "Fluorescence lidar technique for the monitoring of biodeteriogens on the cultural heritage," Proc. SPIE 2960, 137-147 (1996).
[CrossRef]

Bracci, S.

G. Ballerini, S. Bracci, L. Pantani, and P. Tiano, "Lidar remote sensing of stone cultural heritage: Detection of protective treatments," Opt. Eng. 40, 1579-1583 (2001).
[CrossRef]

Breschi, B.

H. Edner, J. Johansson, S. Svanberg, E. Wallinder, M. Bazzani, B. Breschi, G. Cecchi, L. Pantani, B.  Radicati, V. Raimondi, D. Tirelli, G. Valmori, and P. Mazzinghi, "Laser-induced fluorescence monitoring of vegetation in Tuscany," EARSeL Advances in Remote Sensing 1, 119-130 (1992).

G. Cecchi, L. Pantani, B. Breschi, D. Tirelli, and G. Valmori, "FLIDAR: A multipurpose fluorosensor-spectrometer," EARSeL Advances in Remote Sensing 1, 72-78 (1992).

Cecchi, G.

D. Lognoli, G. Cecchi, I. Mochi, L. Pantani, V. Raimondi, R. Chiari, Th. Johansson, P. Weibring, H. Edner, and S. Svanberg, "Fluorescence lidar imaging of the cathedral and baptistery of Parma," Appl. Phys. B 76, 457-465 (2003).
[CrossRef]

L. Pantani, G. Cecchi, D. Lognoli, I. Mochi, V. Raimondi, D. Tirelli, M. Trambusti, G. Valmori, P. Weibring, H. Edner, T. Johansson, and S. Svanberg, "Lithotypes characterization with a fluorescence lidar imaging system using a multi-wavelength excitation source," Proc. SPIE 4886, 151-159 (2003).
[CrossRef]

P. Weibring, T. Johansson, H. Edner, S. Svanberg, B. Sundnér, V. Raimondi, G. Cecchi, and L. Pantani, "Fluorescence lidar imaging of historical monuments," Appl. Opt. 40, 6111-6120 (2001).
[CrossRef]

G. Cecchi, L. Pantani, V. Raimondi, L. Tomaselli, G. Lamenti, P. Tiano, and R. Chiari, "Fluorescence lidar technique for the remote sensing of stone monuments," J. Cult. Heritage 1, 29-36 (2000).
[CrossRef]

V. Raimondi, G. Cecchi, L. Pantani, and R. Chiari, "Fluorescence lidar monitoring of historic buildings," Appl. Opt. 37, 1089-1098 (1998).
[CrossRef]

G. Cecchi, L. Pantani, V. Raimondi, D. Tirelli, L. Tomaselli, G. Lamenti, M. Bosco, and P. Tiano, "Fluorescence lidar technique for the monitoring of biodeteriogens on the cultural heritage," Proc. SPIE 2960, 137-147 (1996).
[CrossRef]

G. Cecchi, P. Mazzinghi, L. Pantani, R. Valentini, D. Tirelli, and P. De Angelis, "Remote sensing of chlorophyll a fluorescence of vegetation canopies: 1. Near and far field measurement techniques," Remote Sens. Environ. 47, 18-28 (1994).
[CrossRef]

G. Cecchi, L. Pantani, B. Breschi, D. Tirelli, and G. Valmori, "FLIDAR: A multipurpose fluorosensor-spectrometer," EARSeL Advances in Remote Sensing 1, 72-78 (1992).

H. Edner, J. Johansson, S. Svanberg, E. Wallinder, M. Bazzani, B. Breschi, G. Cecchi, L. Pantani, B.  Radicati, V. Raimondi, D. Tirelli, G. Valmori, and P. Mazzinghi, "Laser-induced fluorescence monitoring of vegetation in Tuscany," EARSeL Advances in Remote Sensing 1, 119-130 (1992).

Chiari, R.

D. Lognoli, G. Cecchi, I. Mochi, L. Pantani, V. Raimondi, R. Chiari, Th. Johansson, P. Weibring, H. Edner, and S. Svanberg, "Fluorescence lidar imaging of the cathedral and baptistery of Parma," Appl. Phys. B 76, 457-465 (2003).
[CrossRef]

G. Cecchi, L. Pantani, V. Raimondi, L. Tomaselli, G. Lamenti, P. Tiano, and R. Chiari, "Fluorescence lidar technique for the remote sensing of stone monuments," J. Cult. Heritage 1, 29-36 (2000).
[CrossRef]

V. Raimondi, G. Cecchi, L. Pantani, and R. Chiari, "Fluorescence lidar monitoring of historic buildings," Appl. Opt. 37, 1089-1098 (1998).
[CrossRef]

Conti, C.

C. Conti, "Anfiteatro Flavio: Il restauro delle superfici in travertino," Arkos: Scienza e Restauro 2, 22-27 (2001).

De Angelis, P.

G. Cecchi, P. Mazzinghi, L. Pantani, R. Valentini, D. Tirelli, and P. De Angelis, "Remote sensing of chlorophyll a fluorescence of vegetation canopies: 1. Near and far field measurement techniques," Remote Sens. Environ. 47, 18-28 (1994).
[CrossRef]

Edner, H.

D. Lognoli, G. Cecchi, I. Mochi, L. Pantani, V. Raimondi, R. Chiari, Th. Johansson, P. Weibring, H. Edner, and S. Svanberg, "Fluorescence lidar imaging of the cathedral and baptistery of Parma," Appl. Phys. B 76, 457-465 (2003).
[CrossRef]

P. Weibring, H. Edner, and S. Svanberg, "Versatile mobile lidar system for environmental monitoring," Appl. Opt. 42, 3583-3594 (2003).
[CrossRef] [PubMed]

P. Weibring, J.N. Smith, H. Edner, and S. Svanberg, "Development and testing of a frequency-agile optical parametric oscillator system for differential absorption lidar," Rev. Sci. Instrum. 74, 4478-4484 (2003).
[CrossRef]

L. Pantani, G. Cecchi, D. Lognoli, I. Mochi, V. Raimondi, D. Tirelli, M. Trambusti, G. Valmori, P. Weibring, H. Edner, T. Johansson, and S. Svanberg, "Lithotypes characterization with a fluorescence lidar imaging system using a multi-wavelength excitation source," Proc. SPIE 4886, 151-159 (2003).
[CrossRef]

P. Weibring, T. Johansson, H. Edner, S. Svanberg, B. Sundnér, V. Raimondi, G. Cecchi, and L. Pantani, "Fluorescence lidar imaging of historical monuments," Appl. Opt. 40, 6111-6120 (2001).
[CrossRef]

H. Edner, J. Johansson, S. Svanberg, and E. Wallinder, "Fluorescence lidar multicolor imaging of vegetation," Appl. Opt. 33, 2471-2479 (1994).
[CrossRef] [PubMed]

H. Edner, J. Johansson, S. Svanberg, E. Wallinder, M. Bazzani, B. Breschi, G. Cecchi, L. Pantani, B.  Radicati, V. Raimondi, D. Tirelli, G. Valmori, and P. Mazzinghi, "Laser-induced fluorescence monitoring of vegetation in Tuscany," EARSeL Advances in Remote Sensing 1, 119-130 (1992).

Fischer, C.

C. Fischer and I. Kakoulli, "Multispectral and hyperspectral imaging technologies in conservation: current research and potential applications," Reviews in Conservation 7, 3-16 (2006).

Johansson, J.

H. Edner, J. Johansson, S. Svanberg, and E. Wallinder, "Fluorescence lidar multicolor imaging of vegetation," Appl. Opt. 33, 2471-2479 (1994).
[CrossRef] [PubMed]

H. Edner, J. Johansson, S. Svanberg, E. Wallinder, M. Bazzani, B. Breschi, G. Cecchi, L. Pantani, B.  Radicati, V. Raimondi, D. Tirelli, G. Valmori, and P. Mazzinghi, "Laser-induced fluorescence monitoring of vegetation in Tuscany," EARSeL Advances in Remote Sensing 1, 119-130 (1992).

Johansson, T.

L. Pantani, G. Cecchi, D. Lognoli, I. Mochi, V. Raimondi, D. Tirelli, M. Trambusti, G. Valmori, P. Weibring, H. Edner, T. Johansson, and S. Svanberg, "Lithotypes characterization with a fluorescence lidar imaging system using a multi-wavelength excitation source," Proc. SPIE 4886, 151-159 (2003).
[CrossRef]

P. Weibring, T. Johansson, H. Edner, S. Svanberg, B. Sundnér, V. Raimondi, G. Cecchi, and L. Pantani, "Fluorescence lidar imaging of historical monuments," Appl. Opt. 40, 6111-6120 (2001).
[CrossRef]

Johansson, Th.

D. Lognoli, G. Cecchi, I. Mochi, L. Pantani, V. Raimondi, R. Chiari, Th. Johansson, P. Weibring, H. Edner, and S. Svanberg, "Fluorescence lidar imaging of the cathedral and baptistery of Parma," Appl. Phys. B 76, 457-465 (2003).
[CrossRef]

Kakoulli, I.

C. Fischer and I. Kakoulli, "Multispectral and hyperspectral imaging technologies in conservation: current research and potential applications," Reviews in Conservation 7, 3-16 (2006).

Lamenti, G.

D. Lognoli, G. Lamenti, L. Pantani, D. Tirelli, P. Tiano, and L. Tomaselli, "Detection and characterisation of biodeteriogens on stone cultural heritage by fluorescence lidar," Appl. Opt. 41, 1780-1787 (2002).
[CrossRef] [PubMed]

G. Cecchi, L. Pantani, V. Raimondi, L. Tomaselli, G. Lamenti, P. Tiano, and R. Chiari, "Fluorescence lidar technique for the remote sensing of stone monuments," J. Cult. Heritage 1, 29-36 (2000).
[CrossRef]

G. Cecchi, L. Pantani, V. Raimondi, D. Tirelli, L. Tomaselli, G. Lamenti, M. Bosco, and P. Tiano, "Fluorescence lidar technique for the monitoring of biodeteriogens on the cultural heritage," Proc. SPIE 2960, 137-147 (1996).
[CrossRef]

Laurenzi Tabasso, M.

M. Laurenzi Tabasso and S. Simon, "Testing methods and criteria for the selection/evaluation of products for the conservation of porous building materials," Reviews in Conservation 7, 67-82 (2006).

Lognoli, D.

L. Pantani, G. Cecchi, D. Lognoli, I. Mochi, V. Raimondi, D. Tirelli, M. Trambusti, G. Valmori, P. Weibring, H. Edner, T. Johansson, and S. Svanberg, "Lithotypes characterization with a fluorescence lidar imaging system using a multi-wavelength excitation source," Proc. SPIE 4886, 151-159 (2003).
[CrossRef]

D. Lognoli, G. Cecchi, I. Mochi, L. Pantani, V. Raimondi, R. Chiari, Th. Johansson, P. Weibring, H. Edner, and S. Svanberg, "Fluorescence lidar imaging of the cathedral and baptistery of Parma," Appl. Phys. B 76, 457-465 (2003).
[CrossRef]

D. Lognoli, G. Lamenti, L. Pantani, D. Tirelli, P. Tiano, and L. Tomaselli, "Detection and characterisation of biodeteriogens on stone cultural heritage by fluorescence lidar," Appl. Opt. 41, 1780-1787 (2002).
[CrossRef] [PubMed]

Mazzinghi, P.

G. Cecchi, P. Mazzinghi, L. Pantani, R. Valentini, D. Tirelli, and P. De Angelis, "Remote sensing of chlorophyll a fluorescence of vegetation canopies: 1. Near and far field measurement techniques," Remote Sens. Environ. 47, 18-28 (1994).
[CrossRef]

H. Edner, J. Johansson, S. Svanberg, E. Wallinder, M. Bazzani, B. Breschi, G. Cecchi, L. Pantani, B.  Radicati, V. Raimondi, D. Tirelli, G. Valmori, and P. Mazzinghi, "Laser-induced fluorescence monitoring of vegetation in Tuscany," EARSeL Advances in Remote Sensing 1, 119-130 (1992).

Mochi, I.

L. Pantani, G. Cecchi, D. Lognoli, I. Mochi, V. Raimondi, D. Tirelli, M. Trambusti, G. Valmori, P. Weibring, H. Edner, T. Johansson, and S. Svanberg, "Lithotypes characterization with a fluorescence lidar imaging system using a multi-wavelength excitation source," Proc. SPIE 4886, 151-159 (2003).
[CrossRef]

D. Lognoli, G. Cecchi, I. Mochi, L. Pantani, V. Raimondi, R. Chiari, Th. Johansson, P. Weibring, H. Edner, and S. Svanberg, "Fluorescence lidar imaging of the cathedral and baptistery of Parma," Appl. Phys. B 76, 457-465 (2003).
[CrossRef]

Pantani, L.

D. Lognoli, G. Cecchi, I. Mochi, L. Pantani, V. Raimondi, R. Chiari, Th. Johansson, P. Weibring, H. Edner, and S. Svanberg, "Fluorescence lidar imaging of the cathedral and baptistery of Parma," Appl. Phys. B 76, 457-465 (2003).
[CrossRef]

L. Pantani, G. Cecchi, D. Lognoli, I. Mochi, V. Raimondi, D. Tirelli, M. Trambusti, G. Valmori, P. Weibring, H. Edner, T. Johansson, and S. Svanberg, "Lithotypes characterization with a fluorescence lidar imaging system using a multi-wavelength excitation source," Proc. SPIE 4886, 151-159 (2003).
[CrossRef]

D. Lognoli, G. Lamenti, L. Pantani, D. Tirelli, P. Tiano, and L. Tomaselli, "Detection and characterisation of biodeteriogens on stone cultural heritage by fluorescence lidar," Appl. Opt. 41, 1780-1787 (2002).
[CrossRef] [PubMed]

G. Ballerini, S. Bracci, L. Pantani, and P. Tiano, "Lidar remote sensing of stone cultural heritage: Detection of protective treatments," Opt. Eng. 40, 1579-1583 (2001).
[CrossRef]

P. Weibring, T. Johansson, H. Edner, S. Svanberg, B. Sundnér, V. Raimondi, G. Cecchi, and L. Pantani, "Fluorescence lidar imaging of historical monuments," Appl. Opt. 40, 6111-6120 (2001).
[CrossRef]

G. Cecchi, L. Pantani, V. Raimondi, L. Tomaselli, G. Lamenti, P. Tiano, and R. Chiari, "Fluorescence lidar technique for the remote sensing of stone monuments," J. Cult. Heritage 1, 29-36 (2000).
[CrossRef]

V. Raimondi, G. Cecchi, L. Pantani, and R. Chiari, "Fluorescence lidar monitoring of historic buildings," Appl. Opt. 37, 1089-1098 (1998).
[CrossRef]

G. Cecchi, L. Pantani, V. Raimondi, D. Tirelli, L. Tomaselli, G. Lamenti, M. Bosco, and P. Tiano, "Fluorescence lidar technique for the monitoring of biodeteriogens on the cultural heritage," Proc. SPIE 2960, 137-147 (1996).
[CrossRef]

G. Cecchi, P. Mazzinghi, L. Pantani, R. Valentini, D. Tirelli, and P. De Angelis, "Remote sensing of chlorophyll a fluorescence of vegetation canopies: 1. Near and far field measurement techniques," Remote Sens. Environ. 47, 18-28 (1994).
[CrossRef]

G. Cecchi, L. Pantani, B. Breschi, D. Tirelli, and G. Valmori, "FLIDAR: A multipurpose fluorosensor-spectrometer," EARSeL Advances in Remote Sensing 1, 72-78 (1992).

H. Edner, J. Johansson, S. Svanberg, E. Wallinder, M. Bazzani, B. Breschi, G. Cecchi, L. Pantani, B.  Radicati, V. Raimondi, D. Tirelli, G. Valmori, and P. Mazzinghi, "Laser-induced fluorescence monitoring of vegetation in Tuscany," EARSeL Advances in Remote Sensing 1, 119-130 (1992).

Radicati, B.

H. Edner, J. Johansson, S. Svanberg, E. Wallinder, M. Bazzani, B. Breschi, G. Cecchi, L. Pantani, B.  Radicati, V. Raimondi, D. Tirelli, G. Valmori, and P. Mazzinghi, "Laser-induced fluorescence monitoring of vegetation in Tuscany," EARSeL Advances in Remote Sensing 1, 119-130 (1992).

Raimondi, V.

L. Pantani, G. Cecchi, D. Lognoli, I. Mochi, V. Raimondi, D. Tirelli, M. Trambusti, G. Valmori, P. Weibring, H. Edner, T. Johansson, and S. Svanberg, "Lithotypes characterization with a fluorescence lidar imaging system using a multi-wavelength excitation source," Proc. SPIE 4886, 151-159 (2003).
[CrossRef]

D. Lognoli, G. Cecchi, I. Mochi, L. Pantani, V. Raimondi, R. Chiari, Th. Johansson, P. Weibring, H. Edner, and S. Svanberg, "Fluorescence lidar imaging of the cathedral and baptistery of Parma," Appl. Phys. B 76, 457-465 (2003).
[CrossRef]

P. Weibring, T. Johansson, H. Edner, S. Svanberg, B. Sundnér, V. Raimondi, G. Cecchi, and L. Pantani, "Fluorescence lidar imaging of historical monuments," Appl. Opt. 40, 6111-6120 (2001).
[CrossRef]

G. Cecchi, L. Pantani, V. Raimondi, L. Tomaselli, G. Lamenti, P. Tiano, and R. Chiari, "Fluorescence lidar technique for the remote sensing of stone monuments," J. Cult. Heritage 1, 29-36 (2000).
[CrossRef]

V. Raimondi, G. Cecchi, L. Pantani, and R. Chiari, "Fluorescence lidar monitoring of historic buildings," Appl. Opt. 37, 1089-1098 (1998).
[CrossRef]

G. Cecchi, L. Pantani, V. Raimondi, D. Tirelli, L. Tomaselli, G. Lamenti, M. Bosco, and P. Tiano, "Fluorescence lidar technique for the monitoring of biodeteriogens on the cultural heritage," Proc. SPIE 2960, 137-147 (1996).
[CrossRef]

H. Edner, J. Johansson, S. Svanberg, E. Wallinder, M. Bazzani, B. Breschi, G. Cecchi, L. Pantani, B.  Radicati, V. Raimondi, D. Tirelli, G. Valmori, and P. Mazzinghi, "Laser-induced fluorescence monitoring of vegetation in Tuscany," EARSeL Advances in Remote Sensing 1, 119-130 (1992).

Sandström, O.

C . af Klinteberg, M. Andreasson, O. Sandström, S. Andersson-Engels, and S. Svanberg, "Compact medical fluorosensor for minimally invasive tissue characterization," Rev. Sci. Instrum. 76, 034303 (2005).
[CrossRef]

Simon, S.

M. Laurenzi Tabasso and S. Simon, "Testing methods and criteria for the selection/evaluation of products for the conservation of porous building materials," Reviews in Conservation 7, 67-82 (2006).

Smith, J.N.

P. Weibring, J.N. Smith, H. Edner, and S. Svanberg, "Development and testing of a frequency-agile optical parametric oscillator system for differential absorption lidar," Rev. Sci. Instrum. 74, 4478-4484 (2003).
[CrossRef]

Sundnér, B.

Svanberg, S.

C . af Klinteberg, M. Andreasson, O. Sandström, S. Andersson-Engels, and S. Svanberg, "Compact medical fluorosensor for minimally invasive tissue characterization," Rev. Sci. Instrum. 76, 034303 (2005).
[CrossRef]

D. Lognoli, G. Cecchi, I. Mochi, L. Pantani, V. Raimondi, R. Chiari, Th. Johansson, P. Weibring, H. Edner, and S. Svanberg, "Fluorescence lidar imaging of the cathedral and baptistery of Parma," Appl. Phys. B 76, 457-465 (2003).
[CrossRef]

P. Weibring, H. Edner, and S. Svanberg, "Versatile mobile lidar system for environmental monitoring," Appl. Opt. 42, 3583-3594 (2003).
[CrossRef] [PubMed]

P. Weibring, J.N. Smith, H. Edner, and S. Svanberg, "Development and testing of a frequency-agile optical parametric oscillator system for differential absorption lidar," Rev. Sci. Instrum. 74, 4478-4484 (2003).
[CrossRef]

L. Pantani, G. Cecchi, D. Lognoli, I. Mochi, V. Raimondi, D. Tirelli, M. Trambusti, G. Valmori, P. Weibring, H. Edner, T. Johansson, and S. Svanberg, "Lithotypes characterization with a fluorescence lidar imaging system using a multi-wavelength excitation source," Proc. SPIE 4886, 151-159 (2003).
[CrossRef]

P. Weibring, T. Johansson, H. Edner, S. Svanberg, B. Sundnér, V. Raimondi, G. Cecchi, and L. Pantani, "Fluorescence lidar imaging of historical monuments," Appl. Opt. 40, 6111-6120 (2001).
[CrossRef]

H. Edner, J. Johansson, S. Svanberg, and E. Wallinder, "Fluorescence lidar multicolor imaging of vegetation," Appl. Opt. 33, 2471-2479 (1994).
[CrossRef] [PubMed]

H. Edner, J. Johansson, S. Svanberg, E. Wallinder, M. Bazzani, B. Breschi, G. Cecchi, L. Pantani, B.  Radicati, V. Raimondi, D. Tirelli, G. Valmori, and P. Mazzinghi, "Laser-induced fluorescence monitoring of vegetation in Tuscany," EARSeL Advances in Remote Sensing 1, 119-130 (1992).

Tiano, P.

D. Lognoli, G. Lamenti, L. Pantani, D. Tirelli, P. Tiano, and L. Tomaselli, "Detection and characterisation of biodeteriogens on stone cultural heritage by fluorescence lidar," Appl. Opt. 41, 1780-1787 (2002).
[CrossRef] [PubMed]

G. Ballerini, S. Bracci, L. Pantani, and P. Tiano, "Lidar remote sensing of stone cultural heritage: Detection of protective treatments," Opt. Eng. 40, 1579-1583 (2001).
[CrossRef]

G. Cecchi, L. Pantani, V. Raimondi, L. Tomaselli, G. Lamenti, P. Tiano, and R. Chiari, "Fluorescence lidar technique for the remote sensing of stone monuments," J. Cult. Heritage 1, 29-36 (2000).
[CrossRef]

G. Cecchi, L. Pantani, V. Raimondi, D. Tirelli, L. Tomaselli, G. Lamenti, M. Bosco, and P. Tiano, "Fluorescence lidar technique for the monitoring of biodeteriogens on the cultural heritage," Proc. SPIE 2960, 137-147 (1996).
[CrossRef]

Tirelli, D.

L. Pantani, G. Cecchi, D. Lognoli, I. Mochi, V. Raimondi, D. Tirelli, M. Trambusti, G. Valmori, P. Weibring, H. Edner, T. Johansson, and S. Svanberg, "Lithotypes characterization with a fluorescence lidar imaging system using a multi-wavelength excitation source," Proc. SPIE 4886, 151-159 (2003).
[CrossRef]

D. Lognoli, G. Lamenti, L. Pantani, D. Tirelli, P. Tiano, and L. Tomaselli, "Detection and characterisation of biodeteriogens on stone cultural heritage by fluorescence lidar," Appl. Opt. 41, 1780-1787 (2002).
[CrossRef] [PubMed]

G. Cecchi, L. Pantani, V. Raimondi, D. Tirelli, L. Tomaselli, G. Lamenti, M. Bosco, and P. Tiano, "Fluorescence lidar technique for the monitoring of biodeteriogens on the cultural heritage," Proc. SPIE 2960, 137-147 (1996).
[CrossRef]

G. Cecchi, P. Mazzinghi, L. Pantani, R. Valentini, D. Tirelli, and P. De Angelis, "Remote sensing of chlorophyll a fluorescence of vegetation canopies: 1. Near and far field measurement techniques," Remote Sens. Environ. 47, 18-28 (1994).
[CrossRef]

G. Cecchi, L. Pantani, B. Breschi, D. Tirelli, and G. Valmori, "FLIDAR: A multipurpose fluorosensor-spectrometer," EARSeL Advances in Remote Sensing 1, 72-78 (1992).

H. Edner, J. Johansson, S. Svanberg, E. Wallinder, M. Bazzani, B. Breschi, G. Cecchi, L. Pantani, B.  Radicati, V. Raimondi, D. Tirelli, G. Valmori, and P. Mazzinghi, "Laser-induced fluorescence monitoring of vegetation in Tuscany," EARSeL Advances in Remote Sensing 1, 119-130 (1992).

Tomaselli, L.

D. Lognoli, G. Lamenti, L. Pantani, D. Tirelli, P. Tiano, and L. Tomaselli, "Detection and characterisation of biodeteriogens on stone cultural heritage by fluorescence lidar," Appl. Opt. 41, 1780-1787 (2002).
[CrossRef] [PubMed]

G. Cecchi, L. Pantani, V. Raimondi, L. Tomaselli, G. Lamenti, P. Tiano, and R. Chiari, "Fluorescence lidar technique for the remote sensing of stone monuments," J. Cult. Heritage 1, 29-36 (2000).
[CrossRef]

G. Cecchi, L. Pantani, V. Raimondi, D. Tirelli, L. Tomaselli, G. Lamenti, M. Bosco, and P. Tiano, "Fluorescence lidar technique for the monitoring of biodeteriogens on the cultural heritage," Proc. SPIE 2960, 137-147 (1996).
[CrossRef]

Trambusti, M.

L. Pantani, G. Cecchi, D. Lognoli, I. Mochi, V. Raimondi, D. Tirelli, M. Trambusti, G. Valmori, P. Weibring, H. Edner, T. Johansson, and S. Svanberg, "Lithotypes characterization with a fluorescence lidar imaging system using a multi-wavelength excitation source," Proc. SPIE 4886, 151-159 (2003).
[CrossRef]

Valentini, R.

G. Cecchi, P. Mazzinghi, L. Pantani, R. Valentini, D. Tirelli, and P. De Angelis, "Remote sensing of chlorophyll a fluorescence of vegetation canopies: 1. Near and far field measurement techniques," Remote Sens. Environ. 47, 18-28 (1994).
[CrossRef]

Valmori, G.

L. Pantani, G. Cecchi, D. Lognoli, I. Mochi, V. Raimondi, D. Tirelli, M. Trambusti, G. Valmori, P. Weibring, H. Edner, T. Johansson, and S. Svanberg, "Lithotypes characterization with a fluorescence lidar imaging system using a multi-wavelength excitation source," Proc. SPIE 4886, 151-159 (2003).
[CrossRef]

H. Edner, J. Johansson, S. Svanberg, E. Wallinder, M. Bazzani, B. Breschi, G. Cecchi, L. Pantani, B.  Radicati, V. Raimondi, D. Tirelli, G. Valmori, and P. Mazzinghi, "Laser-induced fluorescence monitoring of vegetation in Tuscany," EARSeL Advances in Remote Sensing 1, 119-130 (1992).

G. Cecchi, L. Pantani, B. Breschi, D. Tirelli, and G. Valmori, "FLIDAR: A multipurpose fluorosensor-spectrometer," EARSeL Advances in Remote Sensing 1, 72-78 (1992).

Wallinder, E.

H. Edner, J. Johansson, S. Svanberg, and E. Wallinder, "Fluorescence lidar multicolor imaging of vegetation," Appl. Opt. 33, 2471-2479 (1994).
[CrossRef] [PubMed]

H. Edner, J. Johansson, S. Svanberg, E. Wallinder, M. Bazzani, B. Breschi, G. Cecchi, L. Pantani, B.  Radicati, V. Raimondi, D. Tirelli, G. Valmori, and P. Mazzinghi, "Laser-induced fluorescence monitoring of vegetation in Tuscany," EARSeL Advances in Remote Sensing 1, 119-130 (1992).

Weibring, P.

P. Weibring, J.N. Smith, H. Edner, and S. Svanberg, "Development and testing of a frequency-agile optical parametric oscillator system for differential absorption lidar," Rev. Sci. Instrum. 74, 4478-4484 (2003).
[CrossRef]

L. Pantani, G. Cecchi, D. Lognoli, I. Mochi, V. Raimondi, D. Tirelli, M. Trambusti, G. Valmori, P. Weibring, H. Edner, T. Johansson, and S. Svanberg, "Lithotypes characterization with a fluorescence lidar imaging system using a multi-wavelength excitation source," Proc. SPIE 4886, 151-159 (2003).
[CrossRef]

D. Lognoli, G. Cecchi, I. Mochi, L. Pantani, V. Raimondi, R. Chiari, Th. Johansson, P. Weibring, H. Edner, and S. Svanberg, "Fluorescence lidar imaging of the cathedral and baptistery of Parma," Appl. Phys. B 76, 457-465 (2003).
[CrossRef]

P. Weibring, H. Edner, and S. Svanberg, "Versatile mobile lidar system for environmental monitoring," Appl. Opt. 42, 3583-3594 (2003).
[CrossRef] [PubMed]

P. Weibring, T. Johansson, H. Edner, S. Svanberg, B. Sundnér, V. Raimondi, G. Cecchi, and L. Pantani, "Fluorescence lidar imaging of historical monuments," Appl. Opt. 40, 6111-6120 (2001).
[CrossRef]

Appl. Opt.

Appl. Phys. B

D. Lognoli, G. Cecchi, I. Mochi, L. Pantani, V. Raimondi, R. Chiari, Th. Johansson, P. Weibring, H. Edner, and S. Svanberg, "Fluorescence lidar imaging of the cathedral and baptistery of Parma," Appl. Phys. B 76, 457-465 (2003).
[CrossRef]

EARSeL Advances in Remote Sensing

G. Cecchi, L. Pantani, B. Breschi, D. Tirelli, and G. Valmori, "FLIDAR: A multipurpose fluorosensor-spectrometer," EARSeL Advances in Remote Sensing 1, 72-78 (1992).

H. Edner, J. Johansson, S. Svanberg, E. Wallinder, M. Bazzani, B. Breschi, G. Cecchi, L. Pantani, B.  Radicati, V. Raimondi, D. Tirelli, G. Valmori, and P. Mazzinghi, "Laser-induced fluorescence monitoring of vegetation in Tuscany," EARSeL Advances in Remote Sensing 1, 119-130 (1992).

J. Cult. Heritage

G. Cecchi, L. Pantani, V. Raimondi, L. Tomaselli, G. Lamenti, P. Tiano, and R. Chiari, "Fluorescence lidar technique for the remote sensing of stone monuments," J. Cult. Heritage 1, 29-36 (2000).
[CrossRef]

Opt. Eng.

G. Ballerini, S. Bracci, L. Pantani, and P. Tiano, "Lidar remote sensing of stone cultural heritage: Detection of protective treatments," Opt. Eng. 40, 1579-1583 (2001).
[CrossRef]

Proc. SPIE

G. Cecchi, L. Pantani, V. Raimondi, D. Tirelli, L. Tomaselli, G. Lamenti, M. Bosco, and P. Tiano, "Fluorescence lidar technique for the monitoring of biodeteriogens on the cultural heritage," Proc. SPIE 2960, 137-147 (1996).
[CrossRef]

L. Pantani, G. Cecchi, D. Lognoli, I. Mochi, V. Raimondi, D. Tirelli, M. Trambusti, G. Valmori, P. Weibring, H. Edner, T. Johansson, and S. Svanberg, "Lithotypes characterization with a fluorescence lidar imaging system using a multi-wavelength excitation source," Proc. SPIE 4886, 151-159 (2003).
[CrossRef]

Remote Sens. Environ.

G. Cecchi, P. Mazzinghi, L. Pantani, R. Valentini, D. Tirelli, and P. De Angelis, "Remote sensing of chlorophyll a fluorescence of vegetation canopies: 1. Near and far field measurement techniques," Remote Sens. Environ. 47, 18-28 (1994).
[CrossRef]

Rev. Sci. Instrum.

P. Weibring, J.N. Smith, H. Edner, and S. Svanberg, "Development and testing of a frequency-agile optical parametric oscillator system for differential absorption lidar," Rev. Sci. Instrum. 74, 4478-4484 (2003).
[CrossRef]

C . af Klinteberg, M. Andreasson, O. Sandström, S. Andersson-Engels, and S. Svanberg, "Compact medical fluorosensor for minimally invasive tissue characterization," Rev. Sci. Instrum. 76, 034303 (2005).
[CrossRef]

Reviews in Conservation

C. Fischer and I. Kakoulli, "Multispectral and hyperspectral imaging technologies in conservation: current research and potential applications," Reviews in Conservation 7, 3-16 (2006).

M. Laurenzi Tabasso and S. Simon, "Testing methods and criteria for the selection/evaluation of products for the conservation of porous building materials," Reviews in Conservation 7, 67-82 (2006).

Scienza e Restauro

C. Conti, "Anfiteatro Flavio: Il restauro delle superfici in travertino," Arkos: Scienza e Restauro 2, 22-27 (2001).

Other

J. Hällström, Architectural Conservation and Restoration, Lund University, P.O. Box 118, SE- 221 00 Lund, Sweden, and K. Barup, R. Grönlund, A. Johansson, S. Svanberg, L. Palombi, D. Lognoli, V. Raimondi, G. Cecchi, C. Conti, are preparing a manuscript to be called "Documentation of façades previously cleaned: A case study on the Colosseum, Rome, using hyperspectral imaging fluorescence lidars".

A. Gabucci, The Colosseum, (Electa, Milan, 2000).

M. Jonsson, La Cura dei Monumenti alle Origini. Restauro e Scavo di Monumenti Antichi a Roma 1800-1830, Acta Instituti Romani Regni Sueciae, Series altera in 8°, XIV (Stockholm, 1986).

S. Svanberg, "Fluorescence spectroscopy and imaging of lidar targets," in Laser Remote Sensing, T. Fujii and T. Fukuchi, eds. (CRC Press, Boca Raton, 2005), pp. 433-467.

F.E. Hoge, "Oceanic and terrestrial lidar measurement," in Laser Remote Chemical Analysis, R.M. Measures, ed. (John Wiley&Sons, New York, 1988), pp. 409-503.

V. Raimondi, L. Masotti, G. Cecchi, and L. Pantani, "Remote sensing of cultural heritage: a new field for lidar fluorosensors," in Proceedings of the 1st International Congress on Science and Technology for the Safeguard of Cultural Heritage in the Mediterranean Basin (Tipolitografia Luxograph s.r.l., Palermo, Italy, 1998) vol. II, pp. 935-938.

E. Ciliberto and G. Spoto, Modern Analytical Methods in Art and Archaeology - Vol. 155 in Chemical Analyses (John Wiley & Sons, New York, 2000).

A. Moropoulou, N. P. Avdelidis, and E. T. Delegou, "NDT and planning on historical buildings and complexes for the protection of cultural heritage," in Cultural Heritage Conservation and Environmental Impact Assessment by Non-Destructive Testing and Micro-Analysis, R. Van Grieken, K. Janssens, eds. (Taylor & Francis Group, London, UK, 2005), pp. 67-76.

R. Dallas, Guide for Practitioners 4: Measured Survey and Building Recording for Historic Buildings and Structures, (Historic Scotland, Edinburgh, 2004).
[PubMed]

A. Aldrovandi, E. Buzzegoli, A. Keller, and D. Kunzelman, "Investigation of painted surfaces with a reflected UV false color technique," in Proceedings of Art�??05 - 8th International Conference on Non Destructive Investigations and Microanalysis for the Diagnostics and Conservation of the Cultural and Environmental Heritage, C. Parisi ed. (ICR, Brescia, Italy, 2005), pp. 3-18.

A. C. Rencher, Methods of Multivariate Analysis (Wiley Interscience, New York, 2002).
[CrossRef]

P. F. Velleman and D. C. Hoaglin, Applications, Basics, and Computing of Exploratory Data Analysis, (Duxberry Press, Boston, 1981).

Y. Hochberg and A. C. Tamhane, Multiple Comparison Procedures (Wiley Interscience, New York, 1987).
[CrossRef]

R. Grönlund, J. Hällström, S. Svanberg, and K. Barup, "Fluorescence lidar imaging of historical monuments - �?vedskloster, a Swedish case study," in Lasers in the Conservation of Artworks: LACONA VI Proceedings, Vienna/Austria, Sept. 21-25, 2005, J. Nimmrichter, W. Kautek, and M. Schreiner, eds. (Springer, Berlin, Germany, 2007) pp. 583-592.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

Experimental conditions at the site location (Colosseum, Rome): (a) planimetry of the Colosseum with the section of the monument chosen for the measurements and the locations of the two lidar mobile laboratories; (b) on-site deployment of the CNR-IFAC and (c) of the LTH lidar systems; (d) areas selected for the analysis of past conservation interventions.

Fig. 2.
Fig. 2.

Analysis of an area (Area D in Fig. 1(d)) containing original Roman blocks and blocks placed or re-worked later, during conservation interventions. The excitation wavelength was 308 nm. The distance of the sensor from the target was about 18 m and the spot size diameter on the target was about 2 cm. The spatial resolution (i.e. the distance between the centers of two following spots) was 12 cm both in horizontal and vertical directions. (a) indicates the scanned area and reference grid automatically generated by the FLIDAR software. (b) shows the map obtained from the integrals of the spectral intensity of the non-normalized fluorescence spectra in the 410 nm-750 nm spectral range. (c) shows some typical non-normalized fluorescence spectra of the scanned area.

Fig. 3.
Fig. 3.

Analysis of an extended portion (Area F in Fig. 1(d)) containing Area D. The excitation wavelength was 355 nm. The distance from the sensor to the target was 65 m and the spot size diameter on the target was about 4 cm. The horizontal and vertical spatial resolutions were 12 cm and 10 cm, respectively. (a) shows a fluorescence map obtained by integrating the spectral intensity of the non-normalized fluorescence spectra between 410 nm and 750 nm. (b) illustrates some typical non-normalized fluorescence spectra of the scanned area. (c) indicates the positions of the different blocks in the examined area: blocks on the left (blocks A, I, II) present characteristics typical of new or re-worked blocks; blocks along the column (blocks B, II, IV) are original Roman blocks. (d) is a box and whisker diagram illustrating mean values and standard deviations for the fluorescence intensity for each block. (e) shows the results of a multiple comparison test with mean values and uncertainties for the six blocks.

Fig. 4.
Fig. 4.

Fluorescence spectra, acquired on the mortar joint between Block I and Block II, and fluorescence spectra from scans over Area D and Area F. (a) Detail showing the mortar joint and the spot where reference spectra were acquired. (b) 308-nm excitation: reference point fluorescence spectra (blue) acquired on the mortar joint are compared with a set of spectra from the map of Fig. 2 (Area D). (c) 355-nm excitation: fluorescence spectra from line 17 of the map of Fig. 3(a) (Area F); the line was acquired along the mortar joint. Note that the first two pixels of line 17 refer to stone rather than to mortar, as can be inferred also from the photo in (a).

Fig. 5.
Fig. 5.

Scanning of an area with a cement joint on both cleaned and non-cleaned portions of the monument (Area B in Fig. 1(d)). The excitation wavelength was 355 nm. The distance of the sensor from the target was 65 m and the spot size diameter on the target was about 4 cm. Spatial resolutions were 17 cm and 11 cm along the horizontal and the vertical direction, respectively. (a) the red frame indicates the measured area and (b) shows the ratio between the intensities in the wavelength range 485–505 nm divided by the intensity in the wavelength range 525–735 nm. The highest values correspond to the cement joint present on the top of the capital. The normalized spectra in (c) correspond to cement (green curves) and travertine stone (cyan curves), corresponding to the squares in (a) and (b).

Fig. 6.
Fig. 6.

Comparison between fluorescence spectra from two old iron clamps. The excitation wavelength was 355 nm. The distance of the sensor from the target was 65 m and the spot size diameter on the target was about 4 cm. (a) The spots where the fluorescence spectra were acquired. (b) Fluorescence spectra, normalized to their maximum, from the two clamps: Spectrum A shows the typical narrow peak due to the corrosion-inhibiting coating; Spectrum B does not show this feature and hence this metal clamp was not treated recently.

Fig. 7.
Fig. 7.

Analysis of an area (Area E in Fig. 1(d)) containing steel clamps inserted during an intervention dating back to the 1950s conservation project. There are also some cement mortar patches. The excitation wavelength was 308 nm and the distance to the target was about 18 m. The spot size diameter on the target was about 2 cm and the spatial resolution was 6 cm both in horizontal and vertical directions. (a) shows a picture of the area with the measured points indicated. (b) shows a CA of the area, where the metal clamps can be clearly discriminated. In (c), spectral intensity integrals in the wavelength range 360–400 nm. (d) shows a PCA-RGB map of the points on the travertine stone, with PC1 as red, PC2 as green and PC3 as blue. In (e), spectra from metal clamps are shown, in the same color as the color of the pixels in (c), and in (f), spectra from travertine are shown, in the same color as the color in (d).

Fig. 8.
Fig. 8.

Analysis of an area (Area C in Fig. 1(d)) containing titanium clamps inserted during a restoration carried out in 1999 and treated with a corrosion-inhibiting coating. Excitation wavelength was 308 nm. The distance of the sensor from the target was about 18 m and the spot size diameter on the target was about 2 cm. The spatial resolution was 10 cm both in horizontal and vertical directions. (a) shows the area with the measured points. In (b), a CA has been performed and the points where the beam has hit the metal clamps are identified as different from the surrounding travertine stone. (c) shows the three points on the metal clamps in the area. In (d) the corresponding spectra are shown together with representative spectra from the travertine areas. The cyan point is identified as a point on a treated metal clamp, as indicated by the peak at 380 nm. The yellow points indicate points which are partly stone and partly metal clamp. These have only a slight indication of a peak at 380 nm.

Fig. 9.
Fig. 9.

Detection of iron clamps in a heavily soiled and weathered area (Area A in Fig. 1(d)). The excitation wavelength was 308 nm. The distance of the sensor from the target was about 18 m and the spot size diameter on the target was about 2 cm. The spatial resolution was 8 cm both in horizontal and vertical directions. (a) the scanned area with the measurement reference grid. (b) CA-based classification of the fluorescence spectra pointing out the position of the iron clamps (blue pixels). (c) typical spectra referring to the five different classes identified in (b). The color of each spectrum corresponds to the color of the relative class in map (b): the iron clamps (blue spectra) show a remarkably lower fluorescence intensity with respect to the spectra of the other classes. (d) shows rescaled fluorescence spectra of the iron clamps.

Fig. 10.
Fig. 10.

Scanning of a recently cleaned area featuring old iron clamps (Area G in Fig. 1(d)). The excitation wavelength was 355 nm. The distance of the sensor from the target was 65 m and the spot size diameter on the target was about 4 cm. The spatial resolution was 12 cm both in horizontal and vertical directions. (a) the area with a superimposed evaluation to find the metal clamps (T is the threshold used to suppress low-value spectra). (b) some characteristic spectra, as indicated by the squares in (a). The squares in (a) have the same color as the curves in (b).

Metrics