Abstract

We demonstrate air-trench splitters in low index contrast perfluorocyclobutyl (PFCB) waveguides. Splitters are fabricated by etching 800 nm wide high aspect ratio (18:1) trenches. The measured optical loss is 0.4 dB/splitter. The reflection/transmission splitting ratio is 0.859/0.141, which closely matches two-dimensional finite difference time domain (2D-FDTD) simulation results. Air-trench splitters and bends are used to demonstrate an ultra-compact ring resonator (RR) with a size reduction of 1,700 compared to a RR based on traditional curved waveguides in the same material system. A comparison between the RR’s measured and analytically calculated performance shows close agreement when splitter and bend losses are taken into account.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. D. -G. Sun, Y. Zha, T. Liu, Y. Zhang, X. Li, and X. Fu, "Demonstration for rearrangeable nonblocking 8×8 matrix optical switches based on extended banyan networks," Opt. Express 15,9347-9356 (2007).
    [CrossRef] [PubMed]
  2. W. Lin, C. J. Sun, and K. M. Schmidt, "Hybrid integration platform based on silica on silicon planar lightwave circuits," Proc. of SPIE 6476, (2007).
  3. W. -Y. Chen, R. Grover, T. A. Ibrahim, V. Van, W. N. Herman, and P. -T. Ho, "High-Finesse Laterally Coupled Single-Mode Benzocyclobutene Microring Resonators," IEEE Photon. Tech. Lett. 16,470-472, (2004).
    [CrossRef]
  4. A. Yeniay, R. Gao, K. Takayama, R. Gao, and A. F. Garito, "Ultra-low-loss polymer waveguides," J. Lightwave Technol. 22,154-158, (2004).
    [CrossRef]
  5. L. Zuo, H. Suzuki, K. Kong, J. Si, M.M. Aye, A. Watabe and S. Takahashi, "Athermal silica based interferometer type planar lightewave circuits realized by a multicore fabrication method," Opt. Lett. 28,1046-1048, (2003).
    [CrossRef] [PubMed]
  6. P. Rabiei, W. H. Steier, C. Zhang, and L. R. Dalton, "Polymer Micro-Ring Filters and Modulators," J. Lightwave. Technol.,  20,1968-1975, (2002).
    [CrossRef]
  7. L. A. Eldada, "Polymer integrated optics: promise versus practicality," Proc of. SPIE 4642,11-22, (2002).
    [CrossRef]
  8. B. Schmidt, Q. Xu, J. Shakya, S. Manipatruni, and M. Lipson, "Compact electro-optic modulator on silicon-on-insulator substrates using cavities with ultra-small modal volumes," Opt. Express 15,3140-3148 (2007).
    [CrossRef] [PubMed]
  9. H. Fukuda, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Shinojima, and S. -i. Itabashi, "Ultrasmall polarization splitter based on silicon wire waveguides," Opt. Express 14,12401-12408 (2006).
    [CrossRef] [PubMed]
  10. W. Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, D. Taillaert, B. Luyssaert, J. V. Campenhout, P. Bienstman, and D. V. Thourhout, "Nanophotonic Waveguides in Silicon-on-Insulator Fabricated With CMOS Technology," J. Lightwave Technol. 23,401-412 (2005).
    [CrossRef]
  11. Almeida, V. R. , Barrios, C. A. , Panepucci, R. R. , Lipson, M. , "All-optical control of light on a silicon chip," Nature 431, 1081-1084, (2004).
    [CrossRef] [PubMed]
  12. Y. A. Vlasov and S. J. McNab, "Losses in single-mode silicon-on-insulator strip waveguides and bends," Opt. Express 12,1622-1631 (2004).
    [CrossRef] [PubMed]
  13. S. Kim, J. Jiang, and G. P. Nordin, "Design of compact polymer Mach-Zender interferometer and ring resonator with air trench structures," Opt. Eng. 45,54602-54609, (2005).
    [CrossRef]
  14. L. Li, G. P. Nordin, J. M. English and J. Jiang, "Small-area bends and beamsplitters for low index-contrast waveguides," Opt. Express 11, (2003).
    [CrossRef] [PubMed]
  15. J. Cardenas, L. Li, S. Kim and G. P. Nordin, "Compact low loss single air interface bends in polymer waveguides," Opt. Express 12,5314-5324, (2004).
    [CrossRef] [PubMed]
  16. Y. Lin, J. Cardenas, S. Kim and G. P. Nordin, "Reduced loss through improved fabrication for single air interface bends in polymer waveguides," Opt. Express 14, (2006)
    [CrossRef] [PubMed]
  17. J. Ballato and S. H. Foulger and DennisW. Smith, Jr., "Optical properties of perfluorocyclobutylpolymers. II. Theoretical and experimental attenuation," J. Opt. Soc. Am., B 21, (2004).
    [CrossRef]
  18. J. Ballato, D. W. Smith, Jr, S. Foulger, "Optical properties of perfluorocyclobutyl polymers," J. Opt. Soc. Am. 20 (9),1838-1843 (2003).
    [CrossRef]
  19. D. W. SmithJr, S. Chen, S. M. Kumar, J. Ballato, C. Topping, H. V. Shah, and S. H. Foulger, "Perfluorocyclobutyl Copolymers for Microphotonics," Adv. Mater 14 (21),1585-1589 (2002)
    [CrossRef]
  20. Andrea Guarino, Gorazd Poberaj, Daniele Rezzonico, Riccardo Degl'Innocenti & Peter Günter, "Electro-optically tunable microring resonators in lithium niobate," Nature Photonics 1,407 - 410 (2007).
    [CrossRef]
  21. W. M. J. Green, R. K. Lee, G. A. DeRose, A. Scherer, and A. Yariv, "Hybrid InGaAsP-InP Mach-Zehnder Racetrack Resonator for Thermooptic Switching and Coupling Contro,".Opt. Express 13,1651-1659, (2005).
    [CrossRef] [PubMed]
  22. T.P. White, C. M. de Streke, R.C. McPhedran, T. Huang, and L.C. Botton, "Recirculation enhanced switching in photonic crystal Mach-Zehnder interferometers," Opt. Express 12,3035-3045, (2004).
    [CrossRef] [PubMed]
  23. M. Izutsu, Y. Nakai and T. Sueta, "Operation mechanism of the single-mode optical-waveguide Y junction," Opt. Lett. 17,136-138, (1982).
    [CrossRef]
  24. D.L. Lee,Electromagnetic principles of integrated optics. (New York, John Wiley & Sons, 1986).
  25. C.T. Lee and M.L. Wu, "Apexes-Linked circle grating for low-loss waveguide bends," IEEE Photon. Technol. Lett. 13,597-599, (2001).
    [CrossRef]
  26. N. Rahmanian, S. Kim, G. P. Nordin, "Anisotropic, high aspect ratio etch for perflourocyclobutyl polymers with stress relief technique," J. Vac. Sci. Technol. 24,2672-2677, (2006).
    [CrossRef]
  27. S. Kim, J. Cai, J. Jiang, and G. Nordin, "New ring resonator configuration using hybrid photonic crystal and conventional waveguide structures," Opt. Express 12, 2356-2364 (2004).
    [CrossRef] [PubMed]

2007 (3)

2006 (3)

H. Fukuda, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Shinojima, and S. -i. Itabashi, "Ultrasmall polarization splitter based on silicon wire waveguides," Opt. Express 14,12401-12408 (2006).
[CrossRef] [PubMed]

N. Rahmanian, S. Kim, G. P. Nordin, "Anisotropic, high aspect ratio etch for perflourocyclobutyl polymers with stress relief technique," J. Vac. Sci. Technol. 24,2672-2677, (2006).
[CrossRef]

Y. Lin, J. Cardenas, S. Kim and G. P. Nordin, "Reduced loss through improved fabrication for single air interface bends in polymer waveguides," Opt. Express 14, (2006)
[CrossRef] [PubMed]

2005 (3)

2004 (8)

Almeida, V. R. , Barrios, C. A. , Panepucci, R. R. , Lipson, M. , "All-optical control of light on a silicon chip," Nature 431, 1081-1084, (2004).
[CrossRef] [PubMed]

W. -Y. Chen, R. Grover, T. A. Ibrahim, V. Van, W. N. Herman, and P. -T. Ho, "High-Finesse Laterally Coupled Single-Mode Benzocyclobutene Microring Resonators," IEEE Photon. Tech. Lett. 16,470-472, (2004).
[CrossRef]

J. Ballato and S. H. Foulger and DennisW. Smith, Jr., "Optical properties of perfluorocyclobutylpolymers. II. Theoretical and experimental attenuation," J. Opt. Soc. Am., B 21, (2004).
[CrossRef]

A. Yeniay, R. Gao, K. Takayama, R. Gao, and A. F. Garito, "Ultra-low-loss polymer waveguides," J. Lightwave Technol. 22,154-158, (2004).
[CrossRef]

Y. A. Vlasov and S. J. McNab, "Losses in single-mode silicon-on-insulator strip waveguides and bends," Opt. Express 12,1622-1631 (2004).
[CrossRef] [PubMed]

S. Kim, J. Cai, J. Jiang, and G. Nordin, "New ring resonator configuration using hybrid photonic crystal and conventional waveguide structures," Opt. Express 12, 2356-2364 (2004).
[CrossRef] [PubMed]

T.P. White, C. M. de Streke, R.C. McPhedran, T. Huang, and L.C. Botton, "Recirculation enhanced switching in photonic crystal Mach-Zehnder interferometers," Opt. Express 12,3035-3045, (2004).
[CrossRef] [PubMed]

J. Cardenas, L. Li, S. Kim and G. P. Nordin, "Compact low loss single air interface bends in polymer waveguides," Opt. Express 12,5314-5324, (2004).
[CrossRef] [PubMed]

2003 (3)

J. Ballato, D. W. Smith, Jr, S. Foulger, "Optical properties of perfluorocyclobutyl polymers," J. Opt. Soc. Am. 20 (9),1838-1843 (2003).
[CrossRef]

L. Li, G. P. Nordin, J. M. English and J. Jiang, "Small-area bends and beamsplitters for low index-contrast waveguides," Opt. Express 11, (2003).
[CrossRef] [PubMed]

L. Zuo, H. Suzuki, K. Kong, J. Si, M.M. Aye, A. Watabe and S. Takahashi, "Athermal silica based interferometer type planar lightewave circuits realized by a multicore fabrication method," Opt. Lett. 28,1046-1048, (2003).
[CrossRef] [PubMed]

2002 (3)

P. Rabiei, W. H. Steier, C. Zhang, and L. R. Dalton, "Polymer Micro-Ring Filters and Modulators," J. Lightwave. Technol.,  20,1968-1975, (2002).
[CrossRef]

L. A. Eldada, "Polymer integrated optics: promise versus practicality," Proc of. SPIE 4642,11-22, (2002).
[CrossRef]

D. W. SmithJr, S. Chen, S. M. Kumar, J. Ballato, C. Topping, H. V. Shah, and S. H. Foulger, "Perfluorocyclobutyl Copolymers for Microphotonics," Adv. Mater 14 (21),1585-1589 (2002)
[CrossRef]

2001 (1)

C.T. Lee and M.L. Wu, "Apexes-Linked circle grating for low-loss waveguide bends," IEEE Photon. Technol. Lett. 13,597-599, (2001).
[CrossRef]

1982 (1)

Adv. Mater (1)

D. W. SmithJr, S. Chen, S. M. Kumar, J. Ballato, C. Topping, H. V. Shah, and S. H. Foulger, "Perfluorocyclobutyl Copolymers for Microphotonics," Adv. Mater 14 (21),1585-1589 (2002)
[CrossRef]

IEEE Photon. Tech. Lett. (1)

W. -Y. Chen, R. Grover, T. A. Ibrahim, V. Van, W. N. Herman, and P. -T. Ho, "High-Finesse Laterally Coupled Single-Mode Benzocyclobutene Microring Resonators," IEEE Photon. Tech. Lett. 16,470-472, (2004).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

C.T. Lee and M.L. Wu, "Apexes-Linked circle grating for low-loss waveguide bends," IEEE Photon. Technol. Lett. 13,597-599, (2001).
[CrossRef]

J. Lightwave Technol. (2)

J. Lightwave. Technol. (1)

P. Rabiei, W. H. Steier, C. Zhang, and L. R. Dalton, "Polymer Micro-Ring Filters and Modulators," J. Lightwave. Technol.,  20,1968-1975, (2002).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Ballato, D. W. Smith, Jr, S. Foulger, "Optical properties of perfluorocyclobutyl polymers," J. Opt. Soc. Am. 20 (9),1838-1843 (2003).
[CrossRef]

J. Vac. Sci. Technol. (1)

N. Rahmanian, S. Kim, G. P. Nordin, "Anisotropic, high aspect ratio etch for perflourocyclobutyl polymers with stress relief technique," J. Vac. Sci. Technol. 24,2672-2677, (2006).
[CrossRef]

J. Opt. Soc. Am., B (1)

J. Ballato and S. H. Foulger and DennisW. Smith, Jr., "Optical properties of perfluorocyclobutylpolymers. II. Theoretical and experimental attenuation," J. Opt. Soc. Am., B 21, (2004).
[CrossRef]

Nature (1)

Almeida, V. R. , Barrios, C. A. , Panepucci, R. R. , Lipson, M. , "All-optical control of light on a silicon chip," Nature 431, 1081-1084, (2004).
[CrossRef] [PubMed]

Nature Photonics (1)

Andrea Guarino, Gorazd Poberaj, Daniele Rezzonico, Riccardo Degl'Innocenti & Peter Günter, "Electro-optically tunable microring resonators in lithium niobate," Nature Photonics 1,407 - 410 (2007).
[CrossRef]

Opt. Eng. (1)

S. Kim, J. Jiang, and G. P. Nordin, "Design of compact polymer Mach-Zender interferometer and ring resonator with air trench structures," Opt. Eng. 45,54602-54609, (2005).
[CrossRef]

Opt. Express (10)

L. Li, G. P. Nordin, J. M. English and J. Jiang, "Small-area bends and beamsplitters for low index-contrast waveguides," Opt. Express 11, (2003).
[CrossRef] [PubMed]

Y. Lin, J. Cardenas, S. Kim and G. P. Nordin, "Reduced loss through improved fabrication for single air interface bends in polymer waveguides," Opt. Express 14, (2006)
[CrossRef] [PubMed]

Y. A. Vlasov and S. J. McNab, "Losses in single-mode silicon-on-insulator strip waveguides and bends," Opt. Express 12,1622-1631 (2004).
[CrossRef] [PubMed]

S. Kim, J. Cai, J. Jiang, and G. Nordin, "New ring resonator configuration using hybrid photonic crystal and conventional waveguide structures," Opt. Express 12, 2356-2364 (2004).
[CrossRef] [PubMed]

T.P. White, C. M. de Streke, R.C. McPhedran, T. Huang, and L.C. Botton, "Recirculation enhanced switching in photonic crystal Mach-Zehnder interferometers," Opt. Express 12,3035-3045, (2004).
[CrossRef] [PubMed]

J. Cardenas, L. Li, S. Kim and G. P. Nordin, "Compact low loss single air interface bends in polymer waveguides," Opt. Express 12,5314-5324, (2004).
[CrossRef] [PubMed]

W. M. J. Green, R. K. Lee, G. A. DeRose, A. Scherer, and A. Yariv, "Hybrid InGaAsP-InP Mach-Zehnder Racetrack Resonator for Thermooptic Switching and Coupling Contro,".Opt. Express 13,1651-1659, (2005).
[CrossRef] [PubMed]

H. Fukuda, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Shinojima, and S. -i. Itabashi, "Ultrasmall polarization splitter based on silicon wire waveguides," Opt. Express 14,12401-12408 (2006).
[CrossRef] [PubMed]

B. Schmidt, Q. Xu, J. Shakya, S. Manipatruni, and M. Lipson, "Compact electro-optic modulator on silicon-on-insulator substrates using cavities with ultra-small modal volumes," Opt. Express 15,3140-3148 (2007).
[CrossRef] [PubMed]

D. -G. Sun, Y. Zha, T. Liu, Y. Zhang, X. Li, and X. Fu, "Demonstration for rearrangeable nonblocking 8×8 matrix optical switches based on extended banyan networks," Opt. Express 15,9347-9356 (2007).
[CrossRef] [PubMed]

Opt. Lett. (2)

Proc of. SPIE (1)

L. A. Eldada, "Polymer integrated optics: promise versus practicality," Proc of. SPIE 4642,11-22, (2002).
[CrossRef]

Other (2)

W. Lin, C. J. Sun, and K. M. Schmidt, "Hybrid integration platform based on silica on silicon planar lightwave circuits," Proc. of SPIE 6476, (2007).

D.L. Lee,Electromagnetic principles of integrated optics. (New York, John Wiley & Sons, 1986).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(a) Schematic illustration of compact ring resonator based on air-trench bends and splitters [after 13] (b) Cross sectional and (c) top view schematic illustrations of fabricated air trench. (d) Scanning electron microscope (SEM) tilted cross sectional view of an etched trench in a PFCB film stack in which there are no waveguides [26]. The trench is etched nearly through the PFCB stack. The thin film on top of the stack that is slightly delaminated along the cleave is the aluminum etch mask, which has not yet been removed.

Fig. 2.
Fig. 2.

Splitter efficiency measurement and comparison to simulation results for (a) reflection and (b) transmission for a splitter trench width of 95 nm. The measurements are referenced to the power transmitted through a straight waveguide with no splitters. The error is ±0.02dB for the measured data. (c) Air-trench splitting ratio as a function of air-trench width. Solid and dashed lines represent 2-D FDTD results for reflection and transmission. Measurements are shown as triangular markers.

Fig. 3.
Fig. 3.

(a) Microscope image of fabricated RR. Measured (b) drop and (c) throughput port loss.

Fig. 4.
Fig. 4.

Analytically calculated RR (a) drop and (b) throughput port losses as a function of wavelength for a RR with 84.5% splitter and 85% bend efficiency and a 85/15 splitting ratio. Maximum and minimum drop and throughput port efficiencies as a function of (c) splitter efficiency assuming unity bend efficiency and (d) bend efficiency assuming unity splitter efficiency.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

T drop = T s 2 ( 1 R s R b 1.5 ) 2 1 + [ 4 R s R b 1.5 ( 1 4 R s R b 1.5 ) 2 sin 2 ( ϕ 2 ) ]
T through = R s ( 1 + T s 2 R b 3 2 T s R b 1.5 cos ( ϕ ) + 2 T s R s R b 3 ( 1 R s R b 1.5 ) 2 + 4 R s R b 1.5 sin 2 ( ϕ 2 ) )

Metrics