Abstract

In this paper, a coupled Fabry-Perot cavities filter, using the liquid crystal as the tunable medium, is investigate to achieve tunable flat top filtering performance across the C and L bands. A tandem coupled Fabry-Perot is presented for a tunable passband filter with flat top and minimum ripple in the passband. The overall tuning range of the filter is 172 nm. Several designs are shown with comparable performance to the commercial available 100 GHz fixed single channel filters.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. K. Hirabayashi, H. Tsuda, and T. Kurokawa, "New structure of tunable wavelength-selective filters with a liquid crystal for FDM systems," IEEE Photon. Technol. Lett. 3, 741-743 (1992).
    [CrossRef]
  2. M. W. Maeda, J. S. Patel, C. Lin, J. Horrobin, and R. Spicer, " Electronically tunable liquid-crystal-etalon filter for high-density WDM systems," IEEE Photon. Technol. Lett. 2, 820-822 (1990).
    [CrossRef]
  3. W. Vogel and M. Berroth, "Tunable liquid crystal Fabry-Perot filters," Proc. SPIE 4944, 293-302 (2002).
  4. K. Hirabayashi, H. Tsuda, and T. Kurokawa, "Tunable liquid crystal Fabry-Perot interferometer filter for wavelength-division multiplexing communication systems," J. Lightwave Technol. 11, 2033-2043 (1993).
    [CrossRef]
  5. K. Hirabayashi, H. Tsuda, and T. Kurokawa, "Tunable wavelength-selective liquid crystal filters for 600-channel system," IEEE Photon. Technol. Lett. 4, 597-599 (1992).
    [CrossRef]
  6. A. Sneh and K. M. Johnson, "High-speed continuously tunable liquid crystal filter for WDMnetworks," J. Lightwave Technol. 14, 1067-1080 (1996).
    [CrossRef]
  7. H. van de Stadt and M. Muller, "Multimirror Fabry-Perot Interferometers," J. Opt. Soc. Am. A  2, 1363-1370 (1985).
    [CrossRef]
  8. A. A. M. Saleh and J. Stone, "Two stage Fabry-Perot filters as demultiplexers in Optical FDMA LAN’s," J. Lightwave Technol. 7, 323-330 (1989).
    [CrossRef]
  9. J. S. Patel, and S.-D. Lee, "Electrically tunable and polarization insensitive Fabry-Perot etalon with a liquid crystal film," Appl. Phys Lett. 58, 2491-2493 (1991).
    [CrossRef]
  10. G. Hernandez, Fabry-Perot Interferometers (Cambridge University Press, Cambridge, 1986).
  11. M. Iodice,  et al., "Simple and low-cost technique for wavelength division multiplexing channel monitoring," Opt. Eng. 39, 1704-1711 (2000).
    [CrossRef]
  12. W. Houston, "A compound interferometer for fine structure work," Phys. Rev. 29, 478-484 (1927).
    [CrossRef]
  13. A. Melloni and M. Martinelli, "Synthesis of direct-coupled-resonators band pass filters for WDM systems," J. Lightwave Technol. 20, 296-303 (2002).
    [CrossRef]
  14. H. A. Macleod, Thin-film Optical Filters (Institute of Physics Publishing, Bristol, 2001).
  15. see http://www.avanex.com/ProductsSolutions/products.aspx?catid=20>

2002 (2)

W. Vogel and M. Berroth, "Tunable liquid crystal Fabry-Perot filters," Proc. SPIE 4944, 293-302 (2002).

A. Melloni and M. Martinelli, "Synthesis of direct-coupled-resonators band pass filters for WDM systems," J. Lightwave Technol. 20, 296-303 (2002).
[CrossRef]

2000 (1)

M. Iodice,  et al., "Simple and low-cost technique for wavelength division multiplexing channel monitoring," Opt. Eng. 39, 1704-1711 (2000).
[CrossRef]

1996 (1)

A. Sneh and K. M. Johnson, "High-speed continuously tunable liquid crystal filter for WDMnetworks," J. Lightwave Technol. 14, 1067-1080 (1996).
[CrossRef]

1993 (1)

K. Hirabayashi, H. Tsuda, and T. Kurokawa, "Tunable liquid crystal Fabry-Perot interferometer filter for wavelength-division multiplexing communication systems," J. Lightwave Technol. 11, 2033-2043 (1993).
[CrossRef]

1992 (2)

K. Hirabayashi, H. Tsuda, and T. Kurokawa, "Tunable wavelength-selective liquid crystal filters for 600-channel system," IEEE Photon. Technol. Lett. 4, 597-599 (1992).
[CrossRef]

K. Hirabayashi, H. Tsuda, and T. Kurokawa, "New structure of tunable wavelength-selective filters with a liquid crystal for FDM systems," IEEE Photon. Technol. Lett. 3, 741-743 (1992).
[CrossRef]

1991 (1)

J. S. Patel, and S.-D. Lee, "Electrically tunable and polarization insensitive Fabry-Perot etalon with a liquid crystal film," Appl. Phys Lett. 58, 2491-2493 (1991).
[CrossRef]

1990 (1)

M. W. Maeda, J. S. Patel, C. Lin, J. Horrobin, and R. Spicer, " Electronically tunable liquid-crystal-etalon filter for high-density WDM systems," IEEE Photon. Technol. Lett. 2, 820-822 (1990).
[CrossRef]

1989 (1)

A. A. M. Saleh and J. Stone, "Two stage Fabry-Perot filters as demultiplexers in Optical FDMA LAN’s," J. Lightwave Technol. 7, 323-330 (1989).
[CrossRef]

1985 (1)

1927 (1)

W. Houston, "A compound interferometer for fine structure work," Phys. Rev. 29, 478-484 (1927).
[CrossRef]

Appl. Phys Lett. (1)

J. S. Patel, and S.-D. Lee, "Electrically tunable and polarization insensitive Fabry-Perot etalon with a liquid crystal film," Appl. Phys Lett. 58, 2491-2493 (1991).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

K. Hirabayashi, H. Tsuda, and T. Kurokawa, "New structure of tunable wavelength-selective filters with a liquid crystal for FDM systems," IEEE Photon. Technol. Lett. 3, 741-743 (1992).
[CrossRef]

M. W. Maeda, J. S. Patel, C. Lin, J. Horrobin, and R. Spicer, " Electronically tunable liquid-crystal-etalon filter for high-density WDM systems," IEEE Photon. Technol. Lett. 2, 820-822 (1990).
[CrossRef]

K. Hirabayashi, H. Tsuda, and T. Kurokawa, "Tunable wavelength-selective liquid crystal filters for 600-channel system," IEEE Photon. Technol. Lett. 4, 597-599 (1992).
[CrossRef]

J. Lightwave Technol. (4)

A. Sneh and K. M. Johnson, "High-speed continuously tunable liquid crystal filter for WDMnetworks," J. Lightwave Technol. 14, 1067-1080 (1996).
[CrossRef]

A. A. M. Saleh and J. Stone, "Two stage Fabry-Perot filters as demultiplexers in Optical FDMA LAN’s," J. Lightwave Technol. 7, 323-330 (1989).
[CrossRef]

K. Hirabayashi, H. Tsuda, and T. Kurokawa, "Tunable liquid crystal Fabry-Perot interferometer filter for wavelength-division multiplexing communication systems," J. Lightwave Technol. 11, 2033-2043 (1993).
[CrossRef]

A. Melloni and M. Martinelli, "Synthesis of direct-coupled-resonators band pass filters for WDM systems," J. Lightwave Technol. 20, 296-303 (2002).
[CrossRef]

J. Opt. Soc. Am. A (1)

Opt. Eng. (1)

M. Iodice,  et al., "Simple and low-cost technique for wavelength division multiplexing channel monitoring," Opt. Eng. 39, 1704-1711 (2000).
[CrossRef]

Phys. Rev. (1)

W. Houston, "A compound interferometer for fine structure work," Phys. Rev. 29, 478-484 (1927).
[CrossRef]

Proc. SPIE (1)

W. Vogel and M. Berroth, "Tunable liquid crystal Fabry-Perot filters," Proc. SPIE 4944, 293-302 (2002).

Other (3)

H. A. Macleod, Thin-film Optical Filters (Institute of Physics Publishing, Bristol, 2001).

see http://www.avanex.com/ProductsSolutions/products.aspx?catid=20>

G. Hernandez, Fabry-Perot Interferometers (Cambridge University Press, Cambridge, 1986).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(a) Three-mirror FP filter and the middle mirror equivalent realization. (b) Detailed layers structure of a two coupled cavity Fabry Perot with the driving voltage connections.

Fig. 2.
Fig. 2.

(a) Transmission profiles for one FPI, two, three, and four coupled FPI cavities (b) Transmission profiles for different number of tandem FPIs.

Fig. 3.
Fig. 3.

Transmission of (2×2) system, (3×2) system, 4-coupled, and 6-coupled cavities. (b) Transmission of (2×2) system, (3×2) system, 2-coupled, and 3-coupled cavities.

Fig. 4.
Fig. 4.

(a) Transmission profile for 2-coupled cavities system (see Fig. 1(b)) with mis-matched LC cavities with 1, 5, and 10% difference in cavity length. (b) For 4-coupled cavities system.

Tables (1)

Tables Icon

Table 1. The specifications of the designed filter in the C and L bands and the available commercial single channel 100 GHz filters.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

T = ( 1 R m ) ( 1 R 1 ) ( 1 R 2 ) 1 R m R 1 exp ( i 2 φ ) R m R 2 exp ( i 2 φ ) + R 1 R 2 exp ( i 4 φ ) 2
R mc = [ ( R 1 + R 2 1 + R 1 R 2 ] 2

Metrics