Abstract

Surface plasmon resonance (SPR) imaging is a powerful technique for high-throughput, real-time, label-free characterization of molecular interactions in a microarray format. In this paper, we demonstrate SPR imaging with nanohole arrays illuminated by a laser source. Periodic nanoholes couple incident photons into SPs, obviating the need for the prism used in conventional SPR instruments, while a laser source provides the intensity, stability and spectral coherence to improve the detection sensitivity. The formation of a self-assembled monolayer of alkanethiolates on gold changed the laser transmission by more than 35%, and binding kinetics were measured in parallel from a 5×3 microarray of nanohole sensors. These results demonstrate the potential of nanohole sensors for high-throughput SPR imaging on microarrays.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Liedberg, C. Nylander, and I. Lunström, “Surface plasmon resonance for gas detection and biosensing,” Sens. Actuators 4, 299 (1983).
    [Crossref]
  2. E. Yeatman and E.A. Ash, “Surface-plasmon microscopy,” Electron Lett. 23, 1091 (1987).
    [Crossref]
  3. B. Rothenhäusler and W. Knoll, “Surface-plasmon microscopy,” Nature 332, 615 (1988).
    [Crossref]
  4. J.S. Shumaker-Parry, R. Aebersold, and C.T. Campbell “Parallel, quantitative measurement of protein binding to a 120-element double-stranded DNA array in real time using surface plasmon resonance microscopy,” Anal. Chem. 76, 2071 (2004).
    [Crossref] [PubMed]
  5. E.A. Smith and R.M. Corn, “Surface plasmon resonance imaging as a tool to monitor biomolecular interactions in an array based format,” Appl. Spectrosc. 57 (11), 320A (2003).
    [Crossref] [PubMed]
  6. E. Fu, J. Foley, and P. Yager, “Wavelength-tunable surface plasmon resonance microscope,” Rev. Sci. Instrum. 74 (6), 3182 (2003).
    [Crossref]
  7. T.W. Ebbesen, H.J. Lezec, H.F. Ghaemi, T. Thio, and P.A. Wolff, “Extraordinary optical transmission through subwavelength hole arrays,” Nature 391, 667 (1998).
    [Crossref]
  8. L. Martin-Moreno, F.J. Garcia-Vidal, H.J. Lezec, K.M. Pellerin, T. Thio, J.B. Pendry, and T.W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114 (2001).
    [Crossref] [PubMed]
  9. A.G. Brolo, R. Gordon, B. Leathem, and K.L. Kavanagh, “Surface plasmon sensor based on the enhanced light transmission through arrays of nanoholes in gold films,” Langmuir 20, 4813 (2004).
    [Crossref]
  10. A. De Leebeeck, L.K.S. Kumar, V. de Lange, D. Sinton, R. Gordon, and A.G. Brolo, “On-chip surface-based detection with nanohole arrays,” Anal. Chem. 79, 4094 (2007).
    [Crossref] [PubMed]
  11. A. Lesuffleur, H. Im, N.C. Lindquist, and S.-H. Oh, “Periodic nanohole arrays with shape-enhanced plasmon resonance as real-time biosensors,” Appl. Phys. Lett. 90, 243110 (2007).
    [Crossref]
  12. L. Pang, G.M. Hwang, B. Slutsky, and Y. Fainman “Spectral sensitivity of two-dimensional nanohole array surface plasmon polariton resonance sensor,” Appl. Phys. Lett. 91, 123115 (2007).
    [Crossref]
  13. Y.N. Xia and G.M. Whitesides, “Soft lithography,” Angew. Chem. Int. Ed. 37, 550 (1998).
    [Crossref]
  14. M. Mrksich, G. Sigal, and G.M. Whitesides, “Surface plasmon resonance permits in situ measurement of protein adsorption on self-assembled monolayers of alkanethiolates on gold,” Langmuir 11, 4383 (1995).
    [Crossref]
  15. T.M. Chinowsky, T. Mactutis, E. Fu, and P. Yager, “Optical and electronic design for a high-performance surface plasmon resonance imager,” Proceedings of SPIE, Vol.  5261, 173 (2004).
    [Crossref]
  16. L.S. Jung, C.T. Campbell, T.M. Chinowsky, M.N. Mar, and S.S. Yee, “Quantitative interpretation of the response of surface plasmon resonance sensors to adsorbed films,” Langmuir 14, 5636 (1998).
    [Crossref]
  17. For a high signal-to-noise ratio, it is also important that the cut-off wavelength of a single nanohole is smaller than the laser wavelength in water, which ensures that direct transmission through holes, as opposed to SP-mediated transmission, does not contribute significantly to the background noise.
  18. N. Ramachandran, E. Hainsworth, B. Bhullar, S. Eisenstein, B. Rosen, A. Lau, J.C. Walter, and J. LaBaer, “Self-assembling protein microarrays” Science 305, 86 (2004).
    [Crossref] [PubMed]

2007 (3)

A. De Leebeeck, L.K.S. Kumar, V. de Lange, D. Sinton, R. Gordon, and A.G. Brolo, “On-chip surface-based detection with nanohole arrays,” Anal. Chem. 79, 4094 (2007).
[Crossref] [PubMed]

A. Lesuffleur, H. Im, N.C. Lindquist, and S.-H. Oh, “Periodic nanohole arrays with shape-enhanced plasmon resonance as real-time biosensors,” Appl. Phys. Lett. 90, 243110 (2007).
[Crossref]

L. Pang, G.M. Hwang, B. Slutsky, and Y. Fainman “Spectral sensitivity of two-dimensional nanohole array surface plasmon polariton resonance sensor,” Appl. Phys. Lett. 91, 123115 (2007).
[Crossref]

2004 (4)

T.M. Chinowsky, T. Mactutis, E. Fu, and P. Yager, “Optical and electronic design for a high-performance surface plasmon resonance imager,” Proceedings of SPIE, Vol.  5261, 173 (2004).
[Crossref]

A.G. Brolo, R. Gordon, B. Leathem, and K.L. Kavanagh, “Surface plasmon sensor based on the enhanced light transmission through arrays of nanoholes in gold films,” Langmuir 20, 4813 (2004).
[Crossref]

N. Ramachandran, E. Hainsworth, B. Bhullar, S. Eisenstein, B. Rosen, A. Lau, J.C. Walter, and J. LaBaer, “Self-assembling protein microarrays” Science 305, 86 (2004).
[Crossref] [PubMed]

J.S. Shumaker-Parry, R. Aebersold, and C.T. Campbell “Parallel, quantitative measurement of protein binding to a 120-element double-stranded DNA array in real time using surface plasmon resonance microscopy,” Anal. Chem. 76, 2071 (2004).
[Crossref] [PubMed]

2003 (2)

2001 (1)

L. Martin-Moreno, F.J. Garcia-Vidal, H.J. Lezec, K.M. Pellerin, T. Thio, J.B. Pendry, and T.W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114 (2001).
[Crossref] [PubMed]

1998 (3)

T.W. Ebbesen, H.J. Lezec, H.F. Ghaemi, T. Thio, and P.A. Wolff, “Extraordinary optical transmission through subwavelength hole arrays,” Nature 391, 667 (1998).
[Crossref]

L.S. Jung, C.T. Campbell, T.M. Chinowsky, M.N. Mar, and S.S. Yee, “Quantitative interpretation of the response of surface plasmon resonance sensors to adsorbed films,” Langmuir 14, 5636 (1998).
[Crossref]

Y.N. Xia and G.M. Whitesides, “Soft lithography,” Angew. Chem. Int. Ed. 37, 550 (1998).
[Crossref]

1995 (1)

M. Mrksich, G. Sigal, and G.M. Whitesides, “Surface plasmon resonance permits in situ measurement of protein adsorption on self-assembled monolayers of alkanethiolates on gold,” Langmuir 11, 4383 (1995).
[Crossref]

1988 (1)

B. Rothenhäusler and W. Knoll, “Surface-plasmon microscopy,” Nature 332, 615 (1988).
[Crossref]

1987 (1)

E. Yeatman and E.A. Ash, “Surface-plasmon microscopy,” Electron Lett. 23, 1091 (1987).
[Crossref]

1983 (1)

B. Liedberg, C. Nylander, and I. Lunström, “Surface plasmon resonance for gas detection and biosensing,” Sens. Actuators 4, 299 (1983).
[Crossref]

Aebersold, R.

J.S. Shumaker-Parry, R. Aebersold, and C.T. Campbell “Parallel, quantitative measurement of protein binding to a 120-element double-stranded DNA array in real time using surface plasmon resonance microscopy,” Anal. Chem. 76, 2071 (2004).
[Crossref] [PubMed]

Ash, E.A.

E. Yeatman and E.A. Ash, “Surface-plasmon microscopy,” Electron Lett. 23, 1091 (1987).
[Crossref]

Bhullar, B.

N. Ramachandran, E. Hainsworth, B. Bhullar, S. Eisenstein, B. Rosen, A. Lau, J.C. Walter, and J. LaBaer, “Self-assembling protein microarrays” Science 305, 86 (2004).
[Crossref] [PubMed]

Brolo, A.G.

A. De Leebeeck, L.K.S. Kumar, V. de Lange, D. Sinton, R. Gordon, and A.G. Brolo, “On-chip surface-based detection with nanohole arrays,” Anal. Chem. 79, 4094 (2007).
[Crossref] [PubMed]

A.G. Brolo, R. Gordon, B. Leathem, and K.L. Kavanagh, “Surface plasmon sensor based on the enhanced light transmission through arrays of nanoholes in gold films,” Langmuir 20, 4813 (2004).
[Crossref]

Campbell, C.T.

J.S. Shumaker-Parry, R. Aebersold, and C.T. Campbell “Parallel, quantitative measurement of protein binding to a 120-element double-stranded DNA array in real time using surface plasmon resonance microscopy,” Anal. Chem. 76, 2071 (2004).
[Crossref] [PubMed]

L.S. Jung, C.T. Campbell, T.M. Chinowsky, M.N. Mar, and S.S. Yee, “Quantitative interpretation of the response of surface plasmon resonance sensors to adsorbed films,” Langmuir 14, 5636 (1998).
[Crossref]

Chinowsky, T.M.

T.M. Chinowsky, T. Mactutis, E. Fu, and P. Yager, “Optical and electronic design for a high-performance surface plasmon resonance imager,” Proceedings of SPIE, Vol.  5261, 173 (2004).
[Crossref]

L.S. Jung, C.T. Campbell, T.M. Chinowsky, M.N. Mar, and S.S. Yee, “Quantitative interpretation of the response of surface plasmon resonance sensors to adsorbed films,” Langmuir 14, 5636 (1998).
[Crossref]

Corn, R.M.

de Lange, V.

A. De Leebeeck, L.K.S. Kumar, V. de Lange, D. Sinton, R. Gordon, and A.G. Brolo, “On-chip surface-based detection with nanohole arrays,” Anal. Chem. 79, 4094 (2007).
[Crossref] [PubMed]

De Leebeeck, A.

A. De Leebeeck, L.K.S. Kumar, V. de Lange, D. Sinton, R. Gordon, and A.G. Brolo, “On-chip surface-based detection with nanohole arrays,” Anal. Chem. 79, 4094 (2007).
[Crossref] [PubMed]

Ebbesen, T.W.

L. Martin-Moreno, F.J. Garcia-Vidal, H.J. Lezec, K.M. Pellerin, T. Thio, J.B. Pendry, and T.W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114 (2001).
[Crossref] [PubMed]

T.W. Ebbesen, H.J. Lezec, H.F. Ghaemi, T. Thio, and P.A. Wolff, “Extraordinary optical transmission through subwavelength hole arrays,” Nature 391, 667 (1998).
[Crossref]

Eisenstein, S.

N. Ramachandran, E. Hainsworth, B. Bhullar, S. Eisenstein, B. Rosen, A. Lau, J.C. Walter, and J. LaBaer, “Self-assembling protein microarrays” Science 305, 86 (2004).
[Crossref] [PubMed]

Fainman, Y.

L. Pang, G.M. Hwang, B. Slutsky, and Y. Fainman “Spectral sensitivity of two-dimensional nanohole array surface plasmon polariton resonance sensor,” Appl. Phys. Lett. 91, 123115 (2007).
[Crossref]

Foley, J.

E. Fu, J. Foley, and P. Yager, “Wavelength-tunable surface plasmon resonance microscope,” Rev. Sci. Instrum. 74 (6), 3182 (2003).
[Crossref]

Fu, E.

T.M. Chinowsky, T. Mactutis, E. Fu, and P. Yager, “Optical and electronic design for a high-performance surface plasmon resonance imager,” Proceedings of SPIE, Vol.  5261, 173 (2004).
[Crossref]

E. Fu, J. Foley, and P. Yager, “Wavelength-tunable surface plasmon resonance microscope,” Rev. Sci. Instrum. 74 (6), 3182 (2003).
[Crossref]

Garcia-Vidal, F.J.

L. Martin-Moreno, F.J. Garcia-Vidal, H.J. Lezec, K.M. Pellerin, T. Thio, J.B. Pendry, and T.W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114 (2001).
[Crossref] [PubMed]

Ghaemi, H.F.

T.W. Ebbesen, H.J. Lezec, H.F. Ghaemi, T. Thio, and P.A. Wolff, “Extraordinary optical transmission through subwavelength hole arrays,” Nature 391, 667 (1998).
[Crossref]

Gordon, R.

A. De Leebeeck, L.K.S. Kumar, V. de Lange, D. Sinton, R. Gordon, and A.G. Brolo, “On-chip surface-based detection with nanohole arrays,” Anal. Chem. 79, 4094 (2007).
[Crossref] [PubMed]

A.G. Brolo, R. Gordon, B. Leathem, and K.L. Kavanagh, “Surface plasmon sensor based on the enhanced light transmission through arrays of nanoholes in gold films,” Langmuir 20, 4813 (2004).
[Crossref]

Hainsworth, E.

N. Ramachandran, E. Hainsworth, B. Bhullar, S. Eisenstein, B. Rosen, A. Lau, J.C. Walter, and J. LaBaer, “Self-assembling protein microarrays” Science 305, 86 (2004).
[Crossref] [PubMed]

Hwang, G.M.

L. Pang, G.M. Hwang, B. Slutsky, and Y. Fainman “Spectral sensitivity of two-dimensional nanohole array surface plasmon polariton resonance sensor,” Appl. Phys. Lett. 91, 123115 (2007).
[Crossref]

Im, H.

A. Lesuffleur, H. Im, N.C. Lindquist, and S.-H. Oh, “Periodic nanohole arrays with shape-enhanced plasmon resonance as real-time biosensors,” Appl. Phys. Lett. 90, 243110 (2007).
[Crossref]

Jung, L.S.

L.S. Jung, C.T. Campbell, T.M. Chinowsky, M.N. Mar, and S.S. Yee, “Quantitative interpretation of the response of surface plasmon resonance sensors to adsorbed films,” Langmuir 14, 5636 (1998).
[Crossref]

Kavanagh, K.L.

A.G. Brolo, R. Gordon, B. Leathem, and K.L. Kavanagh, “Surface plasmon sensor based on the enhanced light transmission through arrays of nanoholes in gold films,” Langmuir 20, 4813 (2004).
[Crossref]

Knoll, W.

B. Rothenhäusler and W. Knoll, “Surface-plasmon microscopy,” Nature 332, 615 (1988).
[Crossref]

Kumar, L.K.S.

A. De Leebeeck, L.K.S. Kumar, V. de Lange, D. Sinton, R. Gordon, and A.G. Brolo, “On-chip surface-based detection with nanohole arrays,” Anal. Chem. 79, 4094 (2007).
[Crossref] [PubMed]

LaBaer, J.

N. Ramachandran, E. Hainsworth, B. Bhullar, S. Eisenstein, B. Rosen, A. Lau, J.C. Walter, and J. LaBaer, “Self-assembling protein microarrays” Science 305, 86 (2004).
[Crossref] [PubMed]

Lau, A.

N. Ramachandran, E. Hainsworth, B. Bhullar, S. Eisenstein, B. Rosen, A. Lau, J.C. Walter, and J. LaBaer, “Self-assembling protein microarrays” Science 305, 86 (2004).
[Crossref] [PubMed]

Leathem, B.

A.G. Brolo, R. Gordon, B. Leathem, and K.L. Kavanagh, “Surface plasmon sensor based on the enhanced light transmission through arrays of nanoholes in gold films,” Langmuir 20, 4813 (2004).
[Crossref]

Lesuffleur, A.

A. Lesuffleur, H. Im, N.C. Lindquist, and S.-H. Oh, “Periodic nanohole arrays with shape-enhanced plasmon resonance as real-time biosensors,” Appl. Phys. Lett. 90, 243110 (2007).
[Crossref]

Lezec, H.J.

L. Martin-Moreno, F.J. Garcia-Vidal, H.J. Lezec, K.M. Pellerin, T. Thio, J.B. Pendry, and T.W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114 (2001).
[Crossref] [PubMed]

T.W. Ebbesen, H.J. Lezec, H.F. Ghaemi, T. Thio, and P.A. Wolff, “Extraordinary optical transmission through subwavelength hole arrays,” Nature 391, 667 (1998).
[Crossref]

Liedberg, B.

B. Liedberg, C. Nylander, and I. Lunström, “Surface plasmon resonance for gas detection and biosensing,” Sens. Actuators 4, 299 (1983).
[Crossref]

Lindquist, N.C.

A. Lesuffleur, H. Im, N.C. Lindquist, and S.-H. Oh, “Periodic nanohole arrays with shape-enhanced plasmon resonance as real-time biosensors,” Appl. Phys. Lett. 90, 243110 (2007).
[Crossref]

Lunström, I.

B. Liedberg, C. Nylander, and I. Lunström, “Surface plasmon resonance for gas detection and biosensing,” Sens. Actuators 4, 299 (1983).
[Crossref]

Mactutis, T.

T.M. Chinowsky, T. Mactutis, E. Fu, and P. Yager, “Optical and electronic design for a high-performance surface plasmon resonance imager,” Proceedings of SPIE, Vol.  5261, 173 (2004).
[Crossref]

Mar, M.N.

L.S. Jung, C.T. Campbell, T.M. Chinowsky, M.N. Mar, and S.S. Yee, “Quantitative interpretation of the response of surface plasmon resonance sensors to adsorbed films,” Langmuir 14, 5636 (1998).
[Crossref]

Martin-Moreno, L.

L. Martin-Moreno, F.J. Garcia-Vidal, H.J. Lezec, K.M. Pellerin, T. Thio, J.B. Pendry, and T.W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114 (2001).
[Crossref] [PubMed]

Mrksich, M.

M. Mrksich, G. Sigal, and G.M. Whitesides, “Surface plasmon resonance permits in situ measurement of protein adsorption on self-assembled monolayers of alkanethiolates on gold,” Langmuir 11, 4383 (1995).
[Crossref]

Nylander, C.

B. Liedberg, C. Nylander, and I. Lunström, “Surface plasmon resonance for gas detection and biosensing,” Sens. Actuators 4, 299 (1983).
[Crossref]

Oh, S.-H.

A. Lesuffleur, H. Im, N.C. Lindquist, and S.-H. Oh, “Periodic nanohole arrays with shape-enhanced plasmon resonance as real-time biosensors,” Appl. Phys. Lett. 90, 243110 (2007).
[Crossref]

Pang, L.

L. Pang, G.M. Hwang, B. Slutsky, and Y. Fainman “Spectral sensitivity of two-dimensional nanohole array surface plasmon polariton resonance sensor,” Appl. Phys. Lett. 91, 123115 (2007).
[Crossref]

Pellerin, K.M.

L. Martin-Moreno, F.J. Garcia-Vidal, H.J. Lezec, K.M. Pellerin, T. Thio, J.B. Pendry, and T.W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114 (2001).
[Crossref] [PubMed]

Pendry, J.B.

L. Martin-Moreno, F.J. Garcia-Vidal, H.J. Lezec, K.M. Pellerin, T. Thio, J.B. Pendry, and T.W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114 (2001).
[Crossref] [PubMed]

Ramachandran, N.

N. Ramachandran, E. Hainsworth, B. Bhullar, S. Eisenstein, B. Rosen, A. Lau, J.C. Walter, and J. LaBaer, “Self-assembling protein microarrays” Science 305, 86 (2004).
[Crossref] [PubMed]

Rosen, B.

N. Ramachandran, E. Hainsworth, B. Bhullar, S. Eisenstein, B. Rosen, A. Lau, J.C. Walter, and J. LaBaer, “Self-assembling protein microarrays” Science 305, 86 (2004).
[Crossref] [PubMed]

Rothenhäusler, B.

B. Rothenhäusler and W. Knoll, “Surface-plasmon microscopy,” Nature 332, 615 (1988).
[Crossref]

Shumaker-Parry, J.S.

J.S. Shumaker-Parry, R. Aebersold, and C.T. Campbell “Parallel, quantitative measurement of protein binding to a 120-element double-stranded DNA array in real time using surface plasmon resonance microscopy,” Anal. Chem. 76, 2071 (2004).
[Crossref] [PubMed]

Sigal, G.

M. Mrksich, G. Sigal, and G.M. Whitesides, “Surface plasmon resonance permits in situ measurement of protein adsorption on self-assembled monolayers of alkanethiolates on gold,” Langmuir 11, 4383 (1995).
[Crossref]

Sinton, D.

A. De Leebeeck, L.K.S. Kumar, V. de Lange, D. Sinton, R. Gordon, and A.G. Brolo, “On-chip surface-based detection with nanohole arrays,” Anal. Chem. 79, 4094 (2007).
[Crossref] [PubMed]

Slutsky, B.

L. Pang, G.M. Hwang, B. Slutsky, and Y. Fainman “Spectral sensitivity of two-dimensional nanohole array surface plasmon polariton resonance sensor,” Appl. Phys. Lett. 91, 123115 (2007).
[Crossref]

Smith, E.A.

Thio, T.

L. Martin-Moreno, F.J. Garcia-Vidal, H.J. Lezec, K.M. Pellerin, T. Thio, J.B. Pendry, and T.W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114 (2001).
[Crossref] [PubMed]

T.W. Ebbesen, H.J. Lezec, H.F. Ghaemi, T. Thio, and P.A. Wolff, “Extraordinary optical transmission through subwavelength hole arrays,” Nature 391, 667 (1998).
[Crossref]

Walter, J.C.

N. Ramachandran, E. Hainsworth, B. Bhullar, S. Eisenstein, B. Rosen, A. Lau, J.C. Walter, and J. LaBaer, “Self-assembling protein microarrays” Science 305, 86 (2004).
[Crossref] [PubMed]

Whitesides, G.M.

Y.N. Xia and G.M. Whitesides, “Soft lithography,” Angew. Chem. Int. Ed. 37, 550 (1998).
[Crossref]

M. Mrksich, G. Sigal, and G.M. Whitesides, “Surface plasmon resonance permits in situ measurement of protein adsorption on self-assembled monolayers of alkanethiolates on gold,” Langmuir 11, 4383 (1995).
[Crossref]

Wolff, P.A.

T.W. Ebbesen, H.J. Lezec, H.F. Ghaemi, T. Thio, and P.A. Wolff, “Extraordinary optical transmission through subwavelength hole arrays,” Nature 391, 667 (1998).
[Crossref]

Xia, Y.N.

Y.N. Xia and G.M. Whitesides, “Soft lithography,” Angew. Chem. Int. Ed. 37, 550 (1998).
[Crossref]

Yager, P.

T.M. Chinowsky, T. Mactutis, E. Fu, and P. Yager, “Optical and electronic design for a high-performance surface plasmon resonance imager,” Proceedings of SPIE, Vol.  5261, 173 (2004).
[Crossref]

E. Fu, J. Foley, and P. Yager, “Wavelength-tunable surface plasmon resonance microscope,” Rev. Sci. Instrum. 74 (6), 3182 (2003).
[Crossref]

Yeatman, E.

E. Yeatman and E.A. Ash, “Surface-plasmon microscopy,” Electron Lett. 23, 1091 (1987).
[Crossref]

Yee, S.S.

L.S. Jung, C.T. Campbell, T.M. Chinowsky, M.N. Mar, and S.S. Yee, “Quantitative interpretation of the response of surface plasmon resonance sensors to adsorbed films,” Langmuir 14, 5636 (1998).
[Crossref]

Anal. Chem. (2)

J.S. Shumaker-Parry, R. Aebersold, and C.T. Campbell “Parallel, quantitative measurement of protein binding to a 120-element double-stranded DNA array in real time using surface plasmon resonance microscopy,” Anal. Chem. 76, 2071 (2004).
[Crossref] [PubMed]

A. De Leebeeck, L.K.S. Kumar, V. de Lange, D. Sinton, R. Gordon, and A.G. Brolo, “On-chip surface-based detection with nanohole arrays,” Anal. Chem. 79, 4094 (2007).
[Crossref] [PubMed]

Angew. Chem. Int. Ed. (1)

Y.N. Xia and G.M. Whitesides, “Soft lithography,” Angew. Chem. Int. Ed. 37, 550 (1998).
[Crossref]

Appl. Phys. Lett. (2)

A. Lesuffleur, H. Im, N.C. Lindquist, and S.-H. Oh, “Periodic nanohole arrays with shape-enhanced plasmon resonance as real-time biosensors,” Appl. Phys. Lett. 90, 243110 (2007).
[Crossref]

L. Pang, G.M. Hwang, B. Slutsky, and Y. Fainman “Spectral sensitivity of two-dimensional nanohole array surface plasmon polariton resonance sensor,” Appl. Phys. Lett. 91, 123115 (2007).
[Crossref]

Appl. Spectrosc. (1)

Electron Lett. (1)

E. Yeatman and E.A. Ash, “Surface-plasmon microscopy,” Electron Lett. 23, 1091 (1987).
[Crossref]

Langmuir (3)

A.G. Brolo, R. Gordon, B. Leathem, and K.L. Kavanagh, “Surface plasmon sensor based on the enhanced light transmission through arrays of nanoholes in gold films,” Langmuir 20, 4813 (2004).
[Crossref]

M. Mrksich, G. Sigal, and G.M. Whitesides, “Surface plasmon resonance permits in situ measurement of protein adsorption on self-assembled monolayers of alkanethiolates on gold,” Langmuir 11, 4383 (1995).
[Crossref]

L.S. Jung, C.T. Campbell, T.M. Chinowsky, M.N. Mar, and S.S. Yee, “Quantitative interpretation of the response of surface plasmon resonance sensors to adsorbed films,” Langmuir 14, 5636 (1998).
[Crossref]

Nature (2)

T.W. Ebbesen, H.J. Lezec, H.F. Ghaemi, T. Thio, and P.A. Wolff, “Extraordinary optical transmission through subwavelength hole arrays,” Nature 391, 667 (1998).
[Crossref]

B. Rothenhäusler and W. Knoll, “Surface-plasmon microscopy,” Nature 332, 615 (1988).
[Crossref]

Phys. Rev. Lett. (1)

L. Martin-Moreno, F.J. Garcia-Vidal, H.J. Lezec, K.M. Pellerin, T. Thio, J.B. Pendry, and T.W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114 (2001).
[Crossref] [PubMed]

Proceedings of SPIE (1)

T.M. Chinowsky, T. Mactutis, E. Fu, and P. Yager, “Optical and electronic design for a high-performance surface plasmon resonance imager,” Proceedings of SPIE, Vol.  5261, 173 (2004).
[Crossref]

Rev. Sci. Instrum. (1)

E. Fu, J. Foley, and P. Yager, “Wavelength-tunable surface plasmon resonance microscope,” Rev. Sci. Instrum. 74 (6), 3182 (2003).
[Crossref]

Science (1)

N. Ramachandran, E. Hainsworth, B. Bhullar, S. Eisenstein, B. Rosen, A. Lau, J.C. Walter, and J. LaBaer, “Self-assembling protein microarrays” Science 305, 86 (2004).
[Crossref] [PubMed]

Sens. Actuators (1)

B. Liedberg, C. Nylander, and I. Lunström, “Surface plasmon resonance for gas detection and biosensing,” Sens. Actuators 4, 299 (1983).
[Crossref]

Other (1)

For a high signal-to-noise ratio, it is also important that the cut-off wavelength of a single nanohole is smaller than the laser wavelength in water, which ensures that direct transmission through holes, as opposed to SP-mediated transmission, does not contribute significantly to the background noise.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(a) Scanning electron microscopy (SEM) image of a 16×16 nanohole array with a 200 nm hole size and 380 nm periodicity. (b) A bright-field microscope image of 5×3 microarray of nanohole arrays (partially shown). Each sensing element, a 16×16 nanoholes array as in (a), is separated by 50 µm. (c) The PDMS chip, shown with microfluidic flow cells and tubing.

Fig. 2.
Fig. 2.

Schematic of the experimental setup for real time multiplex imaging.

Fig. 3.
Fig. 3.

(a) Spectrum of a 380 nm periodicity nanohole array. The dashed line represents the HeNe laser wavelength. The region of interest for biosensing experiments lies on the left side of this line for periodicity equal or larger than 380 nm. (b) FDTD calculation of the electric field Ez of a nanohole array at the resonance wavelength.

Fig. 4
Fig. 4

(a) A CCD image of the arrays during the real time measurement. The arrows indicates the array used for extracting the kinetic data. (b) Time-lapsed imaging of the first row in the microarray. (c) Transmitted intensity measured from the CCD images. Squares represent experimental data, which are fitted with an exponential, showing first-order binding kinetics. (d) (Colors online) Summary of the kinetics measured for 4 array periodicities.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Δ n = ( n molecule n solution ) · ( 1 exp ( 2 d l d ) ) ,
Δ I T = ( d I T d λ ) · S ( Δ n )

Metrics