Abstract

In this study, the coupling properties of a conical copper wire waveguide were investigated in the terahertz (THz) frequency range using theoretical simulations and experiments. Because a conical wire tip has a smaller tip diameter than a cylindrical wire tip, it has a greater THz field density than a cylindrical wire tip. The measured THz pulse increased 4.5 times upon contact with the 30µm-diameter conical wire tip compared with the THz pulse when a 500µm-diameter cylindrical wire tip was used. This result agrees well with that of theoretical simulations such as high-frequency structure simulation (HFSS), which is based on the finite element method.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. A. Sommerfeld, "Ueber die fortpflanzung elektrodynamischer wellen längs eines drahtes," Ann. Phys. Chem. 67, 233 - 290 (1899).
    [CrossRef]
  2. G. Goubau, "Surface waves and their application to transmission lines," J. Appl. Phys. 21, 1119-1128 (1950).
    [CrossRef]
  3. M. J. King and J. C. Wiltse, "Surface-wave propagation on coated or uncoated metal wires at millimeter wavelengths," IEEE Trans. Ant. and Prop. 10, 246-254 (1962).
    [CrossRef]
  4. K. Wang and D. M. Mittleman, "Metal wires for terahertz wave guiding," Nature (London) 432, 376-379 (2004).
    [CrossRef]
  5. K. Wang and D. M. Mittleman, "Dispersion of surface plasmon polaritons on metal wires in the terahertz frequency range," Phys. Rev. Lett. 96, 157401 (2006).
    [CrossRef] [PubMed]
  6. M. Wächter, M. Nagel, and H. Kurz, "Frequency-dependent characterization of THz Sommerfeld wave propagation on single wires," Opt. Express 13, 10815-10822 (2005).
    [CrossRef] [PubMed]
  7. H. Cao and A. Nahata, "Coupling of terahertz pulses onto a single metal wire waveguide using milled grooves," Opt. Express 13, 7028-7034 (2005).
    [CrossRef] [PubMed]
  8. J. A. Deibel, K. Wang, M. D. Escarra, and D. M. Mittleman, "Enhanced coupling of terahertz radiation to cylindrical wire waveguides," Opt. Express 14, 279-290 (2006).
    [CrossRef] [PubMed]
  9. J. A. Deibel, N. Berndsen, K. Wang, D. M. Mittleman, N. C. J. van der Valk, and P. C. M. Planken, "Frequency-dependent radiation patterns emitted by THz plasmons on finite length cylindrical metal wires," Opt. Express 14, 8772-8778 (2006).
    [CrossRef] [PubMed]
  10. T.-I. Jeon and D. Grischkowsky, "Direct optoelectronic generation and detection of subps electrical pulses on sub-mm coaxial transmission lines," Appl. Phys. Lett. 85, 6092-6094 (2004).
    [CrossRef]
  11. T.-I. Jeon and D. Grischkowsky, "THz Zenneck surface wave (THz surface plasmon) propagation on a metal sheet," Appl. Phys. Lett. 88, 061113 (2006).
    [CrossRef]
  12. T.-I. Jeon, J. Zhang, and D. Grischkowsky, "THz Sommerfeld wave propagation on a single metal wire," Appl. Phys. Lett. 86, 161904 (2005).
    [CrossRef]
  13. R. W. McGowan, G. Gallot, and D. Grischkowsky, "Propagation of ultra-wideband, short pulses of THz radiation through sub-mm diameter circular waveguides," Opt. Lett. 24, 1431-1433 (1999).
    [CrossRef]
  14. G. Gallot, S. P. Jamison, R. W. McGowan, and D. Grischkowsky, "THz waveguides," J. Opt. Soc. Am. B. 17, 851-863 (2000).
    [CrossRef]
  15. R. Mendis and D. Grischkowsky, "THz interconnect with low loss and low group velocity dispersion," IEEE Microw. Wirel. Comp. Lett. 11, 444-446 (2001).
    [CrossRef]
  16. N. C. J. van der Valk and P. C. M. Planken, "Effect of a dielectric coating on terahertz surface plasmon polaritons on metal wires," Appl. Phys. Lett. 87, 071106 (2005).
    [CrossRef]
  17. M. Walther, M. R. Freeman, and F. A. Hegmann, "Metal-wire terahertz time-domain spectroscopy," Appl. Phys. Lett. 87, 261107 (2005).
    [CrossRef]
  18. M. J. Hagmann, "Isolated carbon nanotubes as high-impedance transmission lines for microwave through terahertz frequencies," IEEE Trans. Nanotechnol. 4, 289-296 (2005).
    [CrossRef]
  19. Y. B. Ji, E. S. Lee, J. S. Seok, T.-I. Jeon, M. H. Kwak, and K.-Y. Kwang, "Guidance properties of metal wire waveguide by terahertz pulse propagation," J. Korean Phys. Soc. 50, 1238-1242 (2007).
    [CrossRef]
  20. F. Yang, J. R. Sambles, and G. W. Bradberry, "Long-range surface modes supported by thin films," Phys. Rev. B 44, 5855-5872 (1991).
    [CrossRef]
  21. G. Goubau, "Surface waves and their application to transmission lines," J. Appl. Phys. 21, 1119-1128 (1950).
    [CrossRef]
  22. Q. Cao and J. Jahns, "Azimuthally polarized surface plasmons as effective terahertz waveguide," Opt. Express 13, 511-518 (2005).
    [CrossRef] [PubMed]
  23. M. Walther, G. S. Chambers, Z. Liu, M. R. Freeman, and F. A. Hegmann, "Emission and detection of terahertz pulse from a metal-tip antenna," J. Opt. Soc. Am. B,  22, 2357-2365 (2005).
    [CrossRef]
  24. S. A. Maier, S. R. Andrews, L. Martin-Moreno, and F. J. Garcia-Vidal, "Terahertz surface plasmon-polariton propagation and Focusing on periodically corrugated metal wires," Phys. Rev. Lett. 97, 176805 (2006).
    [CrossRef] [PubMed]
  25. J. A. Deibel, L. Berndsen, K. Wang, and D. M. Mittleman, "Finite-element method simulations of guided wave phenomena at terahertz frequencies," Proc. IEEE  95, 1624-1640 (2007).
    [CrossRef]
  26. N. Katzenellenbogen and D. Grischkowsky, "Electrical characterization to 4 THz of N- and P-type GaAs using THz time-domain spectroscopy," Appl. Phys. Lett. 61, 840-842 (1992).
    [CrossRef]

2007

Y. B. Ji, E. S. Lee, J. S. Seok, T.-I. Jeon, M. H. Kwak, and K.-Y. Kwang, "Guidance properties of metal wire waveguide by terahertz pulse propagation," J. Korean Phys. Soc. 50, 1238-1242 (2007).
[CrossRef]

J. A. Deibel, L. Berndsen, K. Wang, and D. M. Mittleman, "Finite-element method simulations of guided wave phenomena at terahertz frequencies," Proc. IEEE  95, 1624-1640 (2007).
[CrossRef]

2006

S. A. Maier, S. R. Andrews, L. Martin-Moreno, and F. J. Garcia-Vidal, "Terahertz surface plasmon-polariton propagation and Focusing on periodically corrugated metal wires," Phys. Rev. Lett. 97, 176805 (2006).
[CrossRef] [PubMed]

T.-I. Jeon and D. Grischkowsky, "THz Zenneck surface wave (THz surface plasmon) propagation on a metal sheet," Appl. Phys. Lett. 88, 061113 (2006).
[CrossRef]

K. Wang and D. M. Mittleman, "Dispersion of surface plasmon polaritons on metal wires in the terahertz frequency range," Phys. Rev. Lett. 96, 157401 (2006).
[CrossRef] [PubMed]

J. A. Deibel, K. Wang, M. D. Escarra, and D. M. Mittleman, "Enhanced coupling of terahertz radiation to cylindrical wire waveguides," Opt. Express 14, 279-290 (2006).
[CrossRef] [PubMed]

J. A. Deibel, N. Berndsen, K. Wang, D. M. Mittleman, N. C. J. van der Valk, and P. C. M. Planken, "Frequency-dependent radiation patterns emitted by THz plasmons on finite length cylindrical metal wires," Opt. Express 14, 8772-8778 (2006).
[CrossRef] [PubMed]

2005

M. Wächter, M. Nagel, and H. Kurz, "Frequency-dependent characterization of THz Sommerfeld wave propagation on single wires," Opt. Express 13, 10815-10822 (2005).
[CrossRef] [PubMed]

H. Cao and A. Nahata, "Coupling of terahertz pulses onto a single metal wire waveguide using milled grooves," Opt. Express 13, 7028-7034 (2005).
[CrossRef] [PubMed]

T.-I. Jeon, J. Zhang, and D. Grischkowsky, "THz Sommerfeld wave propagation on a single metal wire," Appl. Phys. Lett. 86, 161904 (2005).
[CrossRef]

N. C. J. van der Valk and P. C. M. Planken, "Effect of a dielectric coating on terahertz surface plasmon polaritons on metal wires," Appl. Phys. Lett. 87, 071106 (2005).
[CrossRef]

M. Walther, M. R. Freeman, and F. A. Hegmann, "Metal-wire terahertz time-domain spectroscopy," Appl. Phys. Lett. 87, 261107 (2005).
[CrossRef]

M. J. Hagmann, "Isolated carbon nanotubes as high-impedance transmission lines for microwave through terahertz frequencies," IEEE Trans. Nanotechnol. 4, 289-296 (2005).
[CrossRef]

Q. Cao and J. Jahns, "Azimuthally polarized surface plasmons as effective terahertz waveguide," Opt. Express 13, 511-518 (2005).
[CrossRef] [PubMed]

M. Walther, G. S. Chambers, Z. Liu, M. R. Freeman, and F. A. Hegmann, "Emission and detection of terahertz pulse from a metal-tip antenna," J. Opt. Soc. Am. B,  22, 2357-2365 (2005).
[CrossRef]

2004

T.-I. Jeon and D. Grischkowsky, "Direct optoelectronic generation and detection of subps electrical pulses on sub-mm coaxial transmission lines," Appl. Phys. Lett. 85, 6092-6094 (2004).
[CrossRef]

K. Wang and D. M. Mittleman, "Metal wires for terahertz wave guiding," Nature (London) 432, 376-379 (2004).
[CrossRef]

2001

R. Mendis and D. Grischkowsky, "THz interconnect with low loss and low group velocity dispersion," IEEE Microw. Wirel. Comp. Lett. 11, 444-446 (2001).
[CrossRef]

2000

G. Gallot, S. P. Jamison, R. W. McGowan, and D. Grischkowsky, "THz waveguides," J. Opt. Soc. Am. B. 17, 851-863 (2000).
[CrossRef]

1999

1992

N. Katzenellenbogen and D. Grischkowsky, "Electrical characterization to 4 THz of N- and P-type GaAs using THz time-domain spectroscopy," Appl. Phys. Lett. 61, 840-842 (1992).
[CrossRef]

1991

F. Yang, J. R. Sambles, and G. W. Bradberry, "Long-range surface modes supported by thin films," Phys. Rev. B 44, 5855-5872 (1991).
[CrossRef]

1962

M. J. King and J. C. Wiltse, "Surface-wave propagation on coated or uncoated metal wires at millimeter wavelengths," IEEE Trans. Ant. and Prop. 10, 246-254 (1962).
[CrossRef]

1950

G. Goubau, "Surface waves and their application to transmission lines," J. Appl. Phys. 21, 1119-1128 (1950).
[CrossRef]

G. Goubau, "Surface waves and their application to transmission lines," J. Appl. Phys. 21, 1119-1128 (1950).
[CrossRef]

1899

A. Sommerfeld, "Ueber die fortpflanzung elektrodynamischer wellen längs eines drahtes," Ann. Phys. Chem. 67, 233 - 290 (1899).
[CrossRef]

Ann. Phys. Chem.

A. Sommerfeld, "Ueber die fortpflanzung elektrodynamischer wellen längs eines drahtes," Ann. Phys. Chem. 67, 233 - 290 (1899).
[CrossRef]

Appl. Phys. Lett.

T.-I. Jeon and D. Grischkowsky, "Direct optoelectronic generation and detection of subps electrical pulses on sub-mm coaxial transmission lines," Appl. Phys. Lett. 85, 6092-6094 (2004).
[CrossRef]

T.-I. Jeon and D. Grischkowsky, "THz Zenneck surface wave (THz surface plasmon) propagation on a metal sheet," Appl. Phys. Lett. 88, 061113 (2006).
[CrossRef]

T.-I. Jeon, J. Zhang, and D. Grischkowsky, "THz Sommerfeld wave propagation on a single metal wire," Appl. Phys. Lett. 86, 161904 (2005).
[CrossRef]

N. C. J. van der Valk and P. C. M. Planken, "Effect of a dielectric coating on terahertz surface plasmon polaritons on metal wires," Appl. Phys. Lett. 87, 071106 (2005).
[CrossRef]

M. Walther, M. R. Freeman, and F. A. Hegmann, "Metal-wire terahertz time-domain spectroscopy," Appl. Phys. Lett. 87, 261107 (2005).
[CrossRef]

N. Katzenellenbogen and D. Grischkowsky, "Electrical characterization to 4 THz of N- and P-type GaAs using THz time-domain spectroscopy," Appl. Phys. Lett. 61, 840-842 (1992).
[CrossRef]

IEEE Microw. Wirel. Comp. Lett.

R. Mendis and D. Grischkowsky, "THz interconnect with low loss and low group velocity dispersion," IEEE Microw. Wirel. Comp. Lett. 11, 444-446 (2001).
[CrossRef]

IEEE Trans. Ant. and Prop.

M. J. King and J. C. Wiltse, "Surface-wave propagation on coated or uncoated metal wires at millimeter wavelengths," IEEE Trans. Ant. and Prop. 10, 246-254 (1962).
[CrossRef]

IEEE Trans. Nanotechnol.

M. J. Hagmann, "Isolated carbon nanotubes as high-impedance transmission lines for microwave through terahertz frequencies," IEEE Trans. Nanotechnol. 4, 289-296 (2005).
[CrossRef]

J. Appl. Phys.

G. Goubau, "Surface waves and their application to transmission lines," J. Appl. Phys. 21, 1119-1128 (1950).
[CrossRef]

G. Goubau, "Surface waves and their application to transmission lines," J. Appl. Phys. 21, 1119-1128 (1950).
[CrossRef]

J. Korean Phys. Soc.

Y. B. Ji, E. S. Lee, J. S. Seok, T.-I. Jeon, M. H. Kwak, and K.-Y. Kwang, "Guidance properties of metal wire waveguide by terahertz pulse propagation," J. Korean Phys. Soc. 50, 1238-1242 (2007).
[CrossRef]

J. Opt. Soc. Am. B

J. Opt. Soc. Am. B.

G. Gallot, S. P. Jamison, R. W. McGowan, and D. Grischkowsky, "THz waveguides," J. Opt. Soc. Am. B. 17, 851-863 (2000).
[CrossRef]

Nature (London)

K. Wang and D. M. Mittleman, "Metal wires for terahertz wave guiding," Nature (London) 432, 376-379 (2004).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. B

F. Yang, J. R. Sambles, and G. W. Bradberry, "Long-range surface modes supported by thin films," Phys. Rev. B 44, 5855-5872 (1991).
[CrossRef]

Phys. Rev. Lett.

K. Wang and D. M. Mittleman, "Dispersion of surface plasmon polaritons on metal wires in the terahertz frequency range," Phys. Rev. Lett. 96, 157401 (2006).
[CrossRef] [PubMed]

S. A. Maier, S. R. Andrews, L. Martin-Moreno, and F. J. Garcia-Vidal, "Terahertz surface plasmon-polariton propagation and Focusing on periodically corrugated metal wires," Phys. Rev. Lett. 97, 176805 (2006).
[CrossRef] [PubMed]

Proc. IEEE

J. A. Deibel, L. Berndsen, K. Wang, and D. M. Mittleman, "Finite-element method simulations of guided wave phenomena at terahertz frequencies," Proc. IEEE  95, 1624-1640 (2007).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

(a). Experimental setup. The conical wire tip came in contact with the SOS transmitter chips, and the cylindrical wire tip came in contact with the SOS receiver chips. The two flat ends of each wire faced each other in the middle of the copper wire waveguide. (b) Dipole antenna of the transmitter chip with the 30µm-diameter conical wire tip of wire W1. (c) Dipole antenna of the receiver chip with the 500µm-diameter conical wire tip of wire W2.

Fig. 2.
Fig. 2.

Calculated electric field distribution on the conical wire using 0.15 THz. (a) Horizontal (xz plane) field distribution. (b) Vertical (yz plane) field distribution.

Fig. 3.
Fig. 3.

Definitions of radial distance (R) and tip diameter (D) and the calculations of field distribution. (a) Calculated field intensities with tip diameter for 1µm, 30µm, and 60µm radial distances. The dashed line represents the 30µm tip diameter. (b) Calculated field intensities with radial distance for the 30µm tip diameter.

Fig. 4.
Fig. 4.

Simulation results of the electric field distribution on the xy plane. The white circle at the center of the field distribution indicates the surface of the wire tips. (a) 500µm-diameter cylindrical wire tip. (b) 30µm-diameter conical wire tip.

Fig. 5.
Fig. 5.

(a). Location of the wire tip and the receiver dipole antenna. (b) Measured THz pulses in the 500µm-diameter cylindrical wire tip (blue line) and the 30µm-diameter conical wire tip (red line). (c) THz spectra in the 500µm-diameter cylindrical wire tip (blue line) and the 30µm-diameter conical wire tip (red line).

Metrics