Abstract

We demonstrate an all-fiber picosecond soliton laser with dispersion management performed by a chirped Bragg grating that generates ~1.6 ps pulses representing the shortest pulsewidth reported to date using this technology. The large anomalous dispersion provided by the grating allows building of a long-length cavity laser with an extremely low fundamental repetition rate of 2.6 MHz. This source allows us to use an original approach for producing energetic pulses that after boosting in a medium power core-pumped amplifier produce an octave-spanning supercontinuum radiation in a nonlinear photonic crystal fiber.

© 2008 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Low repetition rate, hybrid fiber/solid-state, 1064  nm picosecond master oscillator power amplifier laser system

Antonio Agnesi, Luca Carrá, Federico Pirzio, Riccardo Piccoli, and Giancarlo Reali
J. Opt. Soc. Am. B 30(11) 2960-2965 (2013)

Passively mode-locked and cavity-dumped Yb:KY(WO4)2 oscillator with positive dispersion

Guido Palmer, Moritz Emons, Martin Siegel, Andy Steinmann, Marcel Schultze, Max Lederer, and Uwe Morgner
Opt. Express 15(24) 16017-16021 (2007)

Few-cycle OPCPA system at 143 kHz with more than 1 μJ of pulse energy

Marcel Schultze, Thomas Binhammer, Andy Steinmann, Guido Palmer, Moritz Emons, and Uwe Morgner
Opt. Express 18(3) 2836-2841 (2010)

References

  • View by:
  • |
  • |
  • |

  1. J. W. Nicholson, M. F. Yan, P. Wisk, J. Fleming, F. DiMarcello, E. Monberg, A. Yablon, C. Jørgensen, and T. Veng, “All-fiber, octave-spanning supercontinuum,” Opt. Lett. 28, 643–645 (2003).
    [Crossref] [PubMed]
  2. G. Genty, S. Coen, and J. M. Dudley, “Fiber supercontinuum sources,” J. Opt. Soc. Am. B 24, 1771–1785 (2007).
    [Crossref]
  3. J. M. Dudley, L. Provino, N. Grossard, H. Maillotte, R. S. Windeler, B. J. Eggleton, and S. Coen, “Supercontinuum generation in air-silica microstructured fibers with nanosecond and femtosecond pulse pumping,” J. Opt. Soc. Am. B 19, 765–771 (2002).
    [Crossref]
  4. M. Rusu, R. Herda, S. Kivistö, and O. G. Okhotnikov, “Fiber taper for dispersion management in a mode-locked ytterbium fiber laser,” Opt Lett. 31, 2257–2259 (2006).
    [Crossref] [PubMed]
  5. A. Isomäki and O. G. Okhotnikov, “Femtosecond soliton mode-locked laser based on ytterbium-doped photonic bandgap fiber,” Opt. Express 14, 9238–9243 (2006).
    [Crossref] [PubMed]
  6. H. Lim, F. Ö. Ilday, and F. W. Wise, “Femtosecond ytterbium fiber laser with photonic crystal fiber for dispersion control,” Opt. Express 10, 1497–1502 (2006).
  7. O. Katz, Y. Sintov, Y. Nafcha, and Y. Glick, “Passively mode-locked ytterbium fiber laser utilizing chirped-fiber-Bragg-gratings for dispersion control,” Opt. Commun. 269, 156–165 (2007).
    [Crossref]
  8. O. G. Okhotnikov, L. Gomes, N. Xiang, T. Jouhti, and A. B. Grudinin, “Mode-locked ytterbium fiber laser tunable in the 980-1070-nm spectral range,” Opt Lett. 28, 1522–1524 (2003).
    [Crossref] [PubMed]
  9. K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: Application to reflection filter fabrication,” Appl. Phys. Lett. 32, 647–649 (1978).
    [Crossref]
  10. K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, “Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask,” Appl. Phys. Lett. 62, 1035–1037 (1993).
    [Crossref]
  11. M. L. Dennis and I. N. Duling III, “Experimental study of sideband generation in femtosecond fiber lasers,” IEEE J. Quantum Electron. 30, 1469–1477 (1994).
    [Crossref]
  12. Y. Chen, F. X. Kärtner, U. Morgner, S. H. Cho, H. A. Haus, E. P. Ippen, and J. G. Fujimoto, “Dispersion-managed mode locking,” J. Opt. Soc. Am. B 16, 1999–2004 (1999).
    [Crossref]
  13. T. Schreiber, B. Ortaç, J. Limpert, and A. Tünnermann, “On the study of pulse evolution in ultra-short pulse mode-locked fiber lasers by numerical simulation,” Opt. Express 15, 8252–8262 (2007).
    [Crossref] [PubMed]
  14. A. B. Grudinin, D. J. Richardson, and D. N. Payne, “Energy quantisation in figure eight fibre laser,” Electron. Lett. 28, 67–68, (1992).
    [Crossref]

2007 (3)

2006 (3)

2003 (2)

O. G. Okhotnikov, L. Gomes, N. Xiang, T. Jouhti, and A. B. Grudinin, “Mode-locked ytterbium fiber laser tunable in the 980-1070-nm spectral range,” Opt Lett. 28, 1522–1524 (2003).
[Crossref] [PubMed]

J. W. Nicholson, M. F. Yan, P. Wisk, J. Fleming, F. DiMarcello, E. Monberg, A. Yablon, C. Jørgensen, and T. Veng, “All-fiber, octave-spanning supercontinuum,” Opt. Lett. 28, 643–645 (2003).
[Crossref] [PubMed]

2002 (1)

1999 (1)

1994 (1)

M. L. Dennis and I. N. Duling III, “Experimental study of sideband generation in femtosecond fiber lasers,” IEEE J. Quantum Electron. 30, 1469–1477 (1994).
[Crossref]

1993 (1)

K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, “Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask,” Appl. Phys. Lett. 62, 1035–1037 (1993).
[Crossref]

1992 (1)

A. B. Grudinin, D. J. Richardson, and D. N. Payne, “Energy quantisation in figure eight fibre laser,” Electron. Lett. 28, 67–68, (1992).
[Crossref]

1978 (1)

K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: Application to reflection filter fabrication,” Appl. Phys. Lett. 32, 647–649 (1978).
[Crossref]

Albert, J.

K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, “Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask,” Appl. Phys. Lett. 62, 1035–1037 (1993).
[Crossref]

Bilodeau, F.

K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, “Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask,” Appl. Phys. Lett. 62, 1035–1037 (1993).
[Crossref]

Chen, Y.

Cho, S. H.

Coen, S.

Dennis, M. L.

M. L. Dennis and I. N. Duling III, “Experimental study of sideband generation in femtosecond fiber lasers,” IEEE J. Quantum Electron. 30, 1469–1477 (1994).
[Crossref]

DiMarcello, F.

Dudley, J. M.

Duling III, I. N.

M. L. Dennis and I. N. Duling III, “Experimental study of sideband generation in femtosecond fiber lasers,” IEEE J. Quantum Electron. 30, 1469–1477 (1994).
[Crossref]

Eggleton, B. J.

Fleming, J.

Fujii, Y.

K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: Application to reflection filter fabrication,” Appl. Phys. Lett. 32, 647–649 (1978).
[Crossref]

Fujimoto, J. G.

Genty, G.

Glick, Y.

O. Katz, Y. Sintov, Y. Nafcha, and Y. Glick, “Passively mode-locked ytterbium fiber laser utilizing chirped-fiber-Bragg-gratings for dispersion control,” Opt. Commun. 269, 156–165 (2007).
[Crossref]

Gomes, L.

O. G. Okhotnikov, L. Gomes, N. Xiang, T. Jouhti, and A. B. Grudinin, “Mode-locked ytterbium fiber laser tunable in the 980-1070-nm spectral range,” Opt Lett. 28, 1522–1524 (2003).
[Crossref] [PubMed]

Grossard, N.

Grudinin, A. B.

O. G. Okhotnikov, L. Gomes, N. Xiang, T. Jouhti, and A. B. Grudinin, “Mode-locked ytterbium fiber laser tunable in the 980-1070-nm spectral range,” Opt Lett. 28, 1522–1524 (2003).
[Crossref] [PubMed]

A. B. Grudinin, D. J. Richardson, and D. N. Payne, “Energy quantisation in figure eight fibre laser,” Electron. Lett. 28, 67–68, (1992).
[Crossref]

Haus, H. A.

Herda, R.

M. Rusu, R. Herda, S. Kivistö, and O. G. Okhotnikov, “Fiber taper for dispersion management in a mode-locked ytterbium fiber laser,” Opt Lett. 31, 2257–2259 (2006).
[Crossref] [PubMed]

Hill, K. O.

K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, “Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask,” Appl. Phys. Lett. 62, 1035–1037 (1993).
[Crossref]

K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: Application to reflection filter fabrication,” Appl. Phys. Lett. 32, 647–649 (1978).
[Crossref]

Ilday, F. Ö.

Ippen, E. P.

Isomäki, A.

Johnson, D. C.

K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, “Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask,” Appl. Phys. Lett. 62, 1035–1037 (1993).
[Crossref]

K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: Application to reflection filter fabrication,” Appl. Phys. Lett. 32, 647–649 (1978).
[Crossref]

Jørgensen, C.

Jouhti, T.

O. G. Okhotnikov, L. Gomes, N. Xiang, T. Jouhti, and A. B. Grudinin, “Mode-locked ytterbium fiber laser tunable in the 980-1070-nm spectral range,” Opt Lett. 28, 1522–1524 (2003).
[Crossref] [PubMed]

Kärtner, F. X.

Katz, O.

O. Katz, Y. Sintov, Y. Nafcha, and Y. Glick, “Passively mode-locked ytterbium fiber laser utilizing chirped-fiber-Bragg-gratings for dispersion control,” Opt. Commun. 269, 156–165 (2007).
[Crossref]

Kawasaki, B. S.

K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: Application to reflection filter fabrication,” Appl. Phys. Lett. 32, 647–649 (1978).
[Crossref]

Kivistö, S.

M. Rusu, R. Herda, S. Kivistö, and O. G. Okhotnikov, “Fiber taper for dispersion management in a mode-locked ytterbium fiber laser,” Opt Lett. 31, 2257–2259 (2006).
[Crossref] [PubMed]

Lim, H.

Limpert, J.

Maillotte, H.

Malo, B.

K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, “Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask,” Appl. Phys. Lett. 62, 1035–1037 (1993).
[Crossref]

Monberg, E.

Morgner, U.

Nafcha, Y.

O. Katz, Y. Sintov, Y. Nafcha, and Y. Glick, “Passively mode-locked ytterbium fiber laser utilizing chirped-fiber-Bragg-gratings for dispersion control,” Opt. Commun. 269, 156–165 (2007).
[Crossref]

Nicholson, J. W.

Okhotnikov, O. G.

A. Isomäki and O. G. Okhotnikov, “Femtosecond soliton mode-locked laser based on ytterbium-doped photonic bandgap fiber,” Opt. Express 14, 9238–9243 (2006).
[Crossref] [PubMed]

M. Rusu, R. Herda, S. Kivistö, and O. G. Okhotnikov, “Fiber taper for dispersion management in a mode-locked ytterbium fiber laser,” Opt Lett. 31, 2257–2259 (2006).
[Crossref] [PubMed]

O. G. Okhotnikov, L. Gomes, N. Xiang, T. Jouhti, and A. B. Grudinin, “Mode-locked ytterbium fiber laser tunable in the 980-1070-nm spectral range,” Opt Lett. 28, 1522–1524 (2003).
[Crossref] [PubMed]

Ortaç, B.

Payne, D. N.

A. B. Grudinin, D. J. Richardson, and D. N. Payne, “Energy quantisation in figure eight fibre laser,” Electron. Lett. 28, 67–68, (1992).
[Crossref]

Provino, L.

Richardson, D. J.

A. B. Grudinin, D. J. Richardson, and D. N. Payne, “Energy quantisation in figure eight fibre laser,” Electron. Lett. 28, 67–68, (1992).
[Crossref]

Rusu, M.

M. Rusu, R. Herda, S. Kivistö, and O. G. Okhotnikov, “Fiber taper for dispersion management in a mode-locked ytterbium fiber laser,” Opt Lett. 31, 2257–2259 (2006).
[Crossref] [PubMed]

Schreiber, T.

Sintov, Y.

O. Katz, Y. Sintov, Y. Nafcha, and Y. Glick, “Passively mode-locked ytterbium fiber laser utilizing chirped-fiber-Bragg-gratings for dispersion control,” Opt. Commun. 269, 156–165 (2007).
[Crossref]

Tünnermann, A.

Veng, T.

Windeler, R. S.

Wise, F. W.

Wisk, P.

Xiang, N.

O. G. Okhotnikov, L. Gomes, N. Xiang, T. Jouhti, and A. B. Grudinin, “Mode-locked ytterbium fiber laser tunable in the 980-1070-nm spectral range,” Opt Lett. 28, 1522–1524 (2003).
[Crossref] [PubMed]

Yablon, A.

Yan, M. F.

Appl. Phys. Lett. (2)

K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: Application to reflection filter fabrication,” Appl. Phys. Lett. 32, 647–649 (1978).
[Crossref]

K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, “Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask,” Appl. Phys. Lett. 62, 1035–1037 (1993).
[Crossref]

Electron. Lett. (1)

A. B. Grudinin, D. J. Richardson, and D. N. Payne, “Energy quantisation in figure eight fibre laser,” Electron. Lett. 28, 67–68, (1992).
[Crossref]

IEEE J. Quantum Electron. (1)

M. L. Dennis and I. N. Duling III, “Experimental study of sideband generation in femtosecond fiber lasers,” IEEE J. Quantum Electron. 30, 1469–1477 (1994).
[Crossref]

J. Opt. Soc. Am. B (3)

Opt Lett. (2)

M. Rusu, R. Herda, S. Kivistö, and O. G. Okhotnikov, “Fiber taper for dispersion management in a mode-locked ytterbium fiber laser,” Opt Lett. 31, 2257–2259 (2006).
[Crossref] [PubMed]

O. G. Okhotnikov, L. Gomes, N. Xiang, T. Jouhti, and A. B. Grudinin, “Mode-locked ytterbium fiber laser tunable in the 980-1070-nm spectral range,” Opt Lett. 28, 1522–1524 (2003).
[Crossref] [PubMed]

Opt. Commun. (1)

O. Katz, Y. Sintov, Y. Nafcha, and Y. Glick, “Passively mode-locked ytterbium fiber laser utilizing chirped-fiber-Bragg-gratings for dispersion control,” Opt. Commun. 269, 156–165 (2007).
[Crossref]

Opt. Express (3)

Opt. Lett. (1)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

All-fiber supercontinuum source setup. CFBG: Chirped fiber Bragg grating, PCF: Photonic crystal fiber, SAM: Semiconductor saturable absorber mirror.

Fig. 2.
Fig. 2.

Reflectivity of the chirped fiber Bragg grating.

Fig. 3.
Fig. 3.

(a). Autocorrelation and (b) spectrum of the pulses with a repetition rate of 47 MHz generated by the fiber oscillator with a chirped fiber Bragg grating as a dispersion compensator. Mode-locking is initiated by the semiconductor saturable absorber mirror.

Fig. 4.
Fig. 4.

Measured pulse width and time-bandwidth product for different cavity lengths/cavity anomalous dispersion of the laser.

Fig. 5.
Fig. 5.

(a).Simulated pulse width and (b) time-bandwidth product for different fiber lengths and locations in the laser cavity

Fig. 6.
Fig. 6.

(a). Spectrum and (b) autocorrelation of the 2.6 MHz repetition rate pulses from the fiber laser (black lines) and at the output of the power amplifier (red lines).

Fig. 7.
Fig. 7.

Supercontinuum spectra for single, 2, 4 and 8 pulses circulating in the master laser cavity. Pulse energy ranges from 5 to 30 nJ, as indicated in the figure.

Metrics