Abstract

We experimentally and theoretically investigate exciton-field coupling for the surface plasmon polariton (SPP) in waveguide-confined (WC) anti-symmetric modes of hexagonal plasmonic crystals in InP-TiO-Au-TiO-Si heterostructures. The radiative decay time of the InP-based transverse magnetic (TM)-strained multi-quantum well (MQW) coupled to the SPP modes is observed to be 2.9–3.7 times shorter than that of a bare MQW wafer. Theoretically we find that 80% of the enhanced photoluminescence (PL) is emitted into SPP modes, and 17% of the enhanced PL is redirected into WC-anti-symmetric modes. In addition to the direct coupling of the excitons to the plasmonic modes, this demonstration is also useful for the development of high-temperature SPP lasers, the development of highly integrated photo-electrical devices, or miniaturized biosensors.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. Y. Gong, and J. Vuèkoviæ, "Design of plasmon cavities for solid-state cavity quantum electrodynamics applications," Appl. Phys. Lett. 90, 033113 (2007).
    [CrossRef]
  2. K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, "Surface-plasmon-enhanced light emitters based on InGaN quantum wells," Nat. Mater. 3, 601-605 (2004).
    [CrossRef] [PubMed]
  3. A. Neogi, C. Lee, H. O. Everitt, T. Kuroda, A. Tackeuchi, and E. Yablonovitch, "Enhancement of spontaneous recombination rate in a quantum well by resonant surface plasmon coupling," Phys. Rev. B 66, 153305 (2002).
    [CrossRef]
  4. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, Berlin, 1988).
  5. D. Sarid, "Long-range surface plasmon waves on very thin metal films," Phys. Rev. Lett. 47, 1927-1930 (1981).
    [CrossRef]
  6. M. Hochberg, T. Baehr-Jones, C. Walker, and A. Scherer, "Integrated plasmon and dielectric waveguides," Opt. Express 12, 5481-5486 (2004).
    [CrossRef] [PubMed]
  7. F. Liu, Y. Rao, Y. Huang, W. Zhang, and J. Peng, "Coupling between long range surface plasmon polariton mode and dielectric waveguide mode," Appl. Phys. Lett. 90, 141101 (2007).
    [CrossRef]
  8. T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, "Surface plasmon polariton based modulators and switches operating at telecom wavelengths," Appl. Phys. Lett. 85, 5833-5835 (2004).
    [CrossRef]
  9. I. Gontijo, M. Boroditsky, E. Yablonovitch, S. keller, U. K. Mishra, and S. P. DenBaars, "Coupling of InGaN quantum-well photoluminescence to silver surface plasmons," Phys. Rev. B 60, 11564-11567 (1999).
    [CrossRef]
  10. E. N. Economou, "Surface plasmons in thin films," Phys. Rev. 182, 539-554 (1969).
    [CrossRef]
  11. C. Sirtori, C. Gmachl, F. Capasso, J. Faist, D. L. Sivco, A. L. Hutchinson, and A. Y. Cho, "Long-wavelength (λ ≈ 8-11.5 µm) semiconductor lasers with waveguides based on surface plasmons," Opt. Lett. 23, 1366-1368 (1998).
    [CrossRef]
  12. T. Okamoto, F. H’Dhili, and S. Kawata, "Towards plasmonic band gap laser," Appl. Phys. Lett. 85, 3968-3970 (2004).
    [CrossRef]
  13. S. Kumar, B. S. Williams, Q. Qin, A. W. M. Lee, Q. Hu, and J. L. Reno, "Surface-emitting distributed feedback terahertz quantum-cascade lasers in metal-metal waveguides," Opt. Express 15, 113-123 (2007).
    [CrossRef] [PubMed]
  14. L. D. Landau, Electrodynamics of Continuous Media (Pergamon, New York, 1984).
  15. J. Vuèkoviæ, M. Lonèar, and A. Scherer, "Surface plasmon enhanced light-emitting diode," IEEE J. Quantum Electron. 36, 1131-1144 (2000).
    [CrossRef]
  16. S. C. Kitson, W. L. Barnes, and J. R. Sambles, "Full photonic band gap for surface modes in the visible," Phys. Rev. Lett. 77, 2670-2673 (1996).
    [CrossRef] [PubMed]
  17. L. A. Coldren, and S. W. Corzine, Diode Lasers and Photonic Integrated Circuits (Wiley, New York, 1995).
  18. R. K. Lee, Y. Xu, and A. Yariv, "Modified spontaneous emission from a two-dimensional photonic bandgap crystal slab," J. Opt. Soc. Am. B 17, 1438-1442 (2000).
    [CrossRef]
  19. S. Adachi, Physical Properties of III-V semiconductor compounds (Wiley, New York, 1992).
    [CrossRef]
  20. H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, "Surface plasmons enhance optical transmission through subwavelength holes," Phys. Rev. B 58, 6779-6782 (1998).
    [CrossRef]

2007

Y. Gong, and J. Vuèkoviæ, "Design of plasmon cavities for solid-state cavity quantum electrodynamics applications," Appl. Phys. Lett. 90, 033113 (2007).
[CrossRef]

F. Liu, Y. Rao, Y. Huang, W. Zhang, and J. Peng, "Coupling between long range surface plasmon polariton mode and dielectric waveguide mode," Appl. Phys. Lett. 90, 141101 (2007).
[CrossRef]

S. Kumar, B. S. Williams, Q. Qin, A. W. M. Lee, Q. Hu, and J. L. Reno, "Surface-emitting distributed feedback terahertz quantum-cascade lasers in metal-metal waveguides," Opt. Express 15, 113-123 (2007).
[CrossRef] [PubMed]

2004

M. Hochberg, T. Baehr-Jones, C. Walker, and A. Scherer, "Integrated plasmon and dielectric waveguides," Opt. Express 12, 5481-5486 (2004).
[CrossRef] [PubMed]

T. Okamoto, F. H’Dhili, and S. Kawata, "Towards plasmonic band gap laser," Appl. Phys. Lett. 85, 3968-3970 (2004).
[CrossRef]

T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, "Surface plasmon polariton based modulators and switches operating at telecom wavelengths," Appl. Phys. Lett. 85, 5833-5835 (2004).
[CrossRef]

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, "Surface-plasmon-enhanced light emitters based on InGaN quantum wells," Nat. Mater. 3, 601-605 (2004).
[CrossRef] [PubMed]

2002

A. Neogi, C. Lee, H. O. Everitt, T. Kuroda, A. Tackeuchi, and E. Yablonovitch, "Enhancement of spontaneous recombination rate in a quantum well by resonant surface plasmon coupling," Phys. Rev. B 66, 153305 (2002).
[CrossRef]

2000

R. K. Lee, Y. Xu, and A. Yariv, "Modified spontaneous emission from a two-dimensional photonic bandgap crystal slab," J. Opt. Soc. Am. B 17, 1438-1442 (2000).
[CrossRef]

J. Vuèkoviæ, M. Lonèar, and A. Scherer, "Surface plasmon enhanced light-emitting diode," IEEE J. Quantum Electron. 36, 1131-1144 (2000).
[CrossRef]

1999

I. Gontijo, M. Boroditsky, E. Yablonovitch, S. keller, U. K. Mishra, and S. P. DenBaars, "Coupling of InGaN quantum-well photoluminescence to silver surface plasmons," Phys. Rev. B 60, 11564-11567 (1999).
[CrossRef]

1998

C. Sirtori, C. Gmachl, F. Capasso, J. Faist, D. L. Sivco, A. L. Hutchinson, and A. Y. Cho, "Long-wavelength (λ ≈ 8-11.5 µm) semiconductor lasers with waveguides based on surface plasmons," Opt. Lett. 23, 1366-1368 (1998).
[CrossRef]

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, "Surface plasmons enhance optical transmission through subwavelength holes," Phys. Rev. B 58, 6779-6782 (1998).
[CrossRef]

1996

S. C. Kitson, W. L. Barnes, and J. R. Sambles, "Full photonic band gap for surface modes in the visible," Phys. Rev. Lett. 77, 2670-2673 (1996).
[CrossRef] [PubMed]

1981

D. Sarid, "Long-range surface plasmon waves on very thin metal films," Phys. Rev. Lett. 47, 1927-1930 (1981).
[CrossRef]

1969

E. N. Economou, "Surface plasmons in thin films," Phys. Rev. 182, 539-554 (1969).
[CrossRef]

Appl. Phys. Lett.

Y. Gong, and J. Vuèkoviæ, "Design of plasmon cavities for solid-state cavity quantum electrodynamics applications," Appl. Phys. Lett. 90, 033113 (2007).
[CrossRef]

F. Liu, Y. Rao, Y. Huang, W. Zhang, and J. Peng, "Coupling between long range surface plasmon polariton mode and dielectric waveguide mode," Appl. Phys. Lett. 90, 141101 (2007).
[CrossRef]

T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, "Surface plasmon polariton based modulators and switches operating at telecom wavelengths," Appl. Phys. Lett. 85, 5833-5835 (2004).
[CrossRef]

T. Okamoto, F. H’Dhili, and S. Kawata, "Towards plasmonic band gap laser," Appl. Phys. Lett. 85, 3968-3970 (2004).
[CrossRef]

IEEE J. Quantum Electron.

J. Vuèkoviæ, M. Lonèar, and A. Scherer, "Surface plasmon enhanced light-emitting diode," IEEE J. Quantum Electron. 36, 1131-1144 (2000).
[CrossRef]

J. Opt. Soc. Am. B

Nat. Mater.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, "Surface-plasmon-enhanced light emitters based on InGaN quantum wells," Nat. Mater. 3, 601-605 (2004).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Phys. Rev.

E. N. Economou, "Surface plasmons in thin films," Phys. Rev. 182, 539-554 (1969).
[CrossRef]

Phys. Rev. B

I. Gontijo, M. Boroditsky, E. Yablonovitch, S. keller, U. K. Mishra, and S. P. DenBaars, "Coupling of InGaN quantum-well photoluminescence to silver surface plasmons," Phys. Rev. B 60, 11564-11567 (1999).
[CrossRef]

A. Neogi, C. Lee, H. O. Everitt, T. Kuroda, A. Tackeuchi, and E. Yablonovitch, "Enhancement of spontaneous recombination rate in a quantum well by resonant surface plasmon coupling," Phys. Rev. B 66, 153305 (2002).
[CrossRef]

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, "Surface plasmons enhance optical transmission through subwavelength holes," Phys. Rev. B 58, 6779-6782 (1998).
[CrossRef]

Phys. Rev. Lett.

D. Sarid, "Long-range surface plasmon waves on very thin metal films," Phys. Rev. Lett. 47, 1927-1930 (1981).
[CrossRef]

S. C. Kitson, W. L. Barnes, and J. R. Sambles, "Full photonic band gap for surface modes in the visible," Phys. Rev. Lett. 77, 2670-2673 (1996).
[CrossRef] [PubMed]

Other

L. A. Coldren, and S. W. Corzine, Diode Lasers and Photonic Integrated Circuits (Wiley, New York, 1995).

S. Adachi, Physical Properties of III-V semiconductor compounds (Wiley, New York, 1992).
[CrossRef]

L. D. Landau, Electrodynamics of Continuous Media (Pergamon, New York, 1984).

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, Berlin, 1988).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Dispersion diagrams, field patterns, and distributions of photon energy densities in the proposed metal-dielectric heterostructure. a) Dispersion diagrams for the unpatterned InP-TiO-Au-TiO-Si structure (inset), and for an InP-TiO-Au-TiO structure, obtained by analytically solving Maxwell equations (lines) and verified by FDTD simulation (dots). The thicknesses of layers in the inset are 4 nm, 20 nm, 4 nm, and 400 nm respectively from the bottom. b) Parallel (E ) and perpendicular (E ) electric field components for WC-anti-symmetric SPP at 1,350 nm. The inset shows magnified images of E (top plot) and E (bottom plot) around the Au layer. c) Distributions of the photon energy densities for symmetric (bottom) and WC-anti-symmetric modes (top) for InP-TiO-Au-TiO-Si at 1,350 nm. The estimated quality factors due to the metal absorption are around 140 for a WC-anti-symmetric mode and 18 for a symmetric mode at 1,350 nm.

Fig. 2.
Fig. 2.

Scanning electron microscope images of fabricated plasmonic crystal patterns and the corresponding field patterns. a) SEM images of the cross-section of fabricated InP-TiO-Au-TiO-Si structure (top) with a hexagonally patterned Au layer (bottom) with periodicity a=480 nm and hole radius us r/a=0.18. The bumps on the surface of the Si-waveguide result from the Si deposition on top of the hexagonal pattern in the Au layer. b) FDTD simulations of the lateral field distributions |E| 2 of SPP modes in hexagonal plasmonic crystals in case of the symmetric index on top and on bottom; simulated structure consists of 20nm Au layer sandwiched by InP on both sides, and crystal periodicity a and hole radius r are defined as: a=450 nm and r/a=0.2. The modes shown correspond to the anti-symmetric SPP band folded back to the Γ -point (vertical emission) by the crystal. The left and right panels show the monopole and dipole components of the field belonging to the same band edges, respectively. Eigen fields at the band edges (Γ -point) could not be separated because of close overlap of their dispersion branches.

Fig. 3.
Fig. 3.

Photoluminescence measurements in proposed plasmonic crystals. a) spectra for InP-TiO-Au-TiO hexagonal plasmonic crystals. b) spectra for InP-TiO-Au-TiO-Si hexagonal plasmonic crystals. Lattice constants (a) of the crystals are 540, 500, 460, 420, 380, 340, 300 nm, respectively from the top. The red plots (bottom) show the spectra for the samples without hexagonal patterns. Vertical dashed line indicates the wavelength of 1,350m for which the time-resolved PL measurements in Fig. 4 are taken. Arrows indicate the theoretically estimated frequencies of symmetric (blue) and WC-anti-symmetric (red) modes with k=4π/√3a in the structure without hexagonal pattern.

Fig. 4.
Fig. 4.

Time-resolved photoluminescence measurements. a) Initial slope of the PL decay (δPL/δt) t=0/PL t=0 plotted as a function of the pump power I, for a bare MQW wafer and for spectra (1), (2) and (3) in Fig. 3(b) at the denoted wavelength of 1,350 nm. Dashed lines are fits to the experimental data. b) PL decay curves for a bare MQW wafer (bottom plot) and for spectrum (2) (top plot) with I=6 mW. The excitation wavelength was 750 nm.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

dN dt = AN BN 2 CN 3 ,
( dPL dt ) t = 0 PL t = 0 = 2 A 2 BN 0 2 CN 0 2 .
PL ( t ) B { N ( t ) } 2 { e At A + B η I ( 1 e At ) } 2 ,
F = F non SPP + F WC antisym SPP + F sym SPP .
F SPP = 2 3 × 3 π c 3 k E 2 ( a ) 2 n ω 2 [ ( ω ε ) ω ] E 2 ( z ) dz dk d ω ,

Metrics