Abstract

We demonstrate superluminal propagation of optical pulses with amplification in optical fibers based on stimulated Brillouin scattering. A triple gain peak configuration is used for the generation of narrowband anomalous dispersion in 2 m tellurite glass fiber, where the group index change as much as -1.19 is achieved with 6.9 dB amplification in 34 ns Gaussian pulses, leading to the group index of 0.84.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. R. W. Boyd and D. J. Gauthier, "‘Slow’ and ‘Fast’ Light," in Progress in Optics43, E. Wolf, ed., (Elsevier, Amsterdam, 2002), Chap. 6, pp. 497-530.
  2. K. Y. Song, M. G. Herráez and L. Thévenaz, "Observation of pulse delaying and advancement in optical fibers using stimulated Brillouin scattering," Opt. Express 13,82-88 (2005).
    [CrossRef] [PubMed]
  3. Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. M. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd and A. L. Gaeta, "Tunable all-optical delays via Brillouin slow light in an optical fiber," Phys. Rev. Lett. 94, 153902 (2005).
    [CrossRef] [PubMed]
  4. M. G. Herráez, K. Y. Song and L. Thévenaz, "Optically controlled slow and fast light in optical fibers using stimulated Brillouin scattering," Appl. Phys. Lett. 87,081113 (2005).
    [CrossRef]
  5. J. E. Sharping, Y. Okawachi and AlexanderL. Gaeta, "Wide bandwidth slow light using a Raman fiber amplifier," Opt. Express 13,6092-6098 (2005).
    [CrossRef] [PubMed]
  6. D. Dahan and G. Eisenstein, "Tunable all optical delay via slow and fast light propagation in a Raman assisted fiber optical parametric amplifier: a route to all optical buffering," Opt. Express 13,6234-6249 (2005).
    [CrossRef] [PubMed]
  7. G. M. Gehring, A. Schweinsberg, C. Barsi, N. Kostinski and R. W. Boyd, "Observation of backward pulse propagation through a medium with a negative group velocity," Science 312, 895-897 (2006).
    [CrossRef] [PubMed]
  8. M. S. Shahriar, G. S. Pati, R. Tripathi, V. Gopal, M. Messall, and K. Salit, "Ultrahigh enhancement in absolute and relative rotation sensing using fast and slow light," Phys. Rev. A 75, 053807 (2007).
    [CrossRef]
  9. K. Y. Song, M. González Herráez, and L. Thévenaz, "Gain-assisted pulse advancement using single and double Brillouin gain peaks in optical fibers," Opt. Express 13, 9758-9765 (2005).
    [CrossRef] [PubMed]
  10. S. H. Chin, M. González Herráez, and L. Thévenaz, "Zero-gain slow & fast light propagation in an optical fiber," Opt. Express 14, 10684-10692 (2006).
    [CrossRef] [PubMed]
  11. C. Jauregui, H. Ono, P. Petropoulos and D. J. Richardson, "Four-fold reduction in the speed of light at practical power levels using Brillouin scattering in a 2-m bismuth-oxide fiber," in Conference on Optical Fiber Communication (OFC 2006), Paper PDP2 (2006).
  12. K. Y. Song, K. S. Abedin, K. Hotate, M. González Herráez and L. Thévenaz, "Highly efficient Brillouin slow and fast light using As2Se3 chalcogenide fiber," Opt. Express 14, 5860-5865 (2006).
    [CrossRef] [PubMed]
  13. K. S. Abedin, G. W. Lu, and T. Miyazaki, "Stimulated Brillouin scattering assisted slow light generation in single mode tellurite fiber," in Conference on Lasers and Electro-Optics (CLEO 2007), Paper CThH6 (2007).
  14. K. S. Abedin, "Stimulated Brillouin scattering in single-mode tellurite glass fiber," Opt. Express 14, 11766-11772 (2006).
    [CrossRef] [PubMed]
  15. K. Y. Song, M. G. Herráez and L. Thévenaz, "Long optically-controlled delays in optical fibers," Opt. Lett. 30, 1782-1784 (2005).
    [CrossRef] [PubMed]

2007 (1)

M. S. Shahriar, G. S. Pati, R. Tripathi, V. Gopal, M. Messall, and K. Salit, "Ultrahigh enhancement in absolute and relative rotation sensing using fast and slow light," Phys. Rev. A 75, 053807 (2007).
[CrossRef]

2006 (4)

2005 (7)

Appl. Phys. Lett. (1)

M. G. Herráez, K. Y. Song and L. Thévenaz, "Optically controlled slow and fast light in optical fibers using stimulated Brillouin scattering," Appl. Phys. Lett. 87,081113 (2005).
[CrossRef]

Opt. Express (7)

Opt. Lett. (1)

Phys. Rev. A (1)

M. S. Shahriar, G. S. Pati, R. Tripathi, V. Gopal, M. Messall, and K. Salit, "Ultrahigh enhancement in absolute and relative rotation sensing using fast and slow light," Phys. Rev. A 75, 053807 (2007).
[CrossRef]

Phys. Rev. Lett. (1)

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. M. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd and A. L. Gaeta, "Tunable all-optical delays via Brillouin slow light in an optical fiber," Phys. Rev. Lett. 94, 153902 (2005).
[CrossRef] [PubMed]

Science (1)

G. M. Gehring, A. Schweinsberg, C. Barsi, N. Kostinski and R. W. Boyd, "Observation of backward pulse propagation through a medium with a negative group velocity," Science 312, 895-897 (2006).
[CrossRef] [PubMed]

Other (3)

R. W. Boyd and D. J. Gauthier, "‘Slow’ and ‘Fast’ Light," in Progress in Optics43, E. Wolf, ed., (Elsevier, Amsterdam, 2002), Chap. 6, pp. 497-530.

K. S. Abedin, G. W. Lu, and T. Miyazaki, "Stimulated Brillouin scattering assisted slow light generation in single mode tellurite fiber," in Conference on Lasers and Electro-Optics (CLEO 2007), Paper CThH6 (2007).

C. Jauregui, H. Ono, P. Petropoulos and D. J. Richardson, "Four-fold reduction in the speed of light at practical power levels using Brillouin scattering in a 2-m bismuth-oxide fiber," in Conference on Optical Fiber Communication (OFC 2006), Paper PDP2 (2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Relation between Brillouin gain, the phase index change (Δn), and the group index change (Δng ) based on the Kramers-Kronig relation in the case of a single peak (a) and a double peak (b) configuration.

Fig. 2.
Fig. 2.

Setup for slow and fast light experiment with multiple-peak Brillouin pump waves: LD, laser diode; SSBM, single-sideband modulator; PM, phase modulator; EDFA, Er-doped fiber amplifier; IM, intensity modulator; VOA, variable optical attenuator; PD, photodiode; FUT, fiber under test.

Fig. 3.
Fig. 3.

Brillouin gain spectrum measured by lock-in detection in the case of (a) single peak and (b) triple peak configurations of Brillouin gain.

Fig. 4.
Fig. 4.

(a) Time delay and gain of probe pulses as a function of Δf. (b) Normalized time waveforms of probe pulses in some selected values of Δf. The black curve is the initial shape of the pulse with the initial position of the peak indicated by the dashed line. Note that the pump power is maintained constant to 340 mW.

Fig. 5.
Fig. 5.

(a) Brillouin gain and time delay of probe pulses as a function of pump power. (b) Time waveforms of probe pulses with the amplitude relatively scaled to the initial value according to the gain. The dashed lines indicate the initial (0 dB) and the final (6.93 dB) position of the pulses.

Fig. 6.
Fig. 6.

Time delay and Δng of probe pulses as a function of gain.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

δ n = c 8 π ν 0 g B I P
δ n g = 4 ν 0 · δ n Δ ν B = c · g B I P 2 π · Δ ν B

Metrics