Abstract

We experimentally demonstrate the first method to focus light inside disordered photonic metamaterials. In such materials, scattering prevents light from forming a geometric focus. Instead of geometric optics, we used multi-path interference to make the scattering process itself concentrate light on a fluorescent nanoscale probe at the target position. Our method uses the fact that the disorder in a solid material is fixed in time. Therefore, even disordered light scattering is deterministic. Measurements of the probes fluorescence provided the information needed to construct a specific linear combination of hundreds of incident waves, which interfere constructively at the probe.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. U. Leonhardt, "Optical Conformal Mapping," Science 312, 1777-1780 (2006).
    [CrossRef] [PubMed]
  2. J. B. Pendry, D. Schurig, and D. R. Smith, "Controlling Electromagnetic Fields," Science 312, 1780-1782 (2006).
    [CrossRef] [PubMed]
  3. T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, "Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity," Nature 432, 200-203 (2004).
    [CrossRef] [PubMed]
  4. H. J. Lezec, J. A. Dionne, and H. A. Atwater, "Negative Refraction at Visible Frequencies," Science 316, 430-432 (2007).
    [CrossRef] [PubMed]
  5. G. Dolling, M. Wegener, C. M. Soukoulis, and S. Linden, "Negative-index metamaterial at 780 nm wavelength," Opt. Lett. 1, 53-55 (2007).
    [CrossRef]
  6. V. M. Shalaev, "Optical negative-index metamaterials," Nature Photonics 1, 41-48 (2007).
    [CrossRef]
  7. V. G. Veselago, "The electrodynamics of substances with simultaneously negative values of ∑ and μ," Sov. Phys. Usp. 10, 509 (1968).
    [CrossRef]
  8. Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, "Far-Field Optical Hyperlens Magnifying Sub-Diffraction-Limited Objects," Science 315, 1686 (2007).
    [CrossRef] [PubMed]
  9. G. Lerosey, J. de Rosny, A. Tourin, and M. Fink, "Focusing Beyond the Diffraction Limit with Far-Field Time Reversal," Science 315, 1120-1122 (2007).
    [CrossRef] [PubMed]
  10. M. Baudrier-Raybaut, R. Haidar, P. Kupecek, P. Lemasson, and E. Rosencher, "Random quasi-phase-matching in bulk polycrystalline isotropic nonlinear materials," Nature 432, 374-376 (2004).
    [CrossRef] [PubMed]
  11. M. I. Stockman, D. J. Bergman, C. Anceau, S. Brasselet, and J. Zyss, "Enhanced Second-Harmonic Generation by Metal Surfaces with Nanoscale Roughness: Nanoscale Dephasing, Depolarization, and Correlations," Phys. Rev. Lett. 92, 057402 (2004).
    [CrossRef] [PubMed]
  12. C. W. J. Beenakker, "Random-matrix theory of quantum transport," Rev. Mod. Phys. 69, 731-808 (1997).
    [CrossRef]
  13. J. B. Pendry, A. MacKinnon, and P. J. Roberts, "Universality Classes and Fluctuations in Disordered Systems," Proc. R. Soc. Lond. A 437, 67-83 (1992).
    [CrossRef]
  14. P. Lodahl, A. P. Mosk, and A. Lagendijk, "Spatial Quantum Correlations in Multiple Scattered Light," Phys. Rev. Lett. 95, 173901 (2005).
    [CrossRef] [PubMed]
  15. M. Storzer, P. Gross, C. M. Aegerter, and G. Maret, "Observation of the Critical Regime Near Anderson Localization of Light," Phys. Rev. Lett. 96, 063904 (2006).
    [CrossRef] [PubMed]
  16. S. Zhang, B. Hu, P. Sebbah, and A. Z. Genack, "Speckle Evolution of Diffusive and Localized Waves," Phys. Rev. Lett. 99, 063902 (2007).
    [CrossRef] [PubMed]
  17. P. Sebbah, B. Hu, A. Z. Genack, R. Pnini, and B. Shapiro, "Spatial-field correlation: The building block of mesoscopic fluctuations," Phys. Rev. Lett. 88(12), 123901 (2002).
    [CrossRef] [PubMed]
  18. T. Schwartz, G. Bartal, S. Fishman, and M. Segev, "Transport and Anderson localization in disordered twodimensional photonic lattices," Nature 446, 52-55 (2007).
    [CrossRef] [PubMed]
  19. Y. A. Vlasov, V. N. Astratov, A. V. Baryshev, A. A. Kaplyanskii, O. Z. Karimov, and M. F. Limonov, "Manifestation of intrinsic defects in optical properties of self-organized opal photonic crystals," Phys. Rev. E 61, 5784-5793 (2000).
    [CrossRef]
  20. S. Hughes, L. Ramunno, J. F. Young, and J. E. Sipe, "Extrinsic Optical Scattering Loss in Photonic Crystal Waveguides: Role of Fabrication Disorder and Photon Group Velocity," Phys. Rev. Lett. 94, 033903 (2005).
    [CrossRef] [PubMed]
  21. A. F. Koenderink, A. Lagendijk, and W. L. Vos, "Optical extinction due to intrinsic structural variations of photonic crystals," Phys. Rev. B 72, 153102 (2005).
    [CrossRef]
  22. R. K. Tyson, Principles of Adaptive Optics, 2nd ed. (Academic Press, 1998).
  23. F. Roddier (ed.), Adaptive Optics in Astronomy, (Cambridge University Press, U.S., 1997).
  24. "Special Issue: Advances in Retinal Imaging", J. Opt. Soc. Am. A 24, 1223-1480 (2007)
  25. A. M. Weiner, "Femtosecond pulse shaping using spatial light modulators" Rev. Sci. Instrum. 711929-1960 (2000).
    [CrossRef]
  26. M. Fink, D. Cassereau, A. Derode, C. Prada, P. Roux, M. Tanter, J.-L. Thomas, and F. Wu, "Time-reversed acoustics," Rep. Prog. Phys. 63, 1933-1995 (1999).
    [CrossRef]
  27. R. A. Fisher, ed., Optical phase conjugation (Academic Press, 1983).
  28. I. M. Vellekoop and A. P. Mosk, "Focusing coherent light through opaque strongly scattering media," Opt. Lett. 32, 2309-2311 (2007).
    [CrossRef] [PubMed]
  29. M. Han, X. Gao, J. Z. Su, and S. Nie, "Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules," Nature Biotech. 19, 631-635 (2001).
    [CrossRef]
  30. S. John and R. Rangarajan, "Optimal structures for classical wave localization: an alternative to the ioffe-regel criterion," Phys. Rev. B 38, 10101 - 10104 (1988).
    [CrossRef]
  31. N. M. Shapiro, M. Campillo, L. Stehly, and M. H. Ritzwoller, "High-Resolution Surface-Wave Tomography from Ambient Seismic Noise," Science 307, 1615 (2005).
    [CrossRef] [PubMed]
  32. R. L. Weaver and O. I. Lobkis, "Fluctuations in diffuse field-field correlations and the emergence of the Greens function in open systems," J. Acoust. Soc. Am. 117, 3432-3439 (2005).
    [CrossRef] [PubMed]
  33. We thank Carlo Beenakker and John Pendry for discussions on this promising field.
  34. E. G. van Putten, I. M. Vellekoop, and A. P. Mosk, "Spatial amplitude and phase modulation using commercial twisted nematic LCDs," ArXiv.org:physics.optics/0711.4301 (2007).
  35. J. G. Rivas, R. Sprik, C. M. Soukoulis, K. Busch, and A. Lagendijk, "Optical transmission through strong scattering and highly polydisperse media," Europhys. Lett. 48, 22-28 (1999).
    [CrossRef]
  36. M. U. Vera and D. J. Durian, "Angular distribution of diffusely transmitted light," Phys. Rev. E 53, 3215-3224 (1996).
    [CrossRef]
  37. A. S. McLean and J. B. Pendry, "Beyond Diffusion to Diffraction," J. Mod. Opt. 42, 2495-2531 (1995).
  38. H. S. Carslaw and J. C. Jaeger, Conduction of heat in solids, 2nd ed. (University Press, Oxford, 1959).
  39. S. Chandrasekhar, Radiative Transfer (Dover Publications, Inc., New York, 1960).
  40. J. W. Goodman, Statistical optics (Wiley, New York, 2000).
  41. N. Garcia and A. Z. Genack, "Crossover to strong intensity correlation for microwave radiation in random media," Phys. Rev. Lett. 63, 1678-1681 (1989).
    [CrossRef] [PubMed]
  42. A. D. Mirlin, R. Pnini, and B. Shapiro, "Intensity distribution for waves in disordered media: Deviations from Rayleigh statistics," Phys. Rev. E 57, R6285-R6288 (1998).
    [CrossRef]
  43. B. A. van Tiggelen, A. Tip, and A. Lagendijk, "Dwell times for light and electrons," J. Phys. A 26, 1731-1748 (1993).
    [CrossRef]
  44. J. F. de Boer, Optical fluctuations on the transmission and reflection of mesoscopic systems (University of Amsterdam, Amsterdam, 1995).
  45. E. Akkermans, P. E. Wolf, and R. Maynard, "Coherent Backscattering of Light in Disordered Media: Analysis of the Peak Line Shape," Phys. Rev. Lett. 56, 1471-1474 (1986).
    [CrossRef] [PubMed]

2007 (9)

H. J. Lezec, J. A. Dionne, and H. A. Atwater, "Negative Refraction at Visible Frequencies," Science 316, 430-432 (2007).
[CrossRef] [PubMed]

G. Dolling, M. Wegener, C. M. Soukoulis, and S. Linden, "Negative-index metamaterial at 780 nm wavelength," Opt. Lett. 1, 53-55 (2007).
[CrossRef]

V. M. Shalaev, "Optical negative-index metamaterials," Nature Photonics 1, 41-48 (2007).
[CrossRef]

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, "Far-Field Optical Hyperlens Magnifying Sub-Diffraction-Limited Objects," Science 315, 1686 (2007).
[CrossRef] [PubMed]

G. Lerosey, J. de Rosny, A. Tourin, and M. Fink, "Focusing Beyond the Diffraction Limit with Far-Field Time Reversal," Science 315, 1120-1122 (2007).
[CrossRef] [PubMed]

S. Zhang, B. Hu, P. Sebbah, and A. Z. Genack, "Speckle Evolution of Diffusive and Localized Waves," Phys. Rev. Lett. 99, 063902 (2007).
[CrossRef] [PubMed]

T. Schwartz, G. Bartal, S. Fishman, and M. Segev, "Transport and Anderson localization in disordered twodimensional photonic lattices," Nature 446, 52-55 (2007).
[CrossRef] [PubMed]

"Special Issue: Advances in Retinal Imaging", J. Opt. Soc. Am. A 24, 1223-1480 (2007)

I. M. Vellekoop and A. P. Mosk, "Focusing coherent light through opaque strongly scattering media," Opt. Lett. 32, 2309-2311 (2007).
[CrossRef] [PubMed]

2006 (3)

U. Leonhardt, "Optical Conformal Mapping," Science 312, 1777-1780 (2006).
[CrossRef] [PubMed]

J. B. Pendry, D. Schurig, and D. R. Smith, "Controlling Electromagnetic Fields," Science 312, 1780-1782 (2006).
[CrossRef] [PubMed]

M. Storzer, P. Gross, C. M. Aegerter, and G. Maret, "Observation of the Critical Regime Near Anderson Localization of Light," Phys. Rev. Lett. 96, 063904 (2006).
[CrossRef] [PubMed]

2005 (5)

P. Lodahl, A. P. Mosk, and A. Lagendijk, "Spatial Quantum Correlations in Multiple Scattered Light," Phys. Rev. Lett. 95, 173901 (2005).
[CrossRef] [PubMed]

S. Hughes, L. Ramunno, J. F. Young, and J. E. Sipe, "Extrinsic Optical Scattering Loss in Photonic Crystal Waveguides: Role of Fabrication Disorder and Photon Group Velocity," Phys. Rev. Lett. 94, 033903 (2005).
[CrossRef] [PubMed]

A. F. Koenderink, A. Lagendijk, and W. L. Vos, "Optical extinction due to intrinsic structural variations of photonic crystals," Phys. Rev. B 72, 153102 (2005).
[CrossRef]

N. M. Shapiro, M. Campillo, L. Stehly, and M. H. Ritzwoller, "High-Resolution Surface-Wave Tomography from Ambient Seismic Noise," Science 307, 1615 (2005).
[CrossRef] [PubMed]

R. L. Weaver and O. I. Lobkis, "Fluctuations in diffuse field-field correlations and the emergence of the Greens function in open systems," J. Acoust. Soc. Am. 117, 3432-3439 (2005).
[CrossRef] [PubMed]

2004 (3)

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, "Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity," Nature 432, 200-203 (2004).
[CrossRef] [PubMed]

M. Baudrier-Raybaut, R. Haidar, P. Kupecek, P. Lemasson, and E. Rosencher, "Random quasi-phase-matching in bulk polycrystalline isotropic nonlinear materials," Nature 432, 374-376 (2004).
[CrossRef] [PubMed]

M. I. Stockman, D. J. Bergman, C. Anceau, S. Brasselet, and J. Zyss, "Enhanced Second-Harmonic Generation by Metal Surfaces with Nanoscale Roughness: Nanoscale Dephasing, Depolarization, and Correlations," Phys. Rev. Lett. 92, 057402 (2004).
[CrossRef] [PubMed]

2002 (1)

P. Sebbah, B. Hu, A. Z. Genack, R. Pnini, and B. Shapiro, "Spatial-field correlation: The building block of mesoscopic fluctuations," Phys. Rev. Lett. 88(12), 123901 (2002).
[CrossRef] [PubMed]

2001 (1)

M. Han, X. Gao, J. Z. Su, and S. Nie, "Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules," Nature Biotech. 19, 631-635 (2001).
[CrossRef]

2000 (2)

A. M. Weiner, "Femtosecond pulse shaping using spatial light modulators" Rev. Sci. Instrum. 711929-1960 (2000).
[CrossRef]

Y. A. Vlasov, V. N. Astratov, A. V. Baryshev, A. A. Kaplyanskii, O. Z. Karimov, and M. F. Limonov, "Manifestation of intrinsic defects in optical properties of self-organized opal photonic crystals," Phys. Rev. E 61, 5784-5793 (2000).
[CrossRef]

1999 (2)

M. Fink, D. Cassereau, A. Derode, C. Prada, P. Roux, M. Tanter, J.-L. Thomas, and F. Wu, "Time-reversed acoustics," Rep. Prog. Phys. 63, 1933-1995 (1999).
[CrossRef]

J. G. Rivas, R. Sprik, C. M. Soukoulis, K. Busch, and A. Lagendijk, "Optical transmission through strong scattering and highly polydisperse media," Europhys. Lett. 48, 22-28 (1999).
[CrossRef]

1998 (1)

A. D. Mirlin, R. Pnini, and B. Shapiro, "Intensity distribution for waves in disordered media: Deviations from Rayleigh statistics," Phys. Rev. E 57, R6285-R6288 (1998).
[CrossRef]

1997 (1)

C. W. J. Beenakker, "Random-matrix theory of quantum transport," Rev. Mod. Phys. 69, 731-808 (1997).
[CrossRef]

1996 (1)

M. U. Vera and D. J. Durian, "Angular distribution of diffusely transmitted light," Phys. Rev. E 53, 3215-3224 (1996).
[CrossRef]

1995 (1)

A. S. McLean and J. B. Pendry, "Beyond Diffusion to Diffraction," J. Mod. Opt. 42, 2495-2531 (1995).

1993 (1)

B. A. van Tiggelen, A. Tip, and A. Lagendijk, "Dwell times for light and electrons," J. Phys. A 26, 1731-1748 (1993).
[CrossRef]

1992 (1)

J. B. Pendry, A. MacKinnon, and P. J. Roberts, "Universality Classes and Fluctuations in Disordered Systems," Proc. R. Soc. Lond. A 437, 67-83 (1992).
[CrossRef]

1989 (1)

N. Garcia and A. Z. Genack, "Crossover to strong intensity correlation for microwave radiation in random media," Phys. Rev. Lett. 63, 1678-1681 (1989).
[CrossRef] [PubMed]

1988 (1)

S. John and R. Rangarajan, "Optimal structures for classical wave localization: an alternative to the ioffe-regel criterion," Phys. Rev. B 38, 10101 - 10104 (1988).
[CrossRef]

1986 (1)

E. Akkermans, P. E. Wolf, and R. Maynard, "Coherent Backscattering of Light in Disordered Media: Analysis of the Peak Line Shape," Phys. Rev. Lett. 56, 1471-1474 (1986).
[CrossRef] [PubMed]

1968 (1)

V. G. Veselago, "The electrodynamics of substances with simultaneously negative values of ∑ and μ," Sov. Phys. Usp. 10, 509 (1968).
[CrossRef]

Europhys. Lett. (1)

J. G. Rivas, R. Sprik, C. M. Soukoulis, K. Busch, and A. Lagendijk, "Optical transmission through strong scattering and highly polydisperse media," Europhys. Lett. 48, 22-28 (1999).
[CrossRef]

J. Acoust. Soc. Am. (1)

R. L. Weaver and O. I. Lobkis, "Fluctuations in diffuse field-field correlations and the emergence of the Greens function in open systems," J. Acoust. Soc. Am. 117, 3432-3439 (2005).
[CrossRef] [PubMed]

J. Mod. Opt. (1)

A. S. McLean and J. B. Pendry, "Beyond Diffusion to Diffraction," J. Mod. Opt. 42, 2495-2531 (1995).

J. Opt. Soc. Am. A (1)

J. Phys. A (1)

B. A. van Tiggelen, A. Tip, and A. Lagendijk, "Dwell times for light and electrons," J. Phys. A 26, 1731-1748 (1993).
[CrossRef]

Nature (3)

T. Schwartz, G. Bartal, S. Fishman, and M. Segev, "Transport and Anderson localization in disordered twodimensional photonic lattices," Nature 446, 52-55 (2007).
[CrossRef] [PubMed]

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, "Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity," Nature 432, 200-203 (2004).
[CrossRef] [PubMed]

M. Baudrier-Raybaut, R. Haidar, P. Kupecek, P. Lemasson, and E. Rosencher, "Random quasi-phase-matching in bulk polycrystalline isotropic nonlinear materials," Nature 432, 374-376 (2004).
[CrossRef] [PubMed]

Nature Biotech. (1)

M. Han, X. Gao, J. Z. Su, and S. Nie, "Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules," Nature Biotech. 19, 631-635 (2001).
[CrossRef]

Nature Photonics (1)

V. M. Shalaev, "Optical negative-index metamaterials," Nature Photonics 1, 41-48 (2007).
[CrossRef]

Opt. Lett. (2)

G. Dolling, M. Wegener, C. M. Soukoulis, and S. Linden, "Negative-index metamaterial at 780 nm wavelength," Opt. Lett. 1, 53-55 (2007).
[CrossRef]

I. M. Vellekoop and A. P. Mosk, "Focusing coherent light through opaque strongly scattering media," Opt. Lett. 32, 2309-2311 (2007).
[CrossRef] [PubMed]

Phys. Rev. B (2)

S. John and R. Rangarajan, "Optimal structures for classical wave localization: an alternative to the ioffe-regel criterion," Phys. Rev. B 38, 10101 - 10104 (1988).
[CrossRef]

A. F. Koenderink, A. Lagendijk, and W. L. Vos, "Optical extinction due to intrinsic structural variations of photonic crystals," Phys. Rev. B 72, 153102 (2005).
[CrossRef]

Phys. Rev. E (3)

Y. A. Vlasov, V. N. Astratov, A. V. Baryshev, A. A. Kaplyanskii, O. Z. Karimov, and M. F. Limonov, "Manifestation of intrinsic defects in optical properties of self-organized opal photonic crystals," Phys. Rev. E 61, 5784-5793 (2000).
[CrossRef]

M. U. Vera and D. J. Durian, "Angular distribution of diffusely transmitted light," Phys. Rev. E 53, 3215-3224 (1996).
[CrossRef]

A. D. Mirlin, R. Pnini, and B. Shapiro, "Intensity distribution for waves in disordered media: Deviations from Rayleigh statistics," Phys. Rev. E 57, R6285-R6288 (1998).
[CrossRef]

Phys. Rev. Lett. (8)

N. Garcia and A. Z. Genack, "Crossover to strong intensity correlation for microwave radiation in random media," Phys. Rev. Lett. 63, 1678-1681 (1989).
[CrossRef] [PubMed]

S. Hughes, L. Ramunno, J. F. Young, and J. E. Sipe, "Extrinsic Optical Scattering Loss in Photonic Crystal Waveguides: Role of Fabrication Disorder and Photon Group Velocity," Phys. Rev. Lett. 94, 033903 (2005).
[CrossRef] [PubMed]

M. I. Stockman, D. J. Bergman, C. Anceau, S. Brasselet, and J. Zyss, "Enhanced Second-Harmonic Generation by Metal Surfaces with Nanoscale Roughness: Nanoscale Dephasing, Depolarization, and Correlations," Phys. Rev. Lett. 92, 057402 (2004).
[CrossRef] [PubMed]

P. Lodahl, A. P. Mosk, and A. Lagendijk, "Spatial Quantum Correlations in Multiple Scattered Light," Phys. Rev. Lett. 95, 173901 (2005).
[CrossRef] [PubMed]

M. Storzer, P. Gross, C. M. Aegerter, and G. Maret, "Observation of the Critical Regime Near Anderson Localization of Light," Phys. Rev. Lett. 96, 063904 (2006).
[CrossRef] [PubMed]

S. Zhang, B. Hu, P. Sebbah, and A. Z. Genack, "Speckle Evolution of Diffusive and Localized Waves," Phys. Rev. Lett. 99, 063902 (2007).
[CrossRef] [PubMed]

P. Sebbah, B. Hu, A. Z. Genack, R. Pnini, and B. Shapiro, "Spatial-field correlation: The building block of mesoscopic fluctuations," Phys. Rev. Lett. 88(12), 123901 (2002).
[CrossRef] [PubMed]

E. Akkermans, P. E. Wolf, and R. Maynard, "Coherent Backscattering of Light in Disordered Media: Analysis of the Peak Line Shape," Phys. Rev. Lett. 56, 1471-1474 (1986).
[CrossRef] [PubMed]

Proc. R. Soc. Lond. A (1)

J. B. Pendry, A. MacKinnon, and P. J. Roberts, "Universality Classes and Fluctuations in Disordered Systems," Proc. R. Soc. Lond. A 437, 67-83 (1992).
[CrossRef]

Rep. Prog. Phys. (1)

M. Fink, D. Cassereau, A. Derode, C. Prada, P. Roux, M. Tanter, J.-L. Thomas, and F. Wu, "Time-reversed acoustics," Rep. Prog. Phys. 63, 1933-1995 (1999).
[CrossRef]

Rev. Mod. Phys. (1)

C. W. J. Beenakker, "Random-matrix theory of quantum transport," Rev. Mod. Phys. 69, 731-808 (1997).
[CrossRef]

Rev. Sci. Instrum. (1)

A. M. Weiner, "Femtosecond pulse shaping using spatial light modulators" Rev. Sci. Instrum. 711929-1960 (2000).
[CrossRef]

Science (6)

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, "Far-Field Optical Hyperlens Magnifying Sub-Diffraction-Limited Objects," Science 315, 1686 (2007).
[CrossRef] [PubMed]

G. Lerosey, J. de Rosny, A. Tourin, and M. Fink, "Focusing Beyond the Diffraction Limit with Far-Field Time Reversal," Science 315, 1120-1122 (2007).
[CrossRef] [PubMed]

H. J. Lezec, J. A. Dionne, and H. A. Atwater, "Negative Refraction at Visible Frequencies," Science 316, 430-432 (2007).
[CrossRef] [PubMed]

U. Leonhardt, "Optical Conformal Mapping," Science 312, 1777-1780 (2006).
[CrossRef] [PubMed]

J. B. Pendry, D. Schurig, and D. R. Smith, "Controlling Electromagnetic Fields," Science 312, 1780-1782 (2006).
[CrossRef] [PubMed]

N. M. Shapiro, M. Campillo, L. Stehly, and M. H. Ritzwoller, "High-Resolution Surface-Wave Tomography from Ambient Seismic Noise," Science 307, 1615 (2005).
[CrossRef] [PubMed]

Sov. Phys. Usp. (1)

V. G. Veselago, "The electrodynamics of substances with simultaneously negative values of ∑ and μ," Sov. Phys. Usp. 10, 509 (1968).
[CrossRef]

Other (9)

We thank Carlo Beenakker and John Pendry for discussions on this promising field.

E. G. van Putten, I. M. Vellekoop, and A. P. Mosk, "Spatial amplitude and phase modulation using commercial twisted nematic LCDs," ArXiv.org:physics.optics/0711.4301 (2007).

R. K. Tyson, Principles of Adaptive Optics, 2nd ed. (Academic Press, 1998).

F. Roddier (ed.), Adaptive Optics in Astronomy, (Cambridge University Press, U.S., 1997).

H. S. Carslaw and J. C. Jaeger, Conduction of heat in solids, 2nd ed. (University Press, Oxford, 1959).

S. Chandrasekhar, Radiative Transfer (Dover Publications, Inc., New York, 1960).

J. W. Goodman, Statistical optics (Wiley, New York, 2000).

J. F. de Boer, Optical fluctuations on the transmission and reflection of mesoscopic systems (University of Amsterdam, Amsterdam, 1995).

R. A. Fisher, ed., Optical phase conjugation (Academic Press, 1983).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Principle of channel demixing. (a) Conventional way of illuminating a metamaterial sample or device. In order to get light to the area inside the metamaterial indicated by the circle, one might try to focus light using an ordinary lens. However, the randomly oriented nanoparticles in the material mix the incident scattering channels in a complicated way so that light does not travel directly to the target. Incident rays will not converge to a geometrical focus. (b) Our new way of illuminating a specific point inside a metamaterial. The wave nature of light is used as an advantage. When the phase delay for each of the incident scattering channels is set correctly, the channels demix inside the sample; multi-channel interference makes the light focus at the desired point.

Fig. 2.
Fig. 2.

Experimental setup and samples. (a) Simplified schematic of the experiment. A 532 nm laser is expanded and illuminates a spatial light modulator (SLM) that spatially modulates the phase of the reflected light. The SLM is imaged onto the back aperture of a 63x microscope objective that focuses the modulated light on a sample. Fluorescence light is collected by the same objective and imaged with an EMCCD camera. A computer drives the SLM and analyzes the EMCCD images. PBS, polarizing beam splitter. DM, dichroic mirror. F, fluorescence filter. Lenses were omitted from the schematic. (b) Geometry of the samples. A low concentration of 300-nm diameter fluorescent spheres is dispersed in a zinc oxide pigment, deposited on a glass substrate. (c) SEM image of a sample.

Fig. 3.
Fig. 3.

Experimental demonstration of channel demixing. (a) Fluorescence image of a 300 nm sphere, embedded in ZnO pigment at a depth of 9.7 µm. Conventional illumination after a scan to find the position where the fluorescence is maximal; approximately 3 times the speckle average intensity. Inset, phase of the incident wavefront (plane wave). (b) Our channel demixing method. Same sphere and sample position as in (a), the phases of the incident channels were set to the measured optimal values. The resulting fluorescence intensity has increased by a factor of 22 with respect to the average intensity. Inset, phase of the incident wavefront. Inside the sample this seemingly random wavefront transforms into a focus. Intensities are in counts per second.

Fig. 4.
Fig. 4.

Measured intensity for targets at different depths inside a 29±3 µm thick sample. Stars (green), results of our channel demixing technique, starting from a random sample position. An intensity was reached that is on average 20.4 times higher than the diffuse background (green dotted line). Circles (green), results of our channel demixing technique starting on a bright speckle, demonstrating that starting from a bright spot is not advantageous. Squares (blue), maximum intensity that was achieved by searching for the brightest speckle. An average intensity increase of only 3.2 was obtained (blue dotted line). Solid line (red), theoretical best case speckle average using adaptive optics, assuming that all geometrical aberrations are corrected perfectly. All measurements are normalized to the diffuse background.

Fig. 5.
Fig. 5.

Experimental setup. The left part consists of a laser (532 nm) that is expanded by a 30× beam expander and modulated with a spatial light modulator (SLM). A 1:2 demagnifying telescope images the SLM on the back aperture of a 63x microscope objective. The objective focuses the light on a sample that is mounted on a XYZ piezo positioning stage. A dichroic mirror (DM) and a bandpass filter (F) block the excitation light. The fluorescence emission is imaged on an electron multiplying CCD camera (EMCCD). D, iris diaphragm; PBS, polarizing beam splitter cube; L1, L2, L3, lenses with a focal distance of 200 mm, 100 mm and 150 mm, respectively. Some folding mirrors and beam attenuation optics were omitted.

Fig. 6.
Fig. 6.

Evolution of the fluorescence intensity during the measurements. The measurement procedure has three phases. 0–130 s, reference measurement; 130–1187 s, measurement of propagation coefficients; at 1187 s, construction of optimal wavefront; 1187–2244 s, fluorescence measurement with optimal wavefront.

Fig. 7.
Fig. 7.

Inverse total transmission through layers of ZnO pigment. The solid line is a fit of Eq. (2) with =0.72 µm, z e1=1.15 µm, and z e2=1.24 µm. Error bars indicate the standard deviation of the measured thickness and total transmission at different positions on the sample.

Fig. 8.
Fig. 8.

Determination of the absence of a geometrical focus. The sample is moved with respect to the objective (inset). For each depth, the sample is scanned in a plane parallel to the surface to find the maximum fluorescence intensity (solid line). In homogeneous media, there would be a sharp peak at the point where the fluorescent sphere is in the geometrical focus of the microscope objective (dotted line). In disordered photonic media, a geometric focus cannot be formed. The highest intensity is found when ‘focusing’ just below the sample surface.

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

η measured = I opt I 0 I 1 I 2 ,
1 T = L + z e 1 + z e 2 + z e 1 ,
I ˜ d ( q , z ) = { J in sinh ( q [ L e z z e 1 ] ) sinh ( q [ z 0 + z e 1 ] ) D q sinh ( q L e ) z > z 0 J in sinh ( q [ L e z 0 z e 1 ] ) sinh ( q [ z + z e 1 ] ) D q sinh ( q L e ) z z 0
E ( r b ) = g ( r b , r a ) S ( r a ) d 3 r a ,
E ( r b ) = a N S a g ( r b , r a ) d 2 r a A e i ϕ a ,
A a N g ba e i ϕ a .
I ( r b ) E ( r b ) 2 = I 0 b + 2 A Re ( E b a ¯ * g ba e i ϕ a ) ,
I 0 b E b a ¯ 2 + A 2 g ba 2 ,
E b a ¯ A a a N g b a e i ϕ a E ( r b ) ,
E max ( r b ) = A a N g ab .
η = π 4 ( N 1 ) + 1 .
η M = π 4 N 1 M + 1 ,
I d ( x = 0 , y = 0 , z ) = 1 2 π 0 I ˜ d ( q , z ) S ( q ) q d q .
I b = e z SC A ν ,

Metrics