Abstract

We present an experimental study of the photosensitive properties of a narrow bandpass filter based on a Ge15Sb20S65 spacer fabricated by electron beam deposition. For a single layer, near the optical bandgap of this chalcogenide material, the efficiency of the photo-bleaching increases as the central wavelength of the light source for exposure decreases. The maximum relative photo-induced change of the optical thickness reaches about 1%. By using controlled light exposure around 480 nm of a photosensitive narrow bandpass filter centered at 1550 nm, we obtained a spatially localized shift of its peak wavelength up to 5.4 nm. This property is used to perform, for the first time at our knowledge, the post trimming of a narrow bandpass filter with a light beam. A 5×5 mm2 ultra uniform area in which the relative spatial variation of its peak wavelength remains below 0.004% is demonstrated.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. C. C. Lee and K. Wu, "In situ sensitive optical monitoring with proper error compensation," Opt. Lett. 32, 2118-2120 (2007).
    [CrossRef] [PubMed]
  2. M. Lequime and J. Lumeau, "Laser trimming of thin-film filters," Proc. SPIE 5963,60-69 (2005).
  3. V. Nazabal, M. Cathelinaud, W. D. Shen, P. Nemec, F. Charpentier, H. Lhermite, M. L. Anne, J. Capoulade, F. Grasset, A. Moreac, S. Inoue, M. Frumar, J. L. Adam, M. Lequime, and C. Amra, "Ge15Sb20S65 and Te20As30Se50 chalcogenide coatings," Appl. Opt. 47,C114-C123 (2008).
    [CrossRef] [PubMed]
  4. J. F. Viens, C. Meneghini, A. Villeneuve, T. V. Galstian, E. J. Knystautas, M. A. Duguay, K. A. Richardson, and T. Cardinal, "Fabrication and characterization of integrated optical waveguides in sulfide chalcogenide glasses," J. Lightwave Technol. 17, 1184-1191 (1999).
    [CrossRef]
  5. A. M. Ljungstrom and T. M. Monro, "Light-Induced Self-Writing Effects in Bulk Chalcogenide Glass," J. Lightwave Technol. 20, 78-85 (2002).
    [CrossRef]
  6. D. A. Turnbull, J. S. Sanghera, V. Nguyen, and I. D. Aggarwal, "Fabrication of waveguides in sputtered films of GeAsSe glass via photodarkening with above bandgap light," Mater. Lett. 58, 51-54 (2004).
    [CrossRef]
  7. S. Ramachandran and S. G. Bishop, "Photoinduced integrated-optic devices in rapid thermally annealed chalcogenide glasses," IEEE J. Sel. Top. Quantum Electron. 11, 260-270 (2005).
    [CrossRef]
  8. A. Saliminia, A. Villeneuve, T. V. Galstyan, S. LaRochelle, and K. Richardson, "First- and second-order Bragg gratings in single-mode planar waveguides of chalcogenide glasses," J. Lightwave Technol. 17, 837-842 (1999)
    [CrossRef]
  9. M. Shokooh-Saremi, V. Taeed, I. Littler, D. Moss, B. Eggleton, Y. Ruan, and B. Luther-Davies, "Ultra-strong, well-apodised Bragg gratings in Chalcogenide rib waveguides," Electron. Lett. 41, 13-14 (2005).
    [CrossRef]
  10. T. K. Sudoh, Y. Nakano, and K. Tada, "Wavelength trimming by external light irradiation-post-fabrication lasing wavelength adjustment for multiple-wavelength distributed-feedback laser arrays," IEEE J. Sel. Top. Quantum Electron. 3, 577-583 (1997)
    [CrossRef]
  11. M. W. Lee, C. Grillet, C. L. C. Smith, D. J. Moss, B. J. Eggleton, D. F, B. Luther-Davies, S. Madden, A. Rode, Y. L. Ruan, and Y. H. Lee, "Photosensitive post tuning of chalcogenide photonic crystal waveguides," Opt. Express 15, 1277-1285 (2007).
    [CrossRef] [PubMed]
  12. K. Tanaka, "Reversible photostructural change: Mechanisms, properties and applications," J. Non-Cryst. Solids 35-36, 1023-1034 (1980)
    [CrossRef]
  13. S. R. Elliott, Physics of Amorphous Materials (Longman Scientific & Technical, Essex, 1990).
  14. M. Frumar, J. Jedelsky, B. Frumarov, T. Wagner, and M. Hrdlicka, "Optically and thermally induced changes of structure, linear and non-linear optical properties of chalcogenides thin films," J. Non-Cryst. Solids 326-327, 399-404 (2003).
    [CrossRef]
  15. M. Vlcek, M. Frumar, and A. Vidourek, "Photo-induced effects in Ge-Sb-S glasses and amorphous layers," J. Non-Cryst. Solids 90, 513-516 (1987)
    [CrossRef]
  16. F. Lemarchand, C. Deumie, M. Zerrad, L. Abel-Tiberini, B. Bertussi, G. George, B. Lazarides, M. Cathelinaud, M. Lequime, and C. Amra, "Optical characterization of an unknown single layer: Institut Fresnel contribution to the Optical Interference Coatings 2004 Topical Meeting Measurement Problem," Appl. Opt. 45, 1312-1318 (2006).
    [CrossRef] [PubMed]
  17. A. Zakery and S. R. Elliott, "Optical properties and applications of chalcogenide glasses: a review," J. Non-Cryst. Solids 330, 1-12 (2003).
    [CrossRef]
  18. A. A. Othman, "Influence of ultraviolet irradiation on the optical properties of amorphous Sb10Se90 thin films," Thin Solid Films 515, 1634-1639 (2006).
    [CrossRef]
  19. L. Abel-Tiberini, F. Lemarquis and M. Lequime, "Dedicated spectrophotometer for localized transmittance and reflectance measurements," Appl. Opt. 45, 1386-1391(2006).
    [CrossRef] [PubMed]
  20. http://www.yokogawa.com/tm/pdf/comm/aq6315/buaq6315e.pdf
  21. K. P. Chen, P.R. Herman, and R. Taylor, "Photosensitivity and Application with 157-nm F2 Laser Radiation in Planar Lightwave Circuits," J. Lightwave Technol. 21, 140-148 (2003).
    [CrossRef]
  22. H. A. Macleod, Thin-Film Optical Filters, 3rd Edition, (Institute of Physics Publishing, Philadelphia 2001).
    [CrossRef]
  23. M. Lequime, R. Parmentier, F. Lemarchand and C. Amra, "Toward tunable thin-film filters for wavelength division multiplexing applications," Appl. Opt. 41, 3277-3284 (2002).
    [CrossRef] [PubMed]
  24. W. D. Shen, X. Liu, B.Q. Huang, Y. Zhu and P. F. Gu, "The effects of phase shift on the optical properties of a micro-opto-electro-mechanical system Fabry-Perot tunable filter," J. Opt. A-Pure.Appl. Op. 6, 853-858 (2004).
    [CrossRef]
  25. J. Lumeau and M. Lequime, "Localized measurement of the optical thickness of a transparent window: application to the study of the photosensitivity of organic polymers," Appl. Opt. 45, 6099-6105 (2006).
    [PubMed]
  26. G. Pfeiffer, M. A. Paesler, and S. C. Agarwal, "Reversible photodarkening of amorphous arsenic chalcogens," J. Non-Cryst. Solids 130, 111-143 (1991).
    [CrossRef]

2008 (1)

2007 (2)

2006 (4)

2005 (3)

S. Ramachandran and S. G. Bishop, "Photoinduced integrated-optic devices in rapid thermally annealed chalcogenide glasses," IEEE J. Sel. Top. Quantum Electron. 11, 260-270 (2005).
[CrossRef]

M. Shokooh-Saremi, V. Taeed, I. Littler, D. Moss, B. Eggleton, Y. Ruan, and B. Luther-Davies, "Ultra-strong, well-apodised Bragg gratings in Chalcogenide rib waveguides," Electron. Lett. 41, 13-14 (2005).
[CrossRef]

M. Lequime and J. Lumeau, "Laser trimming of thin-film filters," Proc. SPIE 5963,60-69 (2005).

2004 (2)

D. A. Turnbull, J. S. Sanghera, V. Nguyen, and I. D. Aggarwal, "Fabrication of waveguides in sputtered films of GeAsSe glass via photodarkening with above bandgap light," Mater. Lett. 58, 51-54 (2004).
[CrossRef]

W. D. Shen, X. Liu, B.Q. Huang, Y. Zhu and P. F. Gu, "The effects of phase shift on the optical properties of a micro-opto-electro-mechanical system Fabry-Perot tunable filter," J. Opt. A-Pure.Appl. Op. 6, 853-858 (2004).
[CrossRef]

2003 (3)

A. Zakery and S. R. Elliott, "Optical properties and applications of chalcogenide glasses: a review," J. Non-Cryst. Solids 330, 1-12 (2003).
[CrossRef]

K. P. Chen, P.R. Herman, and R. Taylor, "Photosensitivity and Application with 157-nm F2 Laser Radiation in Planar Lightwave Circuits," J. Lightwave Technol. 21, 140-148 (2003).
[CrossRef]

M. Frumar, J. Jedelsky, B. Frumarov, T. Wagner, and M. Hrdlicka, "Optically and thermally induced changes of structure, linear and non-linear optical properties of chalcogenides thin films," J. Non-Cryst. Solids 326-327, 399-404 (2003).
[CrossRef]

2002 (2)

1999 (2)

1997 (1)

T. K. Sudoh, Y. Nakano, and K. Tada, "Wavelength trimming by external light irradiation-post-fabrication lasing wavelength adjustment for multiple-wavelength distributed-feedback laser arrays," IEEE J. Sel. Top. Quantum Electron. 3, 577-583 (1997)
[CrossRef]

1991 (1)

G. Pfeiffer, M. A. Paesler, and S. C. Agarwal, "Reversible photodarkening of amorphous arsenic chalcogens," J. Non-Cryst. Solids 130, 111-143 (1991).
[CrossRef]

1987 (1)

M. Vlcek, M. Frumar, and A. Vidourek, "Photo-induced effects in Ge-Sb-S glasses and amorphous layers," J. Non-Cryst. Solids 90, 513-516 (1987)
[CrossRef]

1980 (1)

K. Tanaka, "Reversible photostructural change: Mechanisms, properties and applications," J. Non-Cryst. Solids 35-36, 1023-1034 (1980)
[CrossRef]

Appl. Op. (1)

W. D. Shen, X. Liu, B.Q. Huang, Y. Zhu and P. F. Gu, "The effects of phase shift on the optical properties of a micro-opto-electro-mechanical system Fabry-Perot tunable filter," J. Opt. A-Pure.Appl. Op. 6, 853-858 (2004).
[CrossRef]

Appl. Opt. (5)

Electron. Lett. (1)

M. Shokooh-Saremi, V. Taeed, I. Littler, D. Moss, B. Eggleton, Y. Ruan, and B. Luther-Davies, "Ultra-strong, well-apodised Bragg gratings in Chalcogenide rib waveguides," Electron. Lett. 41, 13-14 (2005).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (2)

T. K. Sudoh, Y. Nakano, and K. Tada, "Wavelength trimming by external light irradiation-post-fabrication lasing wavelength adjustment for multiple-wavelength distributed-feedback laser arrays," IEEE J. Sel. Top. Quantum Electron. 3, 577-583 (1997)
[CrossRef]

S. Ramachandran and S. G. Bishop, "Photoinduced integrated-optic devices in rapid thermally annealed chalcogenide glasses," IEEE J. Sel. Top. Quantum Electron. 11, 260-270 (2005).
[CrossRef]

J. Lightwave Technol. (4)

J. Non-Cryst. Solids (5)

G. Pfeiffer, M. A. Paesler, and S. C. Agarwal, "Reversible photodarkening of amorphous arsenic chalcogens," J. Non-Cryst. Solids 130, 111-143 (1991).
[CrossRef]

K. Tanaka, "Reversible photostructural change: Mechanisms, properties and applications," J. Non-Cryst. Solids 35-36, 1023-1034 (1980)
[CrossRef]

M. Frumar, J. Jedelsky, B. Frumarov, T. Wagner, and M. Hrdlicka, "Optically and thermally induced changes of structure, linear and non-linear optical properties of chalcogenides thin films," J. Non-Cryst. Solids 326-327, 399-404 (2003).
[CrossRef]

M. Vlcek, M. Frumar, and A. Vidourek, "Photo-induced effects in Ge-Sb-S glasses and amorphous layers," J. Non-Cryst. Solids 90, 513-516 (1987)
[CrossRef]

A. Zakery and S. R. Elliott, "Optical properties and applications of chalcogenide glasses: a review," J. Non-Cryst. Solids 330, 1-12 (2003).
[CrossRef]

Mater. Lett. (1)

D. A. Turnbull, J. S. Sanghera, V. Nguyen, and I. D. Aggarwal, "Fabrication of waveguides in sputtered films of GeAsSe glass via photodarkening with above bandgap light," Mater. Lett. 58, 51-54 (2004).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Proc. SPIE (1)

M. Lequime and J. Lumeau, "Laser trimming of thin-film filters," Proc. SPIE 5963,60-69 (2005).

Thin Solid Films (1)

A. A. Othman, "Influence of ultraviolet irradiation on the optical properties of amorphous Sb10Se90 thin films," Thin Solid Films 515, 1634-1639 (2006).
[CrossRef]

Other (3)

http://www.yokogawa.com/tm/pdf/comm/aq6315/buaq6315e.pdf

H. A. Macleod, Thin-Film Optical Filters, 3rd Edition, (Institute of Physics Publishing, Philadelphia 2001).
[CrossRef]

S. R. Elliott, Physics of Amorphous Materials (Longman Scientific & Technical, Essex, 1990).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1.
Fig. 1.

Influence of a broadband illumination on the optical properties of a 2S1G single layer. (a) Transmittance data. (b) Refractive index. (c) Extinction coefficient. The blue curves indicate the virgin film and the red curves the exposed film.

Fig. 2.
Fig. 2.

Relative optical thickness variations versus the accumulated incoming fluence at different wavelengths around the optical gap of the chalcogenide 2S1G material (516.7 nm)

Fig. 3.
Fig. 3.

Illustration of the agreement between the recorded data and the modeling defined by Eq. (1)

Fig. 4.
Fig. 4.

Spectral dependence of the saturated relative change |Δ(nd)0|/(nd)0 of the optical thickness of 2S1G single layer

Fig. 5.
Fig. 5.

(a). Electric field intensity distributions inside the layer normalized by the intensity of the incoming beam (Red curve 600nm, green curve 520nm and blue curve 460nm). (b) Spectral dependence of the ratio between the mean values of the square electrical field inside the film and that of the incoming beam.

Fig. 6.
Fig. 6.

Spectral dependence of the 2S1G effective characteristic fluence E 0

Fig. 7.
Fig. 7.

Spectral transmittance of a narrow bandpass filter with photosensitive chalcogenide spacer

Fig. 8.
Fig. 8.

Normalized mean electrical field intensity inside the NBF spacer layer in the 430–620 nm wavelength range

Fig. 9.
Fig. 9.

(a). Measured NBF transmittance curves for different accumulated time of exposure at 480 nm. (b) Shift of the peak wavelength versus accumulated exposure time

Fig. 10.
Fig. 10.

Comparison of the NBF peak wavelength shifts with 480nm light exposure between the measured results and the deduced values from single layer photo-induced change.

Fig. 11.
Fig. 11.

Spatial variations of the NBF central wavelength after the 480 nm exposure

Fig. 12.
Fig. 12.

Mapping of the peak wavelength distribution in a 5×5 mm2 area: (a) before trimming (b) after trimming

Fig. 13.
Fig. 13.

NBF peak wavelength variations at the trimmed area for 12 days duration (every point indicates 4 hours).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Δ ( nd ) = Δ ( nd ) 0 [ 1 e F F 0 ]
Δ λ 0 λ 0 = κ Δ ( nd ) nd

Metrics