Abstract

We present the quantum theory of superresolution for discrete subwavelength structures. It allows to formulate, in particular, the standard quantum limit of superresolution achieved for illumination of the structure by light in coherent state. Our theory is based on discrete prolate spheroidal sequences and functions which are the proper basis set of the problem. We demonstrate that the superresolution factor is much higher for discrete structures than for continuous objects for the same signal-to-noise ratio. This result is a clear illustration of the crucial role of a priori information in superresolution problems.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. F. Thomas, "Multilevel subwavelength optical data storage using reflective nanostructures," presented at the 2005 INSIC Symposium "Alternative Data Storage," Monterey, USA, 2005.
  2. H. Kostal, J. J. Wang, and F. Thomas, "Manufacture of multi-level encoded subwavelength optical data storage media," invited paper at the Topical Meeting "Advanced Imaging Techniques" of the European Optical Society, London, UK, 2005.
  3. A. S. van de Nes, J. J. M. Braat, and S. F. Pereira, "High-density optical data storage," Rep. Prog. Phys. 69, 2323-2363 (2006).
    [CrossRef]
  4. M. I. Kolobov and C. Fabre, "Quantum limits on optical resolution," Phys. Rev. Lett. 85, 3789-3792 (2000).
    [CrossRef] [PubMed]
  5. V. N. Beskrovnyy and M. I. Kolobov, "Quantum limits of super-resolution in reconstruction of optical objects," Phys. Rev. A 71, 043802(1-10) (2005).
    [CrossRef]
  6. M. I. Kolobov and V. N. Beskrovnyy, "Quantum theory of super-resolution for optical systems with circular apertures," Opt. Commun. 264, 9-12 (2006).
    [CrossRef]
  7. I. V. Sokolov and M. I. Kolobov, "Squeezed-light source for superresolving microscopy," Opt. Lett. 29, 703-705 (2004).
    [CrossRef] [PubMed]
  8. M. Bertero and C. De Mol, "Super-resolution by data inversion," in Progress in Optics, edited by E.Wolf (North-Holland, Amsterdam, 1996), Vol. XXXVI, pp. 129-178.
  9. B. R. Frieden, "Restoring with maximum likelihood and maximum entropy," J. Opt. Soc. Am. 62, 511-518 (1972).
    [CrossRef] [PubMed]
  10. M. Bertero, C. De Mol, and E. R. Pike, "Linear inverse problems with discrete data. I: General formulation and singular system analysis," Inverse Problems 1, 301-330 (1985).
    [CrossRef]
  11. D. Slepian, "Prolate spheroidal wave functions, Fourier analysis and uncertainty-V: The discrete case", Bell System Tech. J. 57, 1371-1430 (1978).
  12. A. Papoulis and M. S. Bertran, "Digital filtering and prolate functions," IEEE Trans.Circuit Theory, CT- 19, 674-681 (1972).
    [CrossRef]

2006 (2)

M. I. Kolobov and V. N. Beskrovnyy, "Quantum theory of super-resolution for optical systems with circular apertures," Opt. Commun. 264, 9-12 (2006).
[CrossRef]

A. S. van de Nes, J. J. M. Braat, and S. F. Pereira, "High-density optical data storage," Rep. Prog. Phys. 69, 2323-2363 (2006).
[CrossRef]

2004 (1)

2000 (1)

M. I. Kolobov and C. Fabre, "Quantum limits on optical resolution," Phys. Rev. Lett. 85, 3789-3792 (2000).
[CrossRef] [PubMed]

1985 (1)

M. Bertero, C. De Mol, and E. R. Pike, "Linear inverse problems with discrete data. I: General formulation and singular system analysis," Inverse Problems 1, 301-330 (1985).
[CrossRef]

1978 (1)

D. Slepian, "Prolate spheroidal wave functions, Fourier analysis and uncertainty-V: The discrete case", Bell System Tech. J. 57, 1371-1430 (1978).

1972 (2)

A. Papoulis and M. S. Bertran, "Digital filtering and prolate functions," IEEE Trans.Circuit Theory, CT- 19, 674-681 (1972).
[CrossRef]

B. R. Frieden, "Restoring with maximum likelihood and maximum entropy," J. Opt. Soc. Am. 62, 511-518 (1972).
[CrossRef] [PubMed]

Bell System Tech. J. (1)

D. Slepian, "Prolate spheroidal wave functions, Fourier analysis and uncertainty-V: The discrete case", Bell System Tech. J. 57, 1371-1430 (1978).

Circuit Theory, CT (1)

A. Papoulis and M. S. Bertran, "Digital filtering and prolate functions," IEEE Trans.Circuit Theory, CT- 19, 674-681 (1972).
[CrossRef]

Inverse Problems (1)

M. Bertero, C. De Mol, and E. R. Pike, "Linear inverse problems with discrete data. I: General formulation and singular system analysis," Inverse Problems 1, 301-330 (1985).
[CrossRef]

J. Opt. Soc. Am. (1)

Opt. Commun. (1)

M. I. Kolobov and V. N. Beskrovnyy, "Quantum theory of super-resolution for optical systems with circular apertures," Opt. Commun. 264, 9-12 (2006).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. Lett. (1)

M. I. Kolobov and C. Fabre, "Quantum limits on optical resolution," Phys. Rev. Lett. 85, 3789-3792 (2000).
[CrossRef] [PubMed]

Rep. Prog. Phys. (1)

A. S. van de Nes, J. J. M. Braat, and S. F. Pereira, "High-density optical data storage," Rep. Prog. Phys. 69, 2323-2363 (2006).
[CrossRef]

Other (4)

M. Bertero and C. De Mol, "Super-resolution by data inversion," in Progress in Optics, edited by E.Wolf (North-Holland, Amsterdam, 1996), Vol. XXXVI, pp. 129-178.

V. N. Beskrovnyy and M. I. Kolobov, "Quantum limits of super-resolution in reconstruction of optical objects," Phys. Rev. A 71, 043802(1-10) (2005).
[CrossRef]

F. Thomas, "Multilevel subwavelength optical data storage using reflective nanostructures," presented at the 2005 INSIC Symposium "Alternative Data Storage," Monterey, USA, 2005.

H. Kostal, J. J. Wang, and F. Thomas, "Manufacture of multi-level encoded subwavelength optical data storage media," invited paper at the Topical Meeting "Advanced Imaging Techniques" of the European Optical Society, London, UK, 2005.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1.
Fig. 1.

Optical scheme for the far-field imaging of a discrete subwavelength optical structure.

Fig. 2.
Fig. 2.

Superresolution factor SF as a function of log〈〉, 〈〉 is the mean photon number, for superresolution of discrete structures (bold line) and continuous signals (dotted line).

Equations (28)

Equations on this page are rendered with MathJax. Learn more.

[ a ̂ ( s ) , a ̂ ( s ) ] = δ ( s s ) , [ f ̂ ( ξ ) , f ̂ ( ξ ) ] = δ ( ξ ξ ) .
f ̂ ( ξ ) = ( T a ̂ ) ( ξ ) = c 2 π a ̂ ( s ) e ics ξ ds ,
a ̂ ( m ) = 1 Δ Δ ( m 1 2 ) Δ ( m + 1 2 ) a ̂ ( s ) ds .
[ a ̂ ( m ) , a ̂ ( m ) ] = δ mm ,
A ̂ ( s ) = m = a ̂ ( m ) p ( s Δ m ) ,
F ̂ ( ξ ) = P ( ξ ) c 2 π m = a ̂ ( m ) e ic Δ ξ m ,
f ̂ ( ξ ) = W m = a ̂ ( m ) e 2 π iW ξ m ,
m = M M sin [ 2 π W ( m m ) ] π ( m m ) ψ μ ( m ) = λ μ ψ μ ( m ) ,
m = M M ψ μ ( m ) ψ ν ( m ) = λ μ m = ψ μ ( m ) ψ ν ( m ) = λ μ δ μν .
1 1 sin [ π KW ( ξ ξ ) ] sin [ π W ( ξ ξ ) ] Ψ μ ( ξ ) d ξ = λ μ Ψ μ ( ξ ) ,
1 1 Ψ μ ( ξ ) Ψ ν ( ξ ) d ξ = λ μ 1 2 W 1 2 W Ψ μ ( ξ ) Ψ ν ( ξ ) d ξ = λ μ δ μν .
m = M M ψ μ ( m ) e 2 π iW ξ m = ( i ) μ λ μ W Ψ μ ( ξ ) ,
φ μ ( m ) = { 1 λ μ ψ μ ( m ) m M , 0 m > M , χ μ ( m ) = { 0 m M , 1 1 λ μ ψ μ ( m ) m > M .
Φ μ ( ξ ) = { 1 λ μ Ψ μ ( ξ ) ξ 1 , 0 ξ > 1 , X μ ( ξ ) = { 0 ξ 1 , 1 1 λ μ Ψ μ ( ξ ) ξ > 1 .
a ̂ ( m ) = μ = 0 2 M a ̂ μ φ μ ( m ) + μ = 0 2 M b ̂ μ χ μ ( m ) + a ̂ ( m ) ,
f ̂ ( ξ ) = μ = 0 2 M f ̂ μ Φ μ ( ξ ) + μ = 0 2 M g ̂ μ X μ ( ξ ) + f ̂ ( ξ ) .
f ̂ μ = ( i ) μ ( λ μ a ̂ μ + 1 λ μ b ̂ μ ) .
a ̂ μ ( r ) = f ̂ μ ( i ) μ λ μ = a ̂ μ + 1 λ μ λ μ b ̂ μ ,
e ̂ ( m ) = m = h ( m , m ) a ̂ ( m ) ,
e ̂ ( m ) = m = sin [ 2 π W ( m m ) ] π ( m m ) a ̂ ( m ) + e ̂ ( m ) ,
h ( m , m ) = sin [ 2 π W ( m m ) ] π ( m m ) .
a ̂ ( r ) ( m ) = μ = 0 2 M a ̂ μ ( r ) φ μ ( m ) ,
a ̂ ( r ) ( m ) = m = M M h ( r ) ( m , m ) a ̂ ( m ) + μ = 0 2 M 1 λ μ λ μ b ̂ μ φ μ ( m ) ,
h ( r ) ( m , m ) = μ = 0 2 M φ μ ( m ) φ μ ( m ) ,
μ = 0 2 M φ μ ( m ) φ μ ( m ) = δ m m ,
h ( r ) ( m , m ) = δ m m ,
a ̂ ( r ) ( m ) = a ̂ ( m ) + μ = 0 2 M 1 λ μ λ μ b ̂ μ φ μ ( m ) .
N ̂ = m = M M a ̂ m a ̂ m .

Metrics