Abstract

We propose new all-optical logic gates containing a local nonlinear Mach-Zehnder interferometer waveguide structure. The light-induced index changes in the Mach-Zehnder waveguide structure make the output signal beam propagate through different nonlinear output waveguides. Based on the output signal beam propagating property, various all-optical logic gates by using the local nonlinear Mach-Zehnder waveguide interferometer structure with two straight control waveguides have been proposed to perform XOR/NXOR, AND/NAND, and OR/NOR logic functions.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. Y. D. Wu, M. H. Chen, and C. H. Chu, "All-optical logic device using bent nonlinear tapered Y-junction waveguide structure," Fiber Integr. Opt. 20, 517-524 (2001).
  2. Y. D. Wu, M. H. Chen, and R. Z. Tasy, "A new all-optical switching device by using the nonlinear Mach-Zehnder interferometer with a control waveguides," Proceedings CLEO/Pacific Rim Conference on Laser and Electro-Optics. I, 292 (2003).
  3. Y. D. Wu, M. H. Chen, and H. J. Tasi, "Novel all-optical switching device with localized nonlinearity," Optical Society of America, Optics in Computing Devices, 297-299 (2002).
  4. Y. D. Wu, "Nonlinear all-optical switching device by using the Spatial Soliton Collision," Fiber Integr Opt. 23, 387-404 (2004).
    [CrossRef]
  5. F. Garzia and M. Bertolotti, "All-optical security coded key," Opt. Quantum Electron. 33, 527-540 (2001).
    [CrossRef]
  6. Y. H. Pramono and Endarko, "Nonlinear waveguides for optical logic and computation," J. Nonlinear Opt. Phys. Mater. 10, 209-222 (2001).
    [CrossRef]
  7. Y. H. Pramono, M. Geshiro, T. Kitamura, and S. Sawa, "Optical logic OR-AND-NOT and NOR gates in waveguides consisting of nonlinear material," IEICE Trans. Electron. E 83-C, 1755-1762 (2000).
  8. Y. D. Wu, M. L. Whang, M. H. Chen, and R. Z. Tasy, "All-optical switch based on the local Nonlinear Mach-Zehnder Interferometer," Opt. Express 15, 9883-9892 (2007).
    [CrossRef] [PubMed]
  9. C. T. Steaton, J. D. Valera, R. L. Shoemaker, G. I. Stegeman, J. T. Chilwell, and D. Smith, "Calculations of nonlinear TE waves guided by thin dielectric films bounded by nonlinear media," IEEE J. Quantum Electron. 21, 774-783 (1985).
    [CrossRef]
  10. L. Leine, C. Wacher, U. Langbein, and F. Lederer, "Evolution of nonlinear guided optical fields down a dielectric film with nonlinear cladding," J. Opt. Soc. Am B. 5, 547-558 (1988).
    [CrossRef]
  11. S. She and S. Zhang, "Analysis of nonlinear TE waves in a periodic refractive index waveguide with nonlinear cladding," Opt. Commun. 161, 141-148 (1999).
    [CrossRef]
  12. Y. D. Wu, M. H. Chen, and H. J. Tasi, "A General Method for Analyzing the Multilayer Optical Waveguide with Nonlinear Cladding and Substrate," SPIE Design, Fabrication, and Characterization of Photonic Device II 4594, 323-331 (2001).
  13. Y. D. Wu and M. H. Chen, "Analyzing multiplayer optical waveguides with nonlinear cladding and substrates," J. Opt. Soc. Am. B. 19, 1737-1745 (2002).
    [CrossRef]
  14. Y. D. Wu and M. H. Chen, "The fundamental theory of the symmetric three layer nonlinear optical waveguide structures and the numerical simulation," J. Nat. Kao. Uni. App. Sci. 32, 7982-7996 (2002).
  15. A. D. Boardman and P. Egan, "Optically nonlinear waves in thin films," IEEE J. Quantum Electron. 22, 319-324 (1986).
    [CrossRef]
  16. H. Murata, M. Izutsu, and T. Sueta, "Optical bistability and all-optical switching in novel waveguide functions with localized optical nonlinearity," J. Lightwave Technol. 16, 833-840 (1998).
    [CrossRef]
  17. Y. D. Wu and Y. C. Jang, "Analyzing and numerical study of seven-layer optical waveguide with localized nonlinear central guiding film," Proceedings Electrical and Information Engineering Symposium 24-28 (2003).
  18. Y. D. Wu, "Analyzing multilayer optical waveguides with a localized arbitrary nonlinear guiding film," IEEE J. Quantum. Electron. 40, 529-540 (2004).
    [CrossRef]
  19. C. W. Kuo, S. Y. Chen, M. H. Chen, C. F. Chang, and Y. D. Wu, "Analyzing multilayer optical waveguide with all nonlinear layers," Opt. Express 15, 2499-2516 (2007).
    [CrossRef] [PubMed]
  20. X. F. Liu, M. L. Ke, B. C. Qiu, A. C. Bryce, and J. H. Marsh, "Fabrication of monolithically integrated Mach-Zehnder asymmetric interferometer switch," Indium Phosphide and Related Materials, 2000. Conference Proceedings 2000 International Conference 412-414 (2000).
  21. H. Ehlers, M. Schlak, and U. H. P. Fischer, "Multi-fiber-chip-coupling modules for monolithically integrated Mach-Zehnder interferometers for TDM/WDM communication systems," Optical Fiber Communication Conference and Exhibit. 3, WDD66-1~66-3 (2001).
  22. L. Pavelescu, "Simplified design relationships for silicon integrated optical pressure sensors based on Mach-Zehnder interferometry with antiresonant reflecting optical waveguides," Semiconductor Conference, 2001. CAS 2001 Proceedings. International 1, 201-204 (2001).
    [CrossRef]
  23. T. Yabu, M. Geshiro, T. Kitamura, K. Nishida, and S. Sawa, "All-optical logic gates containing a two-mode nonlinear waveguide," IEEE J. Quantum Electron 38, 37-46 (2002).
    [CrossRef]
  24. A. M. Kan’an and P. Likamwa, "Ultrafast all-optical switching not limited by the carrier lifetime in an integrated multiple-quantum-well Mach-Zehnder interferometer," J. Opt. Soc. Am. B. 14, 3217-3223 (1997).
    [CrossRef]
  25. Y. H. Pramono and Endarko, "Nonlinear waveguides for optical logic and computation," J. Nonlinear Opt. Phys. Mater. 10, 209-222 (2001).
    [CrossRef]
  26. Y. Chung and N. Dagli, "As assessment of finite difference beam propagation method," IEEE J. Quantum Electron. 26, 1335-1339 (1994).
    [CrossRef]
  27. C. T. Seaton, X. Mai, G. I. Stegeman, and N. G. Winful, "Nonlinear guided wave applications," Opt. Eng. 24, 593-599 (1985).
  28. H. Vach, G. I. Stegeman, C. T. Seaton, and I. C. Khoo, "Experimental observation of nonlinear guided waves," Opt. Lett. 9, 238-240 (1984).
    [CrossRef] [PubMed]

2007 (2)

2004 (2)

Y. D. Wu, "Nonlinear all-optical switching device by using the Spatial Soliton Collision," Fiber Integr Opt. 23, 387-404 (2004).
[CrossRef]

Y. D. Wu, "Analyzing multilayer optical waveguides with a localized arbitrary nonlinear guiding film," IEEE J. Quantum. Electron. 40, 529-540 (2004).
[CrossRef]

2002 (3)

Y. D. Wu and M. H. Chen, "Analyzing multiplayer optical waveguides with nonlinear cladding and substrates," J. Opt. Soc. Am. B. 19, 1737-1745 (2002).
[CrossRef]

Y. D. Wu and M. H. Chen, "The fundamental theory of the symmetric three layer nonlinear optical waveguide structures and the numerical simulation," J. Nat. Kao. Uni. App. Sci. 32, 7982-7996 (2002).

T. Yabu, M. Geshiro, T. Kitamura, K. Nishida, and S. Sawa, "All-optical logic gates containing a two-mode nonlinear waveguide," IEEE J. Quantum Electron 38, 37-46 (2002).
[CrossRef]

2001 (5)

Y. H. Pramono and Endarko, "Nonlinear waveguides for optical logic and computation," J. Nonlinear Opt. Phys. Mater. 10, 209-222 (2001).
[CrossRef]

F. Garzia and M. Bertolotti, "All-optical security coded key," Opt. Quantum Electron. 33, 527-540 (2001).
[CrossRef]

Y. H. Pramono and Endarko, "Nonlinear waveguides for optical logic and computation," J. Nonlinear Opt. Phys. Mater. 10, 209-222 (2001).
[CrossRef]

Y. D. Wu, M. H. Chen, and H. J. Tasi, "A General Method for Analyzing the Multilayer Optical Waveguide with Nonlinear Cladding and Substrate," SPIE Design, Fabrication, and Characterization of Photonic Device II 4594, 323-331 (2001).

Y. D. Wu, M. H. Chen, and C. H. Chu, "All-optical logic device using bent nonlinear tapered Y-junction waveguide structure," Fiber Integr. Opt. 20, 517-524 (2001).

2000 (1)

Y. H. Pramono, M. Geshiro, T. Kitamura, and S. Sawa, "Optical logic OR-AND-NOT and NOR gates in waveguides consisting of nonlinear material," IEICE Trans. Electron. E 83-C, 1755-1762 (2000).

1999 (1)

S. She and S. Zhang, "Analysis of nonlinear TE waves in a periodic refractive index waveguide with nonlinear cladding," Opt. Commun. 161, 141-148 (1999).
[CrossRef]

1998 (1)

1997 (1)

A. M. Kan’an and P. Likamwa, "Ultrafast all-optical switching not limited by the carrier lifetime in an integrated multiple-quantum-well Mach-Zehnder interferometer," J. Opt. Soc. Am. B. 14, 3217-3223 (1997).
[CrossRef]

1994 (1)

Y. Chung and N. Dagli, "As assessment of finite difference beam propagation method," IEEE J. Quantum Electron. 26, 1335-1339 (1994).
[CrossRef]

1988 (1)

L. Leine, C. Wacher, U. Langbein, and F. Lederer, "Evolution of nonlinear guided optical fields down a dielectric film with nonlinear cladding," J. Opt. Soc. Am B. 5, 547-558 (1988).
[CrossRef]

1986 (1)

A. D. Boardman and P. Egan, "Optically nonlinear waves in thin films," IEEE J. Quantum Electron. 22, 319-324 (1986).
[CrossRef]

1985 (2)

C. T. Seaton, X. Mai, G. I. Stegeman, and N. G. Winful, "Nonlinear guided wave applications," Opt. Eng. 24, 593-599 (1985).

C. T. Steaton, J. D. Valera, R. L. Shoemaker, G. I. Stegeman, J. T. Chilwell, and D. Smith, "Calculations of nonlinear TE waves guided by thin dielectric films bounded by nonlinear media," IEEE J. Quantum Electron. 21, 774-783 (1985).
[CrossRef]

1984 (1)

E (1)

Y. H. Pramono, M. Geshiro, T. Kitamura, and S. Sawa, "Optical logic OR-AND-NOT and NOR gates in waveguides consisting of nonlinear material," IEICE Trans. Electron. E 83-C, 1755-1762 (2000).

Fiber Integr Opt. (1)

Y. D. Wu, "Nonlinear all-optical switching device by using the Spatial Soliton Collision," Fiber Integr Opt. 23, 387-404 (2004).
[CrossRef]

Fiber Integr. Opt. (1)

Y. D. Wu, M. H. Chen, and C. H. Chu, "All-optical logic device using bent nonlinear tapered Y-junction waveguide structure," Fiber Integr. Opt. 20, 517-524 (2001).

IEEE J. Quantum Electron (1)

T. Yabu, M. Geshiro, T. Kitamura, K. Nishida, and S. Sawa, "All-optical logic gates containing a two-mode nonlinear waveguide," IEEE J. Quantum Electron 38, 37-46 (2002).
[CrossRef]

IEEE J. Quantum Electron. (3)

A. D. Boardman and P. Egan, "Optically nonlinear waves in thin films," IEEE J. Quantum Electron. 22, 319-324 (1986).
[CrossRef]

C. T. Steaton, J. D. Valera, R. L. Shoemaker, G. I. Stegeman, J. T. Chilwell, and D. Smith, "Calculations of nonlinear TE waves guided by thin dielectric films bounded by nonlinear media," IEEE J. Quantum Electron. 21, 774-783 (1985).
[CrossRef]

Y. Chung and N. Dagli, "As assessment of finite difference beam propagation method," IEEE J. Quantum Electron. 26, 1335-1339 (1994).
[CrossRef]

IEEE J. Quantum. Electron. (1)

Y. D. Wu, "Analyzing multilayer optical waveguides with a localized arbitrary nonlinear guiding film," IEEE J. Quantum. Electron. 40, 529-540 (2004).
[CrossRef]

J. Lightwave Technol. (1)

J. Nat. Kao. Uni. App. Sci. (1)

Y. D. Wu and M. H. Chen, "The fundamental theory of the symmetric three layer nonlinear optical waveguide structures and the numerical simulation," J. Nat. Kao. Uni. App. Sci. 32, 7982-7996 (2002).

J. Nonlinear Opt. Phys. Mater. (2)

Y. H. Pramono and Endarko, "Nonlinear waveguides for optical logic and computation," J. Nonlinear Opt. Phys. Mater. 10, 209-222 (2001).
[CrossRef]

Y. H. Pramono and Endarko, "Nonlinear waveguides for optical logic and computation," J. Nonlinear Opt. Phys. Mater. 10, 209-222 (2001).
[CrossRef]

J. Opt. Soc. Am B. (1)

L. Leine, C. Wacher, U. Langbein, and F. Lederer, "Evolution of nonlinear guided optical fields down a dielectric film with nonlinear cladding," J. Opt. Soc. Am B. 5, 547-558 (1988).
[CrossRef]

J. Opt. Soc. Am. B. (2)

Y. D. Wu and M. H. Chen, "Analyzing multiplayer optical waveguides with nonlinear cladding and substrates," J. Opt. Soc. Am. B. 19, 1737-1745 (2002).
[CrossRef]

A. M. Kan’an and P. Likamwa, "Ultrafast all-optical switching not limited by the carrier lifetime in an integrated multiple-quantum-well Mach-Zehnder interferometer," J. Opt. Soc. Am. B. 14, 3217-3223 (1997).
[CrossRef]

Opt. Commun. (1)

S. She and S. Zhang, "Analysis of nonlinear TE waves in a periodic refractive index waveguide with nonlinear cladding," Opt. Commun. 161, 141-148 (1999).
[CrossRef]

Opt. Eng. (1)

C. T. Seaton, X. Mai, G. I. Stegeman, and N. G. Winful, "Nonlinear guided wave applications," Opt. Eng. 24, 593-599 (1985).

Opt. Express (2)

Opt. Lett. (1)

Opt. Quantum Electron. (1)

F. Garzia and M. Bertolotti, "All-optical security coded key," Opt. Quantum Electron. 33, 527-540 (2001).
[CrossRef]

SPIE Design, Fabrication, and Characterization of Photonic Device II (1)

Y. D. Wu, M. H. Chen, and H. J. Tasi, "A General Method for Analyzing the Multilayer Optical Waveguide with Nonlinear Cladding and Substrate," SPIE Design, Fabrication, and Characterization of Photonic Device II 4594, 323-331 (2001).

Other (6)

Y. D. Wu, M. H. Chen, and R. Z. Tasy, "A new all-optical switching device by using the nonlinear Mach-Zehnder interferometer with a control waveguides," Proceedings CLEO/Pacific Rim Conference on Laser and Electro-Optics. I, 292 (2003).

Y. D. Wu, M. H. Chen, and H. J. Tasi, "Novel all-optical switching device with localized nonlinearity," Optical Society of America, Optics in Computing Devices, 297-299 (2002).

X. F. Liu, M. L. Ke, B. C. Qiu, A. C. Bryce, and J. H. Marsh, "Fabrication of monolithically integrated Mach-Zehnder asymmetric interferometer switch," Indium Phosphide and Related Materials, 2000. Conference Proceedings 2000 International Conference 412-414 (2000).

H. Ehlers, M. Schlak, and U. H. P. Fischer, "Multi-fiber-chip-coupling modules for monolithically integrated Mach-Zehnder interferometers for TDM/WDM communication systems," Optical Fiber Communication Conference and Exhibit. 3, WDD66-1~66-3 (2001).

L. Pavelescu, "Simplified design relationships for silicon integrated optical pressure sensors based on Mach-Zehnder interferometry with antiresonant reflecting optical waveguides," Semiconductor Conference, 2001. CAS 2001 Proceedings. International 1, 201-204 (2001).
[CrossRef]

Y. D. Wu and Y. C. Jang, "Analyzing and numerical study of seven-layer optical waveguide with localized nonlinear central guiding film," Proceedings Electrical and Information Engineering Symposium 24-28 (2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

The proposed waveguide structures of all-optical logic gates (a) XOR/NXOR gate, (b) AND/NAND gate, (c) OR/NOR gate.

Fig. 2.
Fig. 2.

The structure of multilayer optical waveguides with nonlinear guiding films.

Fig. 3.
Fig. 3.

The XOR/NXOR logic functions with Pc=23.7 W/m and Ps=79 W/m (a) A=0, B=0, (b) A=0, B=1, (c) A=1, B=0, (d) A=1, B=1.

Fig. 4.
Fig. 4.

The AND/NAND logic functions with Pc=30 W/m and Ps=60 W/m (a) A=0, B=0, (b) A=0, B=1, (c) A=1, B=0, (d) A=1, B=1.

Fig. 5.
Fig. 5.

The OR/NOR logic functions with Pc=31.2 W/m and Ps=78 W/m (a) A=0, B=0, (b) A=0, B=1, (c) A=1, B=0, (d) A=1, B=1.

Tables (3)

Tables Icon

Table 1. The logic states of the XOR and NXOR gates.

Tables Icon

Table 2. The logic states of AND and NAND gates.

Tables Icon

Table 3. The logic states of OR and NOR gates.

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

2 E yi = n i 2 c 2 2 E yi t 2 ,     i = 1 , 2 , , m
E yi ( x , z , t ) = ε i ( x ) exp [ j ( ωt βk 0 z ) ]
n i 2 = n 0 i 2 + α i ε i ( x ) 2 , i = 2 , 4 , , m 1
ε 1 ( x ) = E s exp ( p 1 x ) in the substrate
ε i ( x ) = E I ( i 2 ) exp { p i [ x ( i 1 2 ) d ( i 3 2 ) w ] } + E I ( i 1 ) { exp p i [ x ( i 1 2 ) d ( i 1 2 ) w ] }
i = 3 , 5 , , m 2 in the interaction layers
ε i ( x ) = b i cn { A i [ x ( i 2 1 ) ( d + w ) + x 0 i ] l i }
i = 2 , 4 , , m 1 in the guiding film , for β < n i
ε i ( x ) = b i cn { A i [ x ( i 2 1 ) ( d + w ) + x 0 i ] l i }
i = 2 , 4 , , m 1 in the guiding film , for β > n i
ε m ( x ) = E c exp { p m [ x ( m 1 2 ) d ( m 3 2 ) w ] } in the cladding
p i = k 0 β 2 n i 2 , b i 2 = q i 4 + 2 α i k 0 2 K i q i 2 α i k 0 2 ,
A i = [ ( a i 2 + b i 2 ) ( α i k 0 2 2 ) ] 1 2 , l i = b i 2 ( a i 2 + b i 2 ) ,
b i 2 = Q i 4 + 2 α i k 0 2 K i + Q i 2 α i k 0 2 , A i = [ ( a i 2 + b i 2 ) ( α i k 0 2 2 ) ] 1 2 ,
l i = b i 2 ( a i 2 + b i 2 ) ,

Metrics