Abstract

Surface plasmon resonance (SPR) imaging is a powerful technique for high-throughput, real-time, label-free characterization of molecular interactions in a microarray format. In this paper, we demonstrate SPR imaging with nanohole arrays illuminated by a laser source. Periodic nanoholes couple incident photons into SPs, obviating the need for the prism used in conventional SPR instruments, while a laser source provides the intensity, stability and spectral coherence to improve the detection sensitivity. The formation of a self-assembled monolayer of alkanethiolates on gold changed the laser transmission by more than 35%, and binding kinetics were measured in parallel from a 5×3 microarray of nanohole sensors. These results demonstrate the potential of nanohole sensors for high-throughput SPR imaging on microarrays.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. B. Liedberg, C. Nylander and I. Lunström, "Surface plasmon resonance for gas detection and biosensing," Sens. Actuators 4,299 (1983).
    [CrossRef]
  2. E. Yeatman and E. A. Ash, "Surface-plasmon microscopy," Electron Lett. 23, 1091 (1987).
    [CrossRef]
  3. B. Rothenhäusler and W. Knoll, "Surface-plasmon microscopy," Nature 332, 615 (1988).
    [CrossRef]
  4. J. S. Shumaker-Parry, R. Aebersold and C. T. Campbell "Parallel, quantitative measurement of protein binding to a 120-element double-stranded DNA array in real time using surface plasmon resonance microscopy," Anal. Chem. 76, 2071 (2004).
    [CrossRef] [PubMed]
  5. E. A. Smith and R. M. Corn, "Surface plasmon resonance imaging as a tool to monitor biomolecular interactions in an array based format," Appl. Spectrosc. 57, 320A (2003).
    [CrossRef] [PubMed]
  6. E. Fu, J. Foley and P. Yager, "Wavelength-tunable surface plasmon resonance microscope," Rev. Sci. Instrum. 74 (6), 3182 (2003).
    [CrossRef]
  7. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio and P. A. Wolff, "Extraordinary optical transmission through subwavelength hole arrays," Nature 391, 667 (1998).
    [CrossRef]
  8. L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry and T. W. Ebbesen, "Theory of extraordinary optical transmission through subwavelength hole arrays," Phys. Rev. Lett. 86, 1114 (2001).
    [CrossRef] [PubMed]
  9. A. G. Brolo, R. Gordon, B. Leathem and K. L. Kavanagh, "Surface plasmon sensor based on the enhanced light transmission through arrays of nanoholes in gold films," Langmuir 20, 4813 (2004).
    [CrossRef]
  10. A. De Leebeeck, L.K.S. Kumar, V. de Lange, D. Sinton, R. Gordon and A.G. Brolo, "On-chip surface-based detection with nanohole arrays," Anal. Chem. 79,4094 (2007).
    [CrossRef] [PubMed]
  11. A. Lesuffleur, H. Im, N.C. Lindquist and S.-H. Oh, "Periodic nanohole arrays with shape-enhanced plasmon resonance as real-time biosensors," Appl. Phys. Lett. 90, 243110 (2007).
    [CrossRef]
  12. L. Pang, G. M. Hwang, B. Slutsky and Y. Fainman "Spectral sensitivity of two-dimensional nanohole array surface plasmon polariton resonance sensor," Appl. Phys. Lett. 91, 123115 (2007).
    [CrossRef]
  13. Y. N. Xia and G. M. Whitesides, "Soft lithography," Angew. Chem. Int. Ed. 37, 550 (1998).
    [CrossRef]
  14. M. Mrksich, G. Sigal and G. M. Whitesides, "Surface plasmon resonance permits in situ measurement of protein adsorption on self-assembled monolayers of alkanethiolates on gold," Langmuir 11, 4383 (1995).
    [CrossRef]
  15. T. M. Chinowsky, T. Mactutis, E. Fu and P. Yager, "Optical and electronic design for a high-performance surface plasmon resonance imager," Proc. SPIE,  5261, 173 (2004).
    [CrossRef]
  16. L. S. Jung, C. T. Campbell, T. M. Chinowsky, M. N. Mar and S. S. Yee, "Quantitative interpretation of the response of surface plasmon resonance sensors to adsorbed films," Langmuir 14, 5636 (1998).
    [CrossRef]
  17. For a high signal-to-noise ratio, it is also important that the cut-off wavelength of a single nanohole is smaller than the laser wavelength in water, which ensures that direct transmission through holes, as opposed to SP-mediated transmission, does not contribute significantly to the background noise.
  18. N. Ramachandran, E. Hainsworth, B. Bhullar, S. Eisenstein, B. Rosen, A. Lau, J. C. Walter and J. LaBaer, "Self-assembling protein microarrays" Science 305, 86 (2004).
    [CrossRef] [PubMed]

2007 (3)

A. De Leebeeck, L.K.S. Kumar, V. de Lange, D. Sinton, R. Gordon and A.G. Brolo, "On-chip surface-based detection with nanohole arrays," Anal. Chem. 79,4094 (2007).
[CrossRef] [PubMed]

A. Lesuffleur, H. Im, N.C. Lindquist and S.-H. Oh, "Periodic nanohole arrays with shape-enhanced plasmon resonance as real-time biosensors," Appl. Phys. Lett. 90, 243110 (2007).
[CrossRef]

L. Pang, G. M. Hwang, B. Slutsky and Y. Fainman "Spectral sensitivity of two-dimensional nanohole array surface plasmon polariton resonance sensor," Appl. Phys. Lett. 91, 123115 (2007).
[CrossRef]

2004 (4)

T. M. Chinowsky, T. Mactutis, E. Fu and P. Yager, "Optical and electronic design for a high-performance surface plasmon resonance imager," Proc. SPIE,  5261, 173 (2004).
[CrossRef]

A. G. Brolo, R. Gordon, B. Leathem and K. L. Kavanagh, "Surface plasmon sensor based on the enhanced light transmission through arrays of nanoholes in gold films," Langmuir 20, 4813 (2004).
[CrossRef]

N. Ramachandran, E. Hainsworth, B. Bhullar, S. Eisenstein, B. Rosen, A. Lau, J. C. Walter and J. LaBaer, "Self-assembling protein microarrays" Science 305, 86 (2004).
[CrossRef] [PubMed]

J. S. Shumaker-Parry, R. Aebersold and C. T. Campbell "Parallel, quantitative measurement of protein binding to a 120-element double-stranded DNA array in real time using surface plasmon resonance microscopy," Anal. Chem. 76, 2071 (2004).
[CrossRef] [PubMed]

2003 (2)

2001 (1)

L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry and T. W. Ebbesen, "Theory of extraordinary optical transmission through subwavelength hole arrays," Phys. Rev. Lett. 86, 1114 (2001).
[CrossRef] [PubMed]

1998 (3)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio and P. A. Wolff, "Extraordinary optical transmission through subwavelength hole arrays," Nature 391, 667 (1998).
[CrossRef]

L. S. Jung, C. T. Campbell, T. M. Chinowsky, M. N. Mar and S. S. Yee, "Quantitative interpretation of the response of surface plasmon resonance sensors to adsorbed films," Langmuir 14, 5636 (1998).
[CrossRef]

Y. N. Xia and G. M. Whitesides, "Soft lithography," Angew. Chem. Int. Ed. 37, 550 (1998).
[CrossRef]

1995 (1)

M. Mrksich, G. Sigal and G. M. Whitesides, "Surface plasmon resonance permits in situ measurement of protein adsorption on self-assembled monolayers of alkanethiolates on gold," Langmuir 11, 4383 (1995).
[CrossRef]

1988 (1)

B. Rothenhäusler and W. Knoll, "Surface-plasmon microscopy," Nature 332, 615 (1988).
[CrossRef]

1987 (1)

E. Yeatman and E. A. Ash, "Surface-plasmon microscopy," Electron Lett. 23, 1091 (1987).
[CrossRef]

1983 (1)

B. Liedberg, C. Nylander and I. Lunström, "Surface plasmon resonance for gas detection and biosensing," Sens. Actuators 4,299 (1983).
[CrossRef]

Anal. Chem. (2)

J. S. Shumaker-Parry, R. Aebersold and C. T. Campbell "Parallel, quantitative measurement of protein binding to a 120-element double-stranded DNA array in real time using surface plasmon resonance microscopy," Anal. Chem. 76, 2071 (2004).
[CrossRef] [PubMed]

A. De Leebeeck, L.K.S. Kumar, V. de Lange, D. Sinton, R. Gordon and A.G. Brolo, "On-chip surface-based detection with nanohole arrays," Anal. Chem. 79,4094 (2007).
[CrossRef] [PubMed]

Angew. Chem. Int. Ed. (1)

Y. N. Xia and G. M. Whitesides, "Soft lithography," Angew. Chem. Int. Ed. 37, 550 (1998).
[CrossRef]

Appl. Phys. Lett. (2)

A. Lesuffleur, H. Im, N.C. Lindquist and S.-H. Oh, "Periodic nanohole arrays with shape-enhanced plasmon resonance as real-time biosensors," Appl. Phys. Lett. 90, 243110 (2007).
[CrossRef]

L. Pang, G. M. Hwang, B. Slutsky and Y. Fainman "Spectral sensitivity of two-dimensional nanohole array surface plasmon polariton resonance sensor," Appl. Phys. Lett. 91, 123115 (2007).
[CrossRef]

Appl. Spectrosc. (1)

Electron Lett. (1)

E. Yeatman and E. A. Ash, "Surface-plasmon microscopy," Electron Lett. 23, 1091 (1987).
[CrossRef]

Langmuir (3)

A. G. Brolo, R. Gordon, B. Leathem and K. L. Kavanagh, "Surface plasmon sensor based on the enhanced light transmission through arrays of nanoholes in gold films," Langmuir 20, 4813 (2004).
[CrossRef]

M. Mrksich, G. Sigal and G. M. Whitesides, "Surface plasmon resonance permits in situ measurement of protein adsorption on self-assembled monolayers of alkanethiolates on gold," Langmuir 11, 4383 (1995).
[CrossRef]

L. S. Jung, C. T. Campbell, T. M. Chinowsky, M. N. Mar and S. S. Yee, "Quantitative interpretation of the response of surface plasmon resonance sensors to adsorbed films," Langmuir 14, 5636 (1998).
[CrossRef]

Nature (2)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio and P. A. Wolff, "Extraordinary optical transmission through subwavelength hole arrays," Nature 391, 667 (1998).
[CrossRef]

B. Rothenhäusler and W. Knoll, "Surface-plasmon microscopy," Nature 332, 615 (1988).
[CrossRef]

Phys. Rev. Lett. (1)

L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry and T. W. Ebbesen, "Theory of extraordinary optical transmission through subwavelength hole arrays," Phys. Rev. Lett. 86, 1114 (2001).
[CrossRef] [PubMed]

Proc. SPIE (1)

T. M. Chinowsky, T. Mactutis, E. Fu and P. Yager, "Optical and electronic design for a high-performance surface plasmon resonance imager," Proc. SPIE,  5261, 173 (2004).
[CrossRef]

Rev. Sci. Instrum. (1)

E. Fu, J. Foley and P. Yager, "Wavelength-tunable surface plasmon resonance microscope," Rev. Sci. Instrum. 74 (6), 3182 (2003).
[CrossRef]

Science (1)

N. Ramachandran, E. Hainsworth, B. Bhullar, S. Eisenstein, B. Rosen, A. Lau, J. C. Walter and J. LaBaer, "Self-assembling protein microarrays" Science 305, 86 (2004).
[CrossRef] [PubMed]

Sens. Actuators (1)

B. Liedberg, C. Nylander and I. Lunström, "Surface plasmon resonance for gas detection and biosensing," Sens. Actuators 4,299 (1983).
[CrossRef]

Other (1)

For a high signal-to-noise ratio, it is also important that the cut-off wavelength of a single nanohole is smaller than the laser wavelength in water, which ensures that direct transmission through holes, as opposed to SP-mediated transmission, does not contribute significantly to the background noise.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(a) Scanning electron microscopy (SEM) image of a 16×16 nanohole array with a 200 nm hole size and 380 nm periodicity. (b) A bright-field microscope image of 5×3 microarray of nanohole arrays (partially shown). Each sensing element, a 16×16 nanoholes array as in (a), is separated by 50 µm. (c) The PDMS chip, shown with microfluidic flow cells and tubing.

Fig. 2.
Fig. 2.

Schematic of the experimental setup for real time multiplex imaging.

Fig. 3.
Fig. 3.

(a) Spectrum of a 380 nm periodicity nanohole array. The dashed line represents the HeNe laser wavelength. The region of interest for biosensing experiments lies on the left side of this line for periodicity equal or larger than 380 nm. (b) FDTD calculation of the electric field Ez of a nanohole array at the resonance wavelength.

Fig. 4
Fig. 4

(a) A CCD image of the arrays during the real time measurement. The arrows indicates the array used for extracting the kinetic data. (b) Time-lapsed imaging of the first row in the microarray. (c) Transmitted intensity measured from the CCD images. Squares represent experimental data, which are fitted with an exponential, showing first-order binding kinetics. (d) (Colors online) Summary of the kinetics measured for 4 array periodicities.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Δ n = ( n molecule n solution ) · ( 1 exp ( 2 d l d ) ) ,
Δ I T = ( d I T d λ ) · S ( Δ n )

Metrics