Abstract

High efficiency surface grating couplers for silicon nitride waveguides have been designed, fabricated, and characterized. Coupling efficiencies exceeding 60% are reported at a wavelength of 1.31 µm, as well as angular and wavelength -3 dB tolerances of 4° and 50 nm, respectively. When the wavelength is increased from 1310 nm to 1450 nm the coupling efficiency progressively decreases but remains above 20% at 1450 nm. The influence of the duty ratio of the grating has also been investigated: maximum coupling efficiency was obtained at 50% duty ratio.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. D. Marris-Morini, X. Le Roux, L. Vivien, E. Cassan, D. Pascal, M. Halbwax, S. Maine, S. Laval, J. M. Fédéli, and J. F. Damlencourt, "Optical modulation by carrier depletion in a silicon PIN diode," Opt. Express 14, 10838-10843 (2006).
    [CrossRef] [PubMed]
  2. A. Kazmierczak, M. Brière, E. Drouard, P. Bontoux, P. Rojo-Romeo, I. O’Connor, X. Letartre, F. Gaffiot, R. Orobtchouk, and T. Benyattou, "Design, simulation, and characterization of a passive optical add-drop filter in silicon-on-insulator technology," IEEE Photon. Technol. Lett. 17, 1447-1449 (2005).
    [CrossRef]
  3. M. Rouvière, L. Vivien, X. Le Roux, J. Mangeney, P. Crozat, C. Hoarau, E. Cassan, D. Pascal, and S. Laval, J.-M. Fédéli, J.-F. Damlencourt, and J. M. Hartmann, and S. Kolev, "Ultrahigh speed germanium-on-silicon-on-insulator photodetectors for 1.31 and 1.55 µm operation," Appl. Phys. Lett. 87, 231109 (2005).
    [CrossRef]
  4. A. Morand, Y. Zhang, B. Martin, K. P. Huy, D. Amans, P. Benech, J. Verbert, E. Hadji, and J. M. Fédéli, "Ultra-compact microdisk resonator filters on SOI substrate," Opt. Express 14, 12814-12821 (2006).
    [CrossRef] [PubMed]
  5. F. Prieto, B. Sepulveda, A. Calle, A. Llobera, C. Domınguez, A. Abad, A. Montoya and and L. M. Lechuga, "An integrated optical interferometric nanodevice based on silicon technology for biosensor applications," Nanotechnology 14, 907-912 (2003).
    [CrossRef]
  6. P. Debackere, S. Scheerlinck, P. Bienstman, and R. Baets, "Surface plasmon interferometer in silicon-on-insulator: novel concept for an integrated biosensor," Opt. Express 14, 7063-7072 (2006).
    [CrossRef] [PubMed]
  7. K. De Vos, I. Bartolozzi, E. Schacht, P. Bienstman, and R. Baets, "Silicon-on-Insulator microring resonator for sensitive and label-free biosensing," Opt. Express 15, 7610-7615 (2007).
    [CrossRef] [PubMed]
  8. Q1. F. P. Payne and J. P. R. Lacey, "A theoretical analysis of scattering loss from planar optical waveguide," IEEE Proc. Optical and Quantum Electron. 26, 977-986 (1994).
    [CrossRef]
  9. K. K. Lee, D. R. Lim, H. C. Luan, A. Agrawal, J. Foresi, and L. C. Kimerling, "Effect of size and roughness on light transmission in a Si/SiO2 waveguide: experiments and model," Appl. Phys. Lett. 77, 1617-1619 (2000).
    [CrossRef]
  10. F. Grillot, L. Vivien, S. Laval, D. Pascal, and E. Cassan, "Size Influence on the Propagation Loss Induced by Sidewall Roughness in Ultrasmall SOI Waveguides," IEEE Photon. Technol. Lett. 16, 1661-1663 (2004).
    [CrossRef]
  11. N. Daldosso, M. Melchiorri, F. Riboli, M. Girardini, G. Pucker, M. Crivellari, P. Bellutti, A. Lui, and L. Pavesi, "Comparison among various Si3N4 waveguide geometries grown within a CMOS fabrication pilot line," J. Lightwave Technol. 22, 1734-1740 (2004).
    [CrossRef]
  12. Q2. S. M. Zheng, H. Chen, and A. W. Poon, "Microring-resonator cross-connect filters in silicon nitride : rib waveguide dimensions dependence," IEEE J. Sel. Top. Quantum Electronics 12, 1380-1387 (2006).
    [CrossRef]
  13. L. Vivien, D. Pascal, S. Lardenois, D. Marris-Morini, E. Cassan, F. Grillot, S. Laval, J.-M. Fédéli, and L. El Melhaoui, "Light injection in SOI microwaveguides using high-efficiency grating couplers," J. Lightwave Technol. 24, 3810-3815 (2006).
    [CrossRef]
  14. D. Taillaert, F. Van Laere, M. Ayre, W. Bogaerts, D. Van Thourhout, P. Bienstman and R. Baets, "Grating couplers for coupling between optical fibers and nanophotonic waveguides," Jpn. J. Appl. Phys. 45, 6071-6077 (2006).
    [CrossRef]
  15. K. C. Chang, V. Shah, and T. Tamir, "Scattering and guiding of waves by dielectric gratings with arbitrary profiles," J. Opt. Soc. Am. A 7, 804-812 (1980).
  16. N. Landru, D. Pascal, and A. Koster, "Modeling of two-dimensional grating couplers on silicon-on-insulator waveguides using beam propagation method," Opt. Commun. 196, 139-147 (2001).
    [CrossRef]
  17. R. M. Emmons and D. G. Hall, "Burried oxide silicon-on-insulator structures II : waveguide grating couplers," IEEE J. Quantum Electron. 28, 164-175 (1992).
    [CrossRef]

2007 (1)

2006 (6)

2005 (2)

A. Kazmierczak, M. Brière, E. Drouard, P. Bontoux, P. Rojo-Romeo, I. O’Connor, X. Letartre, F. Gaffiot, R. Orobtchouk, and T. Benyattou, "Design, simulation, and characterization of a passive optical add-drop filter in silicon-on-insulator technology," IEEE Photon. Technol. Lett. 17, 1447-1449 (2005).
[CrossRef]

M. Rouvière, L. Vivien, X. Le Roux, J. Mangeney, P. Crozat, C. Hoarau, E. Cassan, D. Pascal, and S. Laval, J.-M. Fédéli, J.-F. Damlencourt, and J. M. Hartmann, and S. Kolev, "Ultrahigh speed germanium-on-silicon-on-insulator photodetectors for 1.31 and 1.55 µm operation," Appl. Phys. Lett. 87, 231109 (2005).
[CrossRef]

2004 (2)

F. Grillot, L. Vivien, S. Laval, D. Pascal, and E. Cassan, "Size Influence on the Propagation Loss Induced by Sidewall Roughness in Ultrasmall SOI Waveguides," IEEE Photon. Technol. Lett. 16, 1661-1663 (2004).
[CrossRef]

N. Daldosso, M. Melchiorri, F. Riboli, M. Girardini, G. Pucker, M. Crivellari, P. Bellutti, A. Lui, and L. Pavesi, "Comparison among various Si3N4 waveguide geometries grown within a CMOS fabrication pilot line," J. Lightwave Technol. 22, 1734-1740 (2004).
[CrossRef]

2003 (1)

F. Prieto, B. Sepulveda, A. Calle, A. Llobera, C. Domınguez, A. Abad, A. Montoya and and L. M. Lechuga, "An integrated optical interferometric nanodevice based on silicon technology for biosensor applications," Nanotechnology 14, 907-912 (2003).
[CrossRef]

2001 (1)

N. Landru, D. Pascal, and A. Koster, "Modeling of two-dimensional grating couplers on silicon-on-insulator waveguides using beam propagation method," Opt. Commun. 196, 139-147 (2001).
[CrossRef]

2000 (1)

K. K. Lee, D. R. Lim, H. C. Luan, A. Agrawal, J. Foresi, and L. C. Kimerling, "Effect of size and roughness on light transmission in a Si/SiO2 waveguide: experiments and model," Appl. Phys. Lett. 77, 1617-1619 (2000).
[CrossRef]

1994 (1)

Q1. F. P. Payne and J. P. R. Lacey, "A theoretical analysis of scattering loss from planar optical waveguide," IEEE Proc. Optical and Quantum Electron. 26, 977-986 (1994).
[CrossRef]

1992 (1)

R. M. Emmons and D. G. Hall, "Burried oxide silicon-on-insulator structures II : waveguide grating couplers," IEEE J. Quantum Electron. 28, 164-175 (1992).
[CrossRef]

1980 (1)

K. C. Chang, V. Shah, and T. Tamir, "Scattering and guiding of waves by dielectric gratings with arbitrary profiles," J. Opt. Soc. Am. A 7, 804-812 (1980).

Appl. Phys. Lett. (2)

M. Rouvière, L. Vivien, X. Le Roux, J. Mangeney, P. Crozat, C. Hoarau, E. Cassan, D. Pascal, and S. Laval, J.-M. Fédéli, J.-F. Damlencourt, and J. M. Hartmann, and S. Kolev, "Ultrahigh speed germanium-on-silicon-on-insulator photodetectors for 1.31 and 1.55 µm operation," Appl. Phys. Lett. 87, 231109 (2005).
[CrossRef]

K. K. Lee, D. R. Lim, H. C. Luan, A. Agrawal, J. Foresi, and L. C. Kimerling, "Effect of size and roughness on light transmission in a Si/SiO2 waveguide: experiments and model," Appl. Phys. Lett. 77, 1617-1619 (2000).
[CrossRef]

IEEE J. Quantum Electron. (1)

R. M. Emmons and D. G. Hall, "Burried oxide silicon-on-insulator structures II : waveguide grating couplers," IEEE J. Quantum Electron. 28, 164-175 (1992).
[CrossRef]

IEEE J. Sel. Top. Quantum Electronics (1)

Q2. S. M. Zheng, H. Chen, and A. W. Poon, "Microring-resonator cross-connect filters in silicon nitride : rib waveguide dimensions dependence," IEEE J. Sel. Top. Quantum Electronics 12, 1380-1387 (2006).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

F. Grillot, L. Vivien, S. Laval, D. Pascal, and E. Cassan, "Size Influence on the Propagation Loss Induced by Sidewall Roughness in Ultrasmall SOI Waveguides," IEEE Photon. Technol. Lett. 16, 1661-1663 (2004).
[CrossRef]

A. Kazmierczak, M. Brière, E. Drouard, P. Bontoux, P. Rojo-Romeo, I. O’Connor, X. Letartre, F. Gaffiot, R. Orobtchouk, and T. Benyattou, "Design, simulation, and characterization of a passive optical add-drop filter in silicon-on-insulator technology," IEEE Photon. Technol. Lett. 17, 1447-1449 (2005).
[CrossRef]

IEEE Proc. Optical and Quantum Electron. (1)

Q1. F. P. Payne and J. P. R. Lacey, "A theoretical analysis of scattering loss from planar optical waveguide," IEEE Proc. Optical and Quantum Electron. 26, 977-986 (1994).
[CrossRef]

J. Lightwave Technol. (2)

J. Opt. Soc. Am. A (1)

K. C. Chang, V. Shah, and T. Tamir, "Scattering and guiding of waves by dielectric gratings with arbitrary profiles," J. Opt. Soc. Am. A 7, 804-812 (1980).

Jpn. J. Appl. Phys. (1)

D. Taillaert, F. Van Laere, M. Ayre, W. Bogaerts, D. Van Thourhout, P. Bienstman and R. Baets, "Grating couplers for coupling between optical fibers and nanophotonic waveguides," Jpn. J. Appl. Phys. 45, 6071-6077 (2006).
[CrossRef]

Nanotechnology (1)

F. Prieto, B. Sepulveda, A. Calle, A. Llobera, C. Domınguez, A. Abad, A. Montoya and and L. M. Lechuga, "An integrated optical interferometric nanodevice based on silicon technology for biosensor applications," Nanotechnology 14, 907-912 (2003).
[CrossRef]

Opt. Commun. (1)

N. Landru, D. Pascal, and A. Koster, "Modeling of two-dimensional grating couplers on silicon-on-insulator waveguides using beam propagation method," Opt. Commun. 196, 139-147 (2001).
[CrossRef]

Opt. Express (4)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(a). Grating coupler diagram: The silicon nitride layer thickness is 300 nm, the period is 1µm, the etching depth is 300 nm and the duty ratio is 50%. (b) Theoretical results of coupling efficiency (percentage) as a function of top and bottom cladding thicknesses for a 1.31 µm wavelength.

Fig. 2.
Fig. 2.

Coupling efficiency at 1.31 µm as a function of incidence angle for fully (a) and partially (b) etched grating couplers with and without top silicon oxide cladding.

Fig. 3.
Fig. 3.

Optimum coupling efficiency as a function of wavelength in a partially etched grating coupler with top silicon oxide cladding.

Fig. 4.
Fig. 4.

Coupling efficiency (a) and coupling length (b) as a function of the duty ratio for partially etched grating couplers with top silicon oxide cladding.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

k 0 n inc sin ( θ inc ) + p 2 π Λ = β
e bottom = [ 3.26 + 0.46   m ] μ m
e top = [ 0.06 + 0.47   q ] μ m
η = P inc ( P t + P r ) P inc
w 0 = 1.37 L c cos ( θ inc )

Metrics