Abstract

We demonstrate here that switching and tuning of a nanocavity resonance can be achieved by approaching a sub-micrometer tip inside its evanescent near-field. The resonance energy is tuned over a wide spectral range (Δλ/λ~10-3) without significant deterioration of the cavity peak-transmittance and of the resonance linewidth. Such a result is achieved by taking benefits from a weak tip-cavity interaction regime in which the tip behaves as a pure optical path length modulator.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. S. I. Bozhevolnyi, V. S. Volkov, T. Sondergaard, A. Boltasseva, P. I. Borel, and M. Kristensen, "Near-field imaging of light propagation in photonic crystal waveguides: Explicit role of Bloch harmonics," Phys. Rev. B. 66, 235204 (2002).
    [CrossRef]
  2. D. Gérard,  et al., "Near-field probing of active photonic-crystal structures," Opt. Lett. 27, 173-175 (2002).
    [CrossRef]
  3. H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, "Direct observation of Bloch harmonics and negative phase velocity in photonic crystal waveguides," Phys. Rev. Lett. 94, 123901-123904 (2005).
    [CrossRef] [PubMed]
  4. B. Cluzel, D. Gérard, E. Picard, T. Charvolin, V. Calvo, E. Hadji, and F. de Fornel, "Experimental demonstration of Bloch mode parity change in photonic crystal waveguide," Appl. Phys. Lett. 85, 2682-2684 (2004).
    [CrossRef]
  5. P. M. Adam, L. Salomon, F. de Fornel, and J. P. Goudonnet, "Determination of the spatial extension of the surface-plasmon evanescent field of a silver film with a photon scanning tunnelling microscope," Phys. Rev. B 48, 2680-2683 (1993).
    [CrossRef]
  6. A. F. Koenderink, M. Kafesaki, B. C. Buchler, and V. Sandoghdar, "Controlling the resonance of a photonic crystal microcavity by a near-field probe," Phys. Rev. Lett. 95, 153904 (2005).
    [CrossRef] [PubMed]
  7. I. Märki, M. Salt, and H. P. Herzig, "Tuning the resonance of a photonic crystal microcavity with an AFM probe," Opt. Express 14, 2969-2978 (2006).
    [CrossRef] [PubMed]
  8. I. Markï, M. Salt, F. Schädelin, P.-A. Künzi, U. Staufer, and H. P. Herzig, "Photonic crystal waveguides and tunable microcavities," Proc. Optics in Computing, Topical Meeting (EOS), 19 (2004).
  9. W. C. L. Hopman,  et al., "Nanomechanical tuning and imaging of a photonic crystal micro-cavity resonance," Opt. Express 14, 8745-8752 (2006).
    [CrossRef] [PubMed]
  10. J. T. Robinson, S. F. Preble and M. Lipson, "Imaging of highly confined modes in sub-micron scale silicon waveguides using transmission based near-field scanning Optical Microscopy," Opt. Express 14, 10588-10595 (2006).
    [CrossRef] [PubMed]
  11. C. Grillet, C. Monat, C. L. Smith, B. J. Eggleton, D. J. Moss, S. Frédérick, D. Dalacu, P. J. Poole, J. Lapointe, G. Aers, and R. L. Williams, "Nanowire coupling to photonic crystal nanocavities for single photon sources," Opt. Express 15, 1267-1276 (2007).
    [CrossRef] [PubMed]
  12. B. Song, S. Noda, T. Asano and Y. Akahane, "Ultra-high-Q photonic double heterostructure nanocavity," Nat. Mater. 4, 207-209 (2005).
    [CrossRef]
  13. Y. Tanaka, T. Asano, R. Hatsuta, and S. Noda, "Investigation of point defect cavity formed in two dimensional photonic crystal slab with one sided dielectric cladding," Appl. Phys. Lett. 88, 011112 (2006).
    [CrossRef]
  14. C. Sauvan, G. Lecamp, P. Lalanne, and J. P. Hugonin," Modal-reflectivity enhancement by geometry tuning in Photonic Crystal microcavities," Opt. Express 13, 245-255 (2005).
    [CrossRef] [PubMed]
  15. P. Vehla, J. C. Rodier, P. Lalanne, J. P. Hugonin, D. Peyrade, E. Picard, T. Charvolin, and E. Hadji, "Ultra-high reflectivity photonic bandgap mirrors in a ridge SOI waveguide," Appl. Phys. Lett. 89, 171121 (2006)
  16. Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, "Micrometer-scale silicon electro-optic modulator," Nature 435, 325-327 (2005)
    [CrossRef] [PubMed]
  17. E. Silberstein, Ph. Lalanne, J. P. Hugonin, and Q. Cao, "On the use of grating theory in integrated optics," J. Opt. Soc. Am. A. 18, 2865-2875 (2001).
    [CrossRef]
  18. J. T. Robinson, C. Manolatou, L. Chen, and M. Lipson, "Ultra small mode volumes in Dielectric Optical Microcavities," Phys. Rev. Lett. 95, 143901 (2005).
    [CrossRef] [PubMed]
  19. H. G. Craighead, "Nanoelectromechanical systems," Science 290, 1532-1535 (2000).
    [CrossRef] [PubMed]
  20. M. L. Roukes, "Nanoelectromechanical systems face the future," Phys. World 14, 25-31 (2001).
  21. S. Mujumdar, F. Koenderink, R. West, and V. Sandoghdar, "Nano-optomechanical characterization and manipulation of Photonic Crystals," IEEE J. Sel. Top. Quantum Electron. 13, 253-261 (2007).
    [CrossRef]

2007 (2)

2006 (5)

I. Märki, M. Salt, and H. P. Herzig, "Tuning the resonance of a photonic crystal microcavity with an AFM probe," Opt. Express 14, 2969-2978 (2006).
[CrossRef] [PubMed]

W. C. L. Hopman,  et al., "Nanomechanical tuning and imaging of a photonic crystal micro-cavity resonance," Opt. Express 14, 8745-8752 (2006).
[CrossRef] [PubMed]

J. T. Robinson, S. F. Preble and M. Lipson, "Imaging of highly confined modes in sub-micron scale silicon waveguides using transmission based near-field scanning Optical Microscopy," Opt. Express 14, 10588-10595 (2006).
[CrossRef] [PubMed]

Y. Tanaka, T. Asano, R. Hatsuta, and S. Noda, "Investigation of point defect cavity formed in two dimensional photonic crystal slab with one sided dielectric cladding," Appl. Phys. Lett. 88, 011112 (2006).
[CrossRef]

P. Vehla, J. C. Rodier, P. Lalanne, J. P. Hugonin, D. Peyrade, E. Picard, T. Charvolin, and E. Hadji, "Ultra-high reflectivity photonic bandgap mirrors in a ridge SOI waveguide," Appl. Phys. Lett. 89, 171121 (2006)

2005 (6)

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, "Micrometer-scale silicon electro-optic modulator," Nature 435, 325-327 (2005)
[CrossRef] [PubMed]

H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, "Direct observation of Bloch harmonics and negative phase velocity in photonic crystal waveguides," Phys. Rev. Lett. 94, 123901-123904 (2005).
[CrossRef] [PubMed]

A. F. Koenderink, M. Kafesaki, B. C. Buchler, and V. Sandoghdar, "Controlling the resonance of a photonic crystal microcavity by a near-field probe," Phys. Rev. Lett. 95, 153904 (2005).
[CrossRef] [PubMed]

J. T. Robinson, C. Manolatou, L. Chen, and M. Lipson, "Ultra small mode volumes in Dielectric Optical Microcavities," Phys. Rev. Lett. 95, 143901 (2005).
[CrossRef] [PubMed]

B. Song, S. Noda, T. Asano and Y. Akahane, "Ultra-high-Q photonic double heterostructure nanocavity," Nat. Mater. 4, 207-209 (2005).
[CrossRef]

C. Sauvan, G. Lecamp, P. Lalanne, and J. P. Hugonin," Modal-reflectivity enhancement by geometry tuning in Photonic Crystal microcavities," Opt. Express 13, 245-255 (2005).
[CrossRef] [PubMed]

2004 (1)

B. Cluzel, D. Gérard, E. Picard, T. Charvolin, V. Calvo, E. Hadji, and F. de Fornel, "Experimental demonstration of Bloch mode parity change in photonic crystal waveguide," Appl. Phys. Lett. 85, 2682-2684 (2004).
[CrossRef]

2002 (2)

S. I. Bozhevolnyi, V. S. Volkov, T. Sondergaard, A. Boltasseva, P. I. Borel, and M. Kristensen, "Near-field imaging of light propagation in photonic crystal waveguides: Explicit role of Bloch harmonics," Phys. Rev. B. 66, 235204 (2002).
[CrossRef]

D. Gérard,  et al., "Near-field probing of active photonic-crystal structures," Opt. Lett. 27, 173-175 (2002).
[CrossRef]

2001 (2)

M. L. Roukes, "Nanoelectromechanical systems face the future," Phys. World 14, 25-31 (2001).

E. Silberstein, Ph. Lalanne, J. P. Hugonin, and Q. Cao, "On the use of grating theory in integrated optics," J. Opt. Soc. Am. A. 18, 2865-2875 (2001).
[CrossRef]

2000 (1)

H. G. Craighead, "Nanoelectromechanical systems," Science 290, 1532-1535 (2000).
[CrossRef] [PubMed]

1993 (1)

P. M. Adam, L. Salomon, F. de Fornel, and J. P. Goudonnet, "Determination of the spatial extension of the surface-plasmon evanescent field of a silver film with a photon scanning tunnelling microscope," Phys. Rev. B 48, 2680-2683 (1993).
[CrossRef]

Appl. Phys. Lett. (3)

B. Cluzel, D. Gérard, E. Picard, T. Charvolin, V. Calvo, E. Hadji, and F. de Fornel, "Experimental demonstration of Bloch mode parity change in photonic crystal waveguide," Appl. Phys. Lett. 85, 2682-2684 (2004).
[CrossRef]

Y. Tanaka, T. Asano, R. Hatsuta, and S. Noda, "Investigation of point defect cavity formed in two dimensional photonic crystal slab with one sided dielectric cladding," Appl. Phys. Lett. 88, 011112 (2006).
[CrossRef]

P. Vehla, J. C. Rodier, P. Lalanne, J. P. Hugonin, D. Peyrade, E. Picard, T. Charvolin, and E. Hadji, "Ultra-high reflectivity photonic bandgap mirrors in a ridge SOI waveguide," Appl. Phys. Lett. 89, 171121 (2006)

IEEE J. Sel. Top. Quantum Electron. (1)

S. Mujumdar, F. Koenderink, R. West, and V. Sandoghdar, "Nano-optomechanical characterization and manipulation of Photonic Crystals," IEEE J. Sel. Top. Quantum Electron. 13, 253-261 (2007).
[CrossRef]

J. Opt. Soc. Am. A. (1)

E. Silberstein, Ph. Lalanne, J. P. Hugonin, and Q. Cao, "On the use of grating theory in integrated optics," J. Opt. Soc. Am. A. 18, 2865-2875 (2001).
[CrossRef]

Nat. Mater. (1)

B. Song, S. Noda, T. Asano and Y. Akahane, "Ultra-high-Q photonic double heterostructure nanocavity," Nat. Mater. 4, 207-209 (2005).
[CrossRef]

Nature (1)

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, "Micrometer-scale silicon electro-optic modulator," Nature 435, 325-327 (2005)
[CrossRef] [PubMed]

Opt. Express (5)

Opt. Lett. (1)

Phys. Rev. B (1)

P. M. Adam, L. Salomon, F. de Fornel, and J. P. Goudonnet, "Determination of the spatial extension of the surface-plasmon evanescent field of a silver film with a photon scanning tunnelling microscope," Phys. Rev. B 48, 2680-2683 (1993).
[CrossRef]

Phys. Rev. B. (1)

S. I. Bozhevolnyi, V. S. Volkov, T. Sondergaard, A. Boltasseva, P. I. Borel, and M. Kristensen, "Near-field imaging of light propagation in photonic crystal waveguides: Explicit role of Bloch harmonics," Phys. Rev. B. 66, 235204 (2002).
[CrossRef]

Phys. Rev. Lett. (3)

H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, "Direct observation of Bloch harmonics and negative phase velocity in photonic crystal waveguides," Phys. Rev. Lett. 94, 123901-123904 (2005).
[CrossRef] [PubMed]

A. F. Koenderink, M. Kafesaki, B. C. Buchler, and V. Sandoghdar, "Controlling the resonance of a photonic crystal microcavity by a near-field probe," Phys. Rev. Lett. 95, 153904 (2005).
[CrossRef] [PubMed]

J. T. Robinson, C. Manolatou, L. Chen, and M. Lipson, "Ultra small mode volumes in Dielectric Optical Microcavities," Phys. Rev. Lett. 95, 143901 (2005).
[CrossRef] [PubMed]

Phys. World (1)

M. L. Roukes, "Nanoelectromechanical systems face the future," Phys. World 14, 25-31 (2001).

Science (1)

H. G. Craighead, "Nanoelectromechanical systems," Science 290, 1532-1535 (2000).
[CrossRef] [PubMed]

Other (1)

I. Markï, M. Salt, F. Schädelin, P.-A. Künzi, U. Staufer, and H. P. Herzig, "Photonic crystal waveguides and tunable microcavities," Proc. Optics in Computing, Topical Meeting (EOS), 19 (2004).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Scanning Electron Micrograph views of the nanocavity. The cavity (N=3 in the picture) is formed by the association of two pairs of tapered mirrors etched in a 520-nm wide ridge waveguide. The cavity position is pointed by a triangle on the sample, allowing an optical pre-alignment between the tip and the microcavity. As superimposed schematically, in our experiments, we introduce a silica tip inside the optical near-field of the nanocavity and study the interaction between the tip and the light confined inside the resonator.

Fig. 2.
Fig. 2.

Cavity tuning by a nanometric tip without Q-factor degradation. a) Schematic view of the experiment. b) and c) Transmission spectra recorded for two tip-cavity distances z, zup>100 nm (green curve) and zdown=4 nm (red curve) and for the Q=2800 and Q=7200 cavities. The high-frequency oscillations are due to Fabry Perot fringes resulting from the bouncing of light between the wafer cleaved facets. Bold curves : lorentzian fits of the experimental spectra permitting to evaluate the Q-factor with an error bar of 10%. d) and e) Fabry Perot model predictions of the resonance peak red-shift for the two cavities. The model is described below.

Fig. 3.
Fig. 3.

Fully-vectorial analysis of the cavity tip interaction for a tip diameter d=300 nm. (a) Squared modulus of the dominant electric-field component |Ex|2 for the cavity mode, calculated 4 nm above the cavity. The mirror holes are superimposed for clarity reasons. A tip diameter of 300 nm is represented at the center of the cavity with a dashed contour. (b) Cavity transmission spectra (solid red curves) for a tip positioned above the cavity z=4 nm at 11 on-axis xt locations from the center, by step of 6 nm. The solid black curve is obtained without tip. The blue circles are obtained with the Fabry Perot model, Eq. (1). The inset shows a zoom of the transmission T for the different positions. (c) Definition of the tip scattering coefficients, r1 and r2, on the front and rear tip interfaces.

Fig. 4.
Fig. 4.

Scattering by a cylindrical silica tip (n=1.5) as a function of its distance z to a 520 nm wide, 340 nm high ridge waveguide for a tip having a 300 nm-diameter .(a) Scattering losses (L) and (b) Normalized phase delay (Ψ) under the tip approach in the vicinity of the silicon rib waveguide. The inset shows the definition of the tip scattering coefficients, r, t, and L for the fundamental mode of the ridge waveguide.

Fig. 5.
Fig. 5.

Switching operation of the cavity-tip nanosystem .a) Attenuation of the cavity transmittance (10.log(IT(z)/IMax)) as a function of the tip scan along the z-axis. The injected wavelength is set to the resonance wavelength in absence of the tip (λr up) and the tip position in the (x,y)-plane is set to the cavity center. As the tip approaches the surface of the cavity (z<100 nm), the transmitted light decreases exponentially. Blue curves: model predictions according to Eq. (1). b) The transmittance attenuation measurement recorded while the tip height is modulated temporally (z(t)).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

T cav = T M 2 t ( z ) 2 1 r M 2 t 2 ( z ) exp ( 2 ik 0 n eff D )

Metrics