M. Halder, A. Beveratos, N. Gisin, V. Scarani, C. Simon, and H. Zbinden, “Entangling independent photons by time measurement,” Nature Physics 3, 692–695 (2007).
[Crossref]
K. Garay-Palmett, H. J. McGuinness, O. Cohen, J. S. Lundeen, R. Rangel-Rojo, A. B. U’Ren, M. G. Raymer, C. J. McKinstrie, S. Radic, and I. A. Walmsley, “Photon pair-state preparation with tailored spectral properties by spontaneous four-wave mixing in photonic-crystal fiber,” Opt. Express 15, 14,870–14,886 (2007).
[Crossref]
X. Li, J. Chen, K. F. Lee, P. L. Voss, and P. Kumar, “All-fiber photon-pair source for quantum communication: Influence of spectra,” Proceeding of Quantum Communication and Measurement QCMC’06, 31–34 (2006).
O. Alibart, J. Fulconis, G. K. L. Wong, S. G. Murdoch, W. J. Wadsworth, and J. G. Rarity, “Photon pair generation using four-wave mixing in a microstructured fibre: theory versus experiment,” New J. of Phys. 8, 67 (2006).
[Crossref]
K. F. Lee, J. Chen, C. Liang, X. Li, P. L. Voss, and P. Kumar, “Generation of high-purity telecom-band entangled photon pairs in dispersion-shifted fiber,” Opt. Lett. 31, 1905–1907 (2006).
[Crossref]
[PubMed]
H. Takesue and K. Inoue, “1.5 um band quantum-correlated photon pair generation in dispersion-shifted fiber: suppression of noise photons by cooling fiber,” Opt. Express 13, 7832–7839 (2005).
[Crossref]
[PubMed]
J. G. Rarity, J. Fulconis, J. Duligall, W. J. Wadsworth, and P. S. J. Russell, “Photonic crystal fiber source of correlated photon pairs,” Opt. Express 13, 534–544 (2005).
[Crossref]
[PubMed]
J. Chen, X. Li, and P. Kumar, “Two-photon-state generation via four-wave mixing in optical fibers,” Phys. Rev. A 72, 033,801 (2005).
[Crossref]
X. Li, P. L. Voss, J. E. Sharping, and P. Kumar, “Optical-fiber source of polarization-entangled photons in the 1550 nm telecom band,” Phys. Rev. Lett. 94, 053,601 (2005).
[Crossref]
H. Takesue and K. Inoue, “Generation of 1.5-um band time-bin entanglement using spontaneous fiber four-wave mixing and planar lightwave circuit interferometers,” Phys. Rev. A 72, 041,804 (2005).
[Crossref]
J. Fan, A. Dogariu, and L. J. Wang, “Generation of correlated photon pairs in a microstructure fiber,” Opt. Lett. 30, 1530–1532 (2005).
[Crossref]
[PubMed]
J. Fulconis, O. Alibart, W. J. Wadsworth, P. S. Russell, and J. G. Rarity, “High brightness single mode source of correlated photon pairs using a photonic crystal fiber,” Opt. Express 13, 7572–7582 (2005).
[Crossref]
[PubMed]
Z. Zhao, Y. A. Chen, A. N. Zhang, T. Yang, H. J. Briegel, and J. W. Pan, “Experimental demonstration of five-photon entanglement and open-destination quantum teleportation,” Nature 430, 54–58 (2004).
[Crossref]
[PubMed]
X. Li, J. Chen, P. L. Voss, J. Sharping, and P. Kumar, “All-fiber photon-pair source for quantum communications: Improved generation of correlated photons,” Opt. Express 12, 3737–3744 (2004).
[Crossref]
[PubMed]
K. Inoue and K. Shimizu, “Generation of Quantum-Correlated Photon Pairs in Optical Fiber: Influence of Spontaneous Raman Scattering,” Jpn. J. Appl. Phys 43, 8048–8052 (2004).
[Crossref]
M. Fiorentino, P. L. Voss, J. E. Sharping, and P. Kumar, “All-fiber photon-pair source for quantum communication,” Photon. Technol. Lett. 14, 983–985 (2002).
[Crossref]
W. P. Grice, A. B. U’ren, and I. A. Walmsley, “Eliminating frequency and space-time correlations in multi-Photon States,” Phys. Rev. A 64, 063,815 (2001).
[Crossref]
E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
[Crossref]
[PubMed]
Z. Y. Ou and Y. J. Lu, “Cavity Enhanced Spontaneous Parametric Down-Conversion for the Prolongation of Correlation Time between Conjugate Photons,” Phys. Rev. Lett. 83, 2556–2559 (1999).
[Crossref]
Z. Y. Ou, J. K. Rhee, and L. J. Wang, “Photon Bunching and Multiphoton Interference in Parametric Down-Conversion,” Phys. Rev. A 60, 593–604 (1999).
[Crossref]
J. W. Pan, D. Bouwmeester, H. Weinfurter, and A. Zeilinger, “Experimental entanglement swapping: entangling photons that never interacted,” Phys. Rev. Lett. 80, 3891–3894 (1998).
[Crossref]
D. Bouwmeester, J. W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390, 575–579 (1997).
[Crossref]
Z. Y. Ou, “Parametric Down-Conversion with Coherent Pulse Pumping and Quantum Interference between Independent Fields,” Quantum Semiclass Opt. 9, 599–614 (1997).
[Crossref]
M. Zukowski, A. Zeilinger, and H. Weinfurter, “Entangling Photons Radiated by Independent Pulsed Sources,” Ann. (N. Y.) Acad. Sci. 755, 91–102 (1995).
[Crossref]
P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. H. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337–4341 (1995).
[Crossref]
[PubMed]
B. Yurke and D. Stoler, “Einstein-Podolsky-Rosen effects from independent particle sources,” Phys. Rev. Lett. 68, 1251–1254 (1992).
[Crossref]
[PubMed]
G. P. Agrawal, Nonlinear fiber optics (Elsevier Pte Ltd., Singapore, 2005).
O. Alibart, J. Fulconis, G. K. L. Wong, S. G. Murdoch, W. J. Wadsworth, and J. G. Rarity, “Photon pair generation using four-wave mixing in a microstructured fibre: theory versus experiment,” New J. of Phys. 8, 67 (2006).
[Crossref]
J. Fulconis, O. Alibart, W. J. Wadsworth, P. S. Russell, and J. G. Rarity, “High brightness single mode source of correlated photon pairs using a photonic crystal fiber,” Opt. Express 13, 7572–7582 (2005).
[Crossref]
[PubMed]
M. Halder, A. Beveratos, N. Gisin, V. Scarani, C. Simon, and H. Zbinden, “Entangling independent photons by time measurement,” Nature Physics 3, 692–695 (2007).
[Crossref]
J. W. Pan, D. Bouwmeester, H. Weinfurter, and A. Zeilinger, “Experimental entanglement swapping: entangling photons that never interacted,” Phys. Rev. Lett. 80, 3891–3894 (1998).
[Crossref]
D. Bouwmeester, J. W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390, 575–579 (1997).
[Crossref]
Z. Zhao, Y. A. Chen, A. N. Zhang, T. Yang, H. J. Briegel, and J. W. Pan, “Experimental demonstration of five-photon entanglement and open-destination quantum teleportation,” Nature 430, 54–58 (2004).
[Crossref]
[PubMed]
K. F. Lee, J. Chen, C. Liang, X. Li, P. L. Voss, and P. Kumar, “Generation of high-purity telecom-band entangled photon pairs in dispersion-shifted fiber,” Opt. Lett. 31, 1905–1907 (2006).
[Crossref]
[PubMed]
X. Li, J. Chen, K. F. Lee, P. L. Voss, and P. Kumar, “All-fiber photon-pair source for quantum communication: Influence of spectra,” Proceeding of Quantum Communication and Measurement QCMC’06, 31–34 (2006).
J. Chen, X. Li, and P. Kumar, “Two-photon-state generation via four-wave mixing in optical fibers,” Phys. Rev. A 72, 033,801 (2005).
[Crossref]
X. Li, J. Chen, P. L. Voss, J. Sharping, and P. Kumar, “All-fiber photon-pair source for quantum communications: Improved generation of correlated photons,” Opt. Express 12, 3737–3744 (2004).
[Crossref]
[PubMed]
Z. Zhao, Y. A. Chen, A. N. Zhang, T. Yang, H. J. Briegel, and J. W. Pan, “Experimental demonstration of five-photon entanglement and open-destination quantum teleportation,” Nature 430, 54–58 (2004).
[Crossref]
[PubMed]
K. Garay-Palmett, H. J. McGuinness, O. Cohen, J. S. Lundeen, R. Rangel-Rojo, A. B. U’Ren, M. G. Raymer, C. J. McKinstrie, S. Radic, and I. A. Walmsley, “Photon pair-state preparation with tailored spectral properties by spontaneous four-wave mixing in photonic-crystal fiber,” Opt. Express 15, 14,870–14,886 (2007).
[Crossref]
D. Bouwmeester, J. W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390, 575–579 (1997).
[Crossref]
M. Fiorentino, P. L. Voss, J. E. Sharping, and P. Kumar, “All-fiber photon-pair source for quantum communication,” Photon. Technol. Lett. 14, 983–985 (2002).
[Crossref]
O. Alibart, J. Fulconis, G. K. L. Wong, S. G. Murdoch, W. J. Wadsworth, and J. G. Rarity, “Photon pair generation using four-wave mixing in a microstructured fibre: theory versus experiment,” New J. of Phys. 8, 67 (2006).
[Crossref]
J. Fulconis, O. Alibart, W. J. Wadsworth, P. S. Russell, and J. G. Rarity, “High brightness single mode source of correlated photon pairs using a photonic crystal fiber,” Opt. Express 13, 7572–7582 (2005).
[Crossref]
[PubMed]
J. G. Rarity, J. Fulconis, J. Duligall, W. J. Wadsworth, and P. S. J. Russell, “Photonic crystal fiber source of correlated photon pairs,” Opt. Express 13, 534–544 (2005).
[Crossref]
[PubMed]
K. Garay-Palmett, H. J. McGuinness, O. Cohen, J. S. Lundeen, R. Rangel-Rojo, A. B. U’Ren, M. G. Raymer, C. J. McKinstrie, S. Radic, and I. A. Walmsley, “Photon pair-state preparation with tailored spectral properties by spontaneous four-wave mixing in photonic-crystal fiber,” Opt. Express 15, 14,870–14,886 (2007).
[Crossref]
M. Halder, A. Beveratos, N. Gisin, V. Scarani, C. Simon, and H. Zbinden, “Entangling independent photons by time measurement,” Nature Physics 3, 692–695 (2007).
[Crossref]
W. P. Grice, A. B. U’ren, and I. A. Walmsley, “Eliminating frequency and space-time correlations in multi-Photon States,” Phys. Rev. A 64, 063,815 (2001).
[Crossref]
M. Halder, A. Beveratos, N. Gisin, V. Scarani, C. Simon, and H. Zbinden, “Entangling independent photons by time measurement,” Nature Physics 3, 692–695 (2007).
[Crossref]
H. Takesue and K. Inoue, “Generation of 1.5-um band time-bin entanglement using spontaneous fiber four-wave mixing and planar lightwave circuit interferometers,” Phys. Rev. A 72, 041,804 (2005).
[Crossref]
H. Takesue and K. Inoue, “1.5 um band quantum-correlated photon pair generation in dispersion-shifted fiber: suppression of noise photons by cooling fiber,” Opt. Express 13, 7832–7839 (2005).
[Crossref]
[PubMed]
K. Inoue and K. Shimizu, “Generation of Quantum-Correlated Photon Pairs in Optical Fiber: Influence of Spontaneous Raman Scattering,” Jpn. J. Appl. Phys 43, 8048–8052 (2004).
[Crossref]
E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
[Crossref]
[PubMed]
X. Li, J. Chen, K. F. Lee, P. L. Voss, and P. Kumar, “All-fiber photon-pair source for quantum communication: Influence of spectra,” Proceeding of Quantum Communication and Measurement QCMC’06, 31–34 (2006).
K. F. Lee, J. Chen, C. Liang, X. Li, P. L. Voss, and P. Kumar, “Generation of high-purity telecom-band entangled photon pairs in dispersion-shifted fiber,” Opt. Lett. 31, 1905–1907 (2006).
[Crossref]
[PubMed]
X. Li, P. L. Voss, J. E. Sharping, and P. Kumar, “Optical-fiber source of polarization-entangled photons in the 1550 nm telecom band,” Phys. Rev. Lett. 94, 053,601 (2005).
[Crossref]
J. Chen, X. Li, and P. Kumar, “Two-photon-state generation via four-wave mixing in optical fibers,” Phys. Rev. A 72, 033,801 (2005).
[Crossref]
X. Li, J. Chen, P. L. Voss, J. Sharping, and P. Kumar, “All-fiber photon-pair source for quantum communications: Improved generation of correlated photons,” Opt. Express 12, 3737–3744 (2004).
[Crossref]
[PubMed]
M. Fiorentino, P. L. Voss, J. E. Sharping, and P. Kumar, “All-fiber photon-pair source for quantum communication,” Photon. Technol. Lett. 14, 983–985 (2002).
[Crossref]
P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. H. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337–4341 (1995).
[Crossref]
[PubMed]
E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
[Crossref]
[PubMed]
X. Li, J. Chen, K. F. Lee, P. L. Voss, and P. Kumar, “All-fiber photon-pair source for quantum communication: Influence of spectra,” Proceeding of Quantum Communication and Measurement QCMC’06, 31–34 (2006).
K. F. Lee, J. Chen, C. Liang, X. Li, P. L. Voss, and P. Kumar, “Generation of high-purity telecom-band entangled photon pairs in dispersion-shifted fiber,” Opt. Lett. 31, 1905–1907 (2006).
[Crossref]
[PubMed]
K. F. Lee, J. Chen, C. Liang, X. Li, P. L. Voss, and P. Kumar, “Generation of high-purity telecom-band entangled photon pairs in dispersion-shifted fiber,” Opt. Lett. 31, 1905–1907 (2006).
[Crossref]
[PubMed]
X. Li, J. Chen, K. F. Lee, P. L. Voss, and P. Kumar, “All-fiber photon-pair source for quantum communication: Influence of spectra,” Proceeding of Quantum Communication and Measurement QCMC’06, 31–34 (2006).
X. Li, P. L. Voss, J. E. Sharping, and P. Kumar, “Optical-fiber source of polarization-entangled photons in the 1550 nm telecom band,” Phys. Rev. Lett. 94, 053,601 (2005).
[Crossref]
J. Chen, X. Li, and P. Kumar, “Two-photon-state generation via four-wave mixing in optical fibers,” Phys. Rev. A 72, 033,801 (2005).
[Crossref]
X. Li, J. Chen, P. L. Voss, J. Sharping, and P. Kumar, “All-fiber photon-pair source for quantum communications: Improved generation of correlated photons,” Opt. Express 12, 3737–3744 (2004).
[Crossref]
[PubMed]
Z. Y. Ou and Y. J. Lu, “Cavity Enhanced Spontaneous Parametric Down-Conversion for the Prolongation of Correlation Time between Conjugate Photons,” Phys. Rev. Lett. 83, 2556–2559 (1999).
[Crossref]
K. Garay-Palmett, H. J. McGuinness, O. Cohen, J. S. Lundeen, R. Rangel-Rojo, A. B. U’Ren, M. G. Raymer, C. J. McKinstrie, S. Radic, and I. A. Walmsley, “Photon pair-state preparation with tailored spectral properties by spontaneous four-wave mixing in photonic-crystal fiber,” Opt. Express 15, 14,870–14,886 (2007).
[Crossref]
D. Bouwmeester, J. W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390, 575–579 (1997).
[Crossref]
P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. H. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337–4341 (1995).
[Crossref]
[PubMed]
K. Garay-Palmett, H. J. McGuinness, O. Cohen, J. S. Lundeen, R. Rangel-Rojo, A. B. U’Ren, M. G. Raymer, C. J. McKinstrie, S. Radic, and I. A. Walmsley, “Photon pair-state preparation with tailored spectral properties by spontaneous four-wave mixing in photonic-crystal fiber,” Opt. Express 15, 14,870–14,886 (2007).
[Crossref]
K. Garay-Palmett, H. J. McGuinness, O. Cohen, J. S. Lundeen, R. Rangel-Rojo, A. B. U’Ren, M. G. Raymer, C. J. McKinstrie, S. Radic, and I. A. Walmsley, “Photon pair-state preparation with tailored spectral properties by spontaneous four-wave mixing in photonic-crystal fiber,” Opt. Express 15, 14,870–14,886 (2007).
[Crossref]
E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
[Crossref]
[PubMed]
O. Alibart, J. Fulconis, G. K. L. Wong, S. G. Murdoch, W. J. Wadsworth, and J. G. Rarity, “Photon pair generation using four-wave mixing in a microstructured fibre: theory versus experiment,” New J. of Phys. 8, 67 (2006).
[Crossref]
Z. Y. Ou and Y. J. Lu, “Cavity Enhanced Spontaneous Parametric Down-Conversion for the Prolongation of Correlation Time between Conjugate Photons,” Phys. Rev. Lett. 83, 2556–2559 (1999).
[Crossref]
Z. Y. Ou, J. K. Rhee, and L. J. Wang, “Photon Bunching and Multiphoton Interference in Parametric Down-Conversion,” Phys. Rev. A 60, 593–604 (1999).
[Crossref]
Z. Y. Ou, “Parametric Down-Conversion with Coherent Pulse Pumping and Quantum Interference between Independent Fields,” Quantum Semiclass Opt. 9, 599–614 (1997).
[Crossref]
Z. Zhao, Y. A. Chen, A. N. Zhang, T. Yang, H. J. Briegel, and J. W. Pan, “Experimental demonstration of five-photon entanglement and open-destination quantum teleportation,” Nature 430, 54–58 (2004).
[Crossref]
[PubMed]
J. W. Pan, D. Bouwmeester, H. Weinfurter, and A. Zeilinger, “Experimental entanglement swapping: entangling photons that never interacted,” Phys. Rev. Lett. 80, 3891–3894 (1998).
[Crossref]
D. Bouwmeester, J. W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390, 575–579 (1997).
[Crossref]
K. Garay-Palmett, H. J. McGuinness, O. Cohen, J. S. Lundeen, R. Rangel-Rojo, A. B. U’Ren, M. G. Raymer, C. J. McKinstrie, S. Radic, and I. A. Walmsley, “Photon pair-state preparation with tailored spectral properties by spontaneous four-wave mixing in photonic-crystal fiber,” Opt. Express 15, 14,870–14,886 (2007).
[Crossref]
K. Garay-Palmett, H. J. McGuinness, O. Cohen, J. S. Lundeen, R. Rangel-Rojo, A. B. U’Ren, M. G. Raymer, C. J. McKinstrie, S. Radic, and I. A. Walmsley, “Photon pair-state preparation with tailored spectral properties by spontaneous four-wave mixing in photonic-crystal fiber,” Opt. Express 15, 14,870–14,886 (2007).
[Crossref]
O. Alibart, J. Fulconis, G. K. L. Wong, S. G. Murdoch, W. J. Wadsworth, and J. G. Rarity, “Photon pair generation using four-wave mixing in a microstructured fibre: theory versus experiment,” New J. of Phys. 8, 67 (2006).
[Crossref]
J. G. Rarity, J. Fulconis, J. Duligall, W. J. Wadsworth, and P. S. J. Russell, “Photonic crystal fiber source of correlated photon pairs,” Opt. Express 13, 534–544 (2005).
[Crossref]
[PubMed]
J. Fulconis, O. Alibart, W. J. Wadsworth, P. S. Russell, and J. G. Rarity, “High brightness single mode source of correlated photon pairs using a photonic crystal fiber,” Opt. Express 13, 7572–7582 (2005).
[Crossref]
[PubMed]
K. Garay-Palmett, H. J. McGuinness, O. Cohen, J. S. Lundeen, R. Rangel-Rojo, A. B. U’Ren, M. G. Raymer, C. J. McKinstrie, S. Radic, and I. A. Walmsley, “Photon pair-state preparation with tailored spectral properties by spontaneous four-wave mixing in photonic-crystal fiber,” Opt. Express 15, 14,870–14,886 (2007).
[Crossref]
Z. Y. Ou, J. K. Rhee, and L. J. Wang, “Photon Bunching and Multiphoton Interference in Parametric Down-Conversion,” Phys. Rev. A 60, 593–604 (1999).
[Crossref]
M. Halder, A. Beveratos, N. Gisin, V. Scarani, C. Simon, and H. Zbinden, “Entangling independent photons by time measurement,” Nature Physics 3, 692–695 (2007).
[Crossref]
P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. H. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337–4341 (1995).
[Crossref]
[PubMed]
X. Li, P. L. Voss, J. E. Sharping, and P. Kumar, “Optical-fiber source of polarization-entangled photons in the 1550 nm telecom band,” Phys. Rev. Lett. 94, 053,601 (2005).
[Crossref]
M. Fiorentino, P. L. Voss, J. E. Sharping, and P. Kumar, “All-fiber photon-pair source for quantum communication,” Photon. Technol. Lett. 14, 983–985 (2002).
[Crossref]
P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. H. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337–4341 (1995).
[Crossref]
[PubMed]
K. Inoue and K. Shimizu, “Generation of Quantum-Correlated Photon Pairs in Optical Fiber: Influence of Spontaneous Raman Scattering,” Jpn. J. Appl. Phys 43, 8048–8052 (2004).
[Crossref]
M. Halder, A. Beveratos, N. Gisin, V. Scarani, C. Simon, and H. Zbinden, “Entangling independent photons by time measurement,” Nature Physics 3, 692–695 (2007).
[Crossref]
B. Yurke and D. Stoler, “Einstein-Podolsky-Rosen effects from independent particle sources,” Phys. Rev. Lett. 68, 1251–1254 (1992).
[Crossref]
[PubMed]
K. Garay-Palmett, H. J. McGuinness, O. Cohen, J. S. Lundeen, R. Rangel-Rojo, A. B. U’Ren, M. G. Raymer, C. J. McKinstrie, S. Radic, and I. A. Walmsley, “Photon pair-state preparation with tailored spectral properties by spontaneous four-wave mixing in photonic-crystal fiber,” Opt. Express 15, 14,870–14,886 (2007).
[Crossref]
W. P. Grice, A. B. U’ren, and I. A. Walmsley, “Eliminating frequency and space-time correlations in multi-Photon States,” Phys. Rev. A 64, 063,815 (2001).
[Crossref]
X. Li, J. Chen, K. F. Lee, P. L. Voss, and P. Kumar, “All-fiber photon-pair source for quantum communication: Influence of spectra,” Proceeding of Quantum Communication and Measurement QCMC’06, 31–34 (2006).
K. F. Lee, J. Chen, C. Liang, X. Li, P. L. Voss, and P. Kumar, “Generation of high-purity telecom-band entangled photon pairs in dispersion-shifted fiber,” Opt. Lett. 31, 1905–1907 (2006).
[Crossref]
[PubMed]
X. Li, P. L. Voss, J. E. Sharping, and P. Kumar, “Optical-fiber source of polarization-entangled photons in the 1550 nm telecom band,” Phys. Rev. Lett. 94, 053,601 (2005).
[Crossref]
X. Li, J. Chen, P. L. Voss, J. Sharping, and P. Kumar, “All-fiber photon-pair source for quantum communications: Improved generation of correlated photons,” Opt. Express 12, 3737–3744 (2004).
[Crossref]
[PubMed]
M. Fiorentino, P. L. Voss, J. E. Sharping, and P. Kumar, “All-fiber photon-pair source for quantum communication,” Photon. Technol. Lett. 14, 983–985 (2002).
[Crossref]
O. Alibart, J. Fulconis, G. K. L. Wong, S. G. Murdoch, W. J. Wadsworth, and J. G. Rarity, “Photon pair generation using four-wave mixing in a microstructured fibre: theory versus experiment,” New J. of Phys. 8, 67 (2006).
[Crossref]
J. G. Rarity, J. Fulconis, J. Duligall, W. J. Wadsworth, and P. S. J. Russell, “Photonic crystal fiber source of correlated photon pairs,” Opt. Express 13, 534–544 (2005).
[Crossref]
[PubMed]
J. Fulconis, O. Alibart, W. J. Wadsworth, P. S. Russell, and J. G. Rarity, “High brightness single mode source of correlated photon pairs using a photonic crystal fiber,” Opt. Express 13, 7572–7582 (2005).
[Crossref]
[PubMed]
K. Garay-Palmett, H. J. McGuinness, O. Cohen, J. S. Lundeen, R. Rangel-Rojo, A. B. U’Ren, M. G. Raymer, C. J. McKinstrie, S. Radic, and I. A. Walmsley, “Photon pair-state preparation with tailored spectral properties by spontaneous four-wave mixing in photonic-crystal fiber,” Opt. Express 15, 14,870–14,886 (2007).
[Crossref]
W. P. Grice, A. B. U’ren, and I. A. Walmsley, “Eliminating frequency and space-time correlations in multi-Photon States,” Phys. Rev. A 64, 063,815 (2001).
[Crossref]
J. Fan, A. Dogariu, and L. J. Wang, “Generation of correlated photon pairs in a microstructure fiber,” Opt. Lett. 30, 1530–1532 (2005).
[Crossref]
[PubMed]
Z. Y. Ou, J. K. Rhee, and L. J. Wang, “Photon Bunching and Multiphoton Interference in Parametric Down-Conversion,” Phys. Rev. A 60, 593–604 (1999).
[Crossref]
J. W. Pan, D. Bouwmeester, H. Weinfurter, and A. Zeilinger, “Experimental entanglement swapping: entangling photons that never interacted,” Phys. Rev. Lett. 80, 3891–3894 (1998).
[Crossref]
D. Bouwmeester, J. W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390, 575–579 (1997).
[Crossref]
P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. H. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337–4341 (1995).
[Crossref]
[PubMed]
M. Zukowski, A. Zeilinger, and H. Weinfurter, “Entangling Photons Radiated by Independent Pulsed Sources,” Ann. (N. Y.) Acad. Sci. 755, 91–102 (1995).
[Crossref]
O. Alibart, J. Fulconis, G. K. L. Wong, S. G. Murdoch, W. J. Wadsworth, and J. G. Rarity, “Photon pair generation using four-wave mixing in a microstructured fibre: theory versus experiment,” New J. of Phys. 8, 67 (2006).
[Crossref]
Z. Zhao, Y. A. Chen, A. N. Zhang, T. Yang, H. J. Briegel, and J. W. Pan, “Experimental demonstration of five-photon entanglement and open-destination quantum teleportation,” Nature 430, 54–58 (2004).
[Crossref]
[PubMed]
B. Yurke and D. Stoler, “Einstein-Podolsky-Rosen effects from independent particle sources,” Phys. Rev. Lett. 68, 1251–1254 (1992).
[Crossref]
[PubMed]
M. Halder, A. Beveratos, N. Gisin, V. Scarani, C. Simon, and H. Zbinden, “Entangling independent photons by time measurement,” Nature Physics 3, 692–695 (2007).
[Crossref]
J. W. Pan, D. Bouwmeester, H. Weinfurter, and A. Zeilinger, “Experimental entanglement swapping: entangling photons that never interacted,” Phys. Rev. Lett. 80, 3891–3894 (1998).
[Crossref]
D. Bouwmeester, J. W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390, 575–579 (1997).
[Crossref]
M. Zukowski, A. Zeilinger, and H. Weinfurter, “Entangling Photons Radiated by Independent Pulsed Sources,” Ann. (N. Y.) Acad. Sci. 755, 91–102 (1995).
[Crossref]
P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. H. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337–4341 (1995).
[Crossref]
[PubMed]
Z. Zhao, Y. A. Chen, A. N. Zhang, T. Yang, H. J. Briegel, and J. W. Pan, “Experimental demonstration of five-photon entanglement and open-destination quantum teleportation,” Nature 430, 54–58 (2004).
[Crossref]
[PubMed]
Z. Zhao, Y. A. Chen, A. N. Zhang, T. Yang, H. J. Briegel, and J. W. Pan, “Experimental demonstration of five-photon entanglement and open-destination quantum teleportation,” Nature 430, 54–58 (2004).
[Crossref]
[PubMed]
M. Zukowski, A. Zeilinger, and H. Weinfurter, “Entangling Photons Radiated by Independent Pulsed Sources,” Ann. (N. Y.) Acad. Sci. 755, 91–102 (1995).
[Crossref]
M. Zukowski, A. Zeilinger, and H. Weinfurter, “Entangling Photons Radiated by Independent Pulsed Sources,” Ann. (N. Y.) Acad. Sci. 755, 91–102 (1995).
[Crossref]
K. Inoue and K. Shimizu, “Generation of Quantum-Correlated Photon Pairs in Optical Fiber: Influence of Spontaneous Raman Scattering,” Jpn. J. Appl. Phys 43, 8048–8052 (2004).
[Crossref]
D. Bouwmeester, J. W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390, 575–579 (1997).
[Crossref]
E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
[Crossref]
[PubMed]
Z. Zhao, Y. A. Chen, A. N. Zhang, T. Yang, H. J. Briegel, and J. W. Pan, “Experimental demonstration of five-photon entanglement and open-destination quantum teleportation,” Nature 430, 54–58 (2004).
[Crossref]
[PubMed]
M. Halder, A. Beveratos, N. Gisin, V. Scarani, C. Simon, and H. Zbinden, “Entangling independent photons by time measurement,” Nature Physics 3, 692–695 (2007).
[Crossref]
O. Alibart, J. Fulconis, G. K. L. Wong, S. G. Murdoch, W. J. Wadsworth, and J. G. Rarity, “Photon pair generation using four-wave mixing in a microstructured fibre: theory versus experiment,” New J. of Phys. 8, 67 (2006).
[Crossref]
K. Garay-Palmett, H. J. McGuinness, O. Cohen, J. S. Lundeen, R. Rangel-Rojo, A. B. U’Ren, M. G. Raymer, C. J. McKinstrie, S. Radic, and I. A. Walmsley, “Photon pair-state preparation with tailored spectral properties by spontaneous four-wave mixing in photonic-crystal fiber,” Opt. Express 15, 14,870–14,886 (2007).
[Crossref]
H. Takesue and K. Inoue, “1.5 um band quantum-correlated photon pair generation in dispersion-shifted fiber: suppression of noise photons by cooling fiber,” Opt. Express 13, 7832–7839 (2005).
[Crossref]
[PubMed]
J. G. Rarity, J. Fulconis, J. Duligall, W. J. Wadsworth, and P. S. J. Russell, “Photonic crystal fiber source of correlated photon pairs,” Opt. Express 13, 534–544 (2005).
[Crossref]
[PubMed]
J. Fulconis, O. Alibart, W. J. Wadsworth, P. S. Russell, and J. G. Rarity, “High brightness single mode source of correlated photon pairs using a photonic crystal fiber,” Opt. Express 13, 7572–7582 (2005).
[Crossref]
[PubMed]
X. Li, J. Chen, P. L. Voss, J. Sharping, and P. Kumar, “All-fiber photon-pair source for quantum communications: Improved generation of correlated photons,” Opt. Express 12, 3737–3744 (2004).
[Crossref]
[PubMed]
J. Fan, A. Dogariu, and L. J. Wang, “Generation of correlated photon pairs in a microstructure fiber,” Opt. Lett. 30, 1530–1532 (2005).
[Crossref]
[PubMed]
K. F. Lee, J. Chen, C. Liang, X. Li, P. L. Voss, and P. Kumar, “Generation of high-purity telecom-band entangled photon pairs in dispersion-shifted fiber,” Opt. Lett. 31, 1905–1907 (2006).
[Crossref]
[PubMed]
M. Fiorentino, P. L. Voss, J. E. Sharping, and P. Kumar, “All-fiber photon-pair source for quantum communication,” Photon. Technol. Lett. 14, 983–985 (2002).
[Crossref]
W. P. Grice, A. B. U’ren, and I. A. Walmsley, “Eliminating frequency and space-time correlations in multi-Photon States,” Phys. Rev. A 64, 063,815 (2001).
[Crossref]
H. Takesue and K. Inoue, “Generation of 1.5-um band time-bin entanglement using spontaneous fiber four-wave mixing and planar lightwave circuit interferometers,” Phys. Rev. A 72, 041,804 (2005).
[Crossref]
J. Chen, X. Li, and P. Kumar, “Two-photon-state generation via four-wave mixing in optical fibers,” Phys. Rev. A 72, 033,801 (2005).
[Crossref]
Z. Y. Ou, J. K. Rhee, and L. J. Wang, “Photon Bunching and Multiphoton Interference in Parametric Down-Conversion,” Phys. Rev. A 60, 593–604 (1999).
[Crossref]
X. Li, P. L. Voss, J. E. Sharping, and P. Kumar, “Optical-fiber source of polarization-entangled photons in the 1550 nm telecom band,” Phys. Rev. Lett. 94, 053,601 (2005).
[Crossref]
P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. H. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337–4341 (1995).
[Crossref]
[PubMed]
Z. Y. Ou and Y. J. Lu, “Cavity Enhanced Spontaneous Parametric Down-Conversion for the Prolongation of Correlation Time between Conjugate Photons,” Phys. Rev. Lett. 83, 2556–2559 (1999).
[Crossref]
B. Yurke and D. Stoler, “Einstein-Podolsky-Rosen effects from independent particle sources,” Phys. Rev. Lett. 68, 1251–1254 (1992).
[Crossref]
[PubMed]
J. W. Pan, D. Bouwmeester, H. Weinfurter, and A. Zeilinger, “Experimental entanglement swapping: entangling photons that never interacted,” Phys. Rev. Lett. 80, 3891–3894 (1998).
[Crossref]
X. Li, J. Chen, K. F. Lee, P. L. Voss, and P. Kumar, “All-fiber photon-pair source for quantum communication: Influence of spectra,” Proceeding of Quantum Communication and Measurement QCMC’06, 31–34 (2006).
Z. Y. Ou, “Parametric Down-Conversion with Coherent Pulse Pumping and Quantum Interference between Independent Fields,” Quantum Semiclass Opt. 9, 599–614 (1997).
[Crossref]
G. P. Agrawal, Nonlinear fiber optics (Elsevier Pte Ltd., Singapore, 2005).