Abstract

Characteristics essential for the readout durability of a superresolution near-field structure (super-RENS) disk are studied experimentally by using a home-built optical measuring setup and atomic force microscope, based on a simplified PtOx super-RENS disk. The experimental results show that for a super-RENS disk with constant structure and materials, readout signals including transmittance and reflectance vary with changes in bubble shape and size, indicating that the readout durability of the disk has a strong dependence on bubble stability, which is closely related to the thickness of the cover layer, the recording power and readout power, and the mechanical properties of the dielectric layer. Based on our experimental results, the main direction for improving readout durability is also proposed.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. J. Tominaga, T. Nakano, and N. Atoda, "An approach for recording and readout beyond the diffraction limit with an Sb thin film," Appl. Phys. Lett. 73, 2078-2080 (1998).
    [CrossRef]
  2. T. Fukaya, J. Tominaga, T. Nakano, and N. Atoda, "Optical switching property of a light-induced pinhole in antimony thin film," Appl. Phys. Lett. 75, 3114-3116 (1999).
    [CrossRef]
  3. H. Fuji, J. Tominaga, L. Men, T. Nakano, H. Katayama, and N. Atoda, "A near-field recording and readout technology using a metallic probe in an optical disk," Jpn. J. Appl. Phys. 39, 980-981 (2000).
    [CrossRef]
  4. D. P. Tsai and W. C. Lin, "Probing the near fields of the super-resolution near-field optical structure," Appl. Phys. Lett. 77,1413-1415 (2000).
    [CrossRef]
  5. J. Tominaga, C. Mihalcea, D. Buechel, H. Fukuda, T. Nakano, N. Atoda, H. Fuji, and T. Kikukawa, "Local plasmon photonic transistor," Appl. Phys. Lett. 78, 2417-2419 (2001).
    [CrossRef]
  6. T. Kikukawa, T. Nakano, T. Shima, and J. Tominaga, "Rigid bubble pit formation and huge signal enhancement in super-resolution near-field structure disk with platinum-oxide layer," Appl. Phys. Lett. 81, 4697-4699 (2002).
    [CrossRef]
  7. J. Wei and F. Gan, "Thermal lens model of Sb thin film in super-resolution near-field structure," Appl. Phys. Lett. 82,2607-2609 (2003).
    [CrossRef]
  8. Q. Liu, T. Fukaya, J. Tominaga, M. Kuwahara, and T. Shima, "Nonlinear features and response mechanisms of PtO2 mask layer for optical data storage with superresolution near-field structure," Opt. Lett. 28, 1805-1807 (2003).
    [CrossRef] [PubMed]
  9. J. H. Kim, I. Hwang, D. Yoon, I. Park, D. Shin, T. Kikukawa, T. Shima, and J. Tominaga, "Super-resolution by elliptical bubble formation with PtOx and AgInSbTe layers," Appl. Phys. Lett. 83, 1701-1703 (2003).
    [CrossRef]
  10. M. Ng and W. Liu, "Super-resolution and frequency-dependent efficiency of near-field optical disks with silver nanoparticles," Opt. Express 13,9422-9430 (2005).
    [CrossRef] [PubMed]
  11. J. Kim, I. Hwang, J. Bae, J. Lee, and J. Tominaga, "High-speed fabrication of super-resolution near-field structure read-only memory master disc using PtOx thermal decomposition lithography," Jpn. J. Appl. Phys. 45, 1379-1383 (2006).
    [CrossRef]
  12. J. Wei and F. Gan, "Dynamic readout of subdiffraction-limited pit arrays with a silver superlens," Appl. Phys. Lett. 87, 211101-211103 (2005).
    [CrossRef]
  13. T. Kikukawa, N. Fukuzawa, and T. Kobayashi, "properties of super-resolution near-field structure with platinum-oxide layer in Blu-ray disc system," Jpn. J. Appl. Phys. 44, 3596 (2005)
    [CrossRef]
  14. T. Shima, Y. Yamakawa, and J. Tominaga, "Readout durability improvement of super-resolution near-field structure discs with PtOx-SiO2 recording and GeNy interfacial layers," Jpn. J. Appl. Phys. 46, L135-L137 (2007).
    [CrossRef]
  15. X. Jiao, J. Wei, and F. Gan, "Si underlayer induced nano-ablation in AgInSbTe thin films," Chin. Phys. Lett. (to be published).

2007 (1)

T. Shima, Y. Yamakawa, and J. Tominaga, "Readout durability improvement of super-resolution near-field structure discs with PtOx-SiO2 recording and GeNy interfacial layers," Jpn. J. Appl. Phys. 46, L135-L137 (2007).
[CrossRef]

2006 (1)

J. Kim, I. Hwang, J. Bae, J. Lee, and J. Tominaga, "High-speed fabrication of super-resolution near-field structure read-only memory master disc using PtOx thermal decomposition lithography," Jpn. J. Appl. Phys. 45, 1379-1383 (2006).
[CrossRef]

2005 (3)

J. Wei and F. Gan, "Dynamic readout of subdiffraction-limited pit arrays with a silver superlens," Appl. Phys. Lett. 87, 211101-211103 (2005).
[CrossRef]

T. Kikukawa, N. Fukuzawa, and T. Kobayashi, "properties of super-resolution near-field structure with platinum-oxide layer in Blu-ray disc system," Jpn. J. Appl. Phys. 44, 3596 (2005)
[CrossRef]

M. Ng and W. Liu, "Super-resolution and frequency-dependent efficiency of near-field optical disks with silver nanoparticles," Opt. Express 13,9422-9430 (2005).
[CrossRef] [PubMed]

2003 (3)

J. Wei and F. Gan, "Thermal lens model of Sb thin film in super-resolution near-field structure," Appl. Phys. Lett. 82,2607-2609 (2003).
[CrossRef]

Q. Liu, T. Fukaya, J. Tominaga, M. Kuwahara, and T. Shima, "Nonlinear features and response mechanisms of PtO2 mask layer for optical data storage with superresolution near-field structure," Opt. Lett. 28, 1805-1807 (2003).
[CrossRef] [PubMed]

J. H. Kim, I. Hwang, D. Yoon, I. Park, D. Shin, T. Kikukawa, T. Shima, and J. Tominaga, "Super-resolution by elliptical bubble formation with PtOx and AgInSbTe layers," Appl. Phys. Lett. 83, 1701-1703 (2003).
[CrossRef]

2002 (1)

T. Kikukawa, T. Nakano, T. Shima, and J. Tominaga, "Rigid bubble pit formation and huge signal enhancement in super-resolution near-field structure disk with platinum-oxide layer," Appl. Phys. Lett. 81, 4697-4699 (2002).
[CrossRef]

2001 (1)

J. Tominaga, C. Mihalcea, D. Buechel, H. Fukuda, T. Nakano, N. Atoda, H. Fuji, and T. Kikukawa, "Local plasmon photonic transistor," Appl. Phys. Lett. 78, 2417-2419 (2001).
[CrossRef]

2000 (2)

H. Fuji, J. Tominaga, L. Men, T. Nakano, H. Katayama, and N. Atoda, "A near-field recording and readout technology using a metallic probe in an optical disk," Jpn. J. Appl. Phys. 39, 980-981 (2000).
[CrossRef]

D. P. Tsai and W. C. Lin, "Probing the near fields of the super-resolution near-field optical structure," Appl. Phys. Lett. 77,1413-1415 (2000).
[CrossRef]

1999 (1)

T. Fukaya, J. Tominaga, T. Nakano, and N. Atoda, "Optical switching property of a light-induced pinhole in antimony thin film," Appl. Phys. Lett. 75, 3114-3116 (1999).
[CrossRef]

1998 (1)

J. Tominaga, T. Nakano, and N. Atoda, "An approach for recording and readout beyond the diffraction limit with an Sb thin film," Appl. Phys. Lett. 73, 2078-2080 (1998).
[CrossRef]

Appl. Phys. Lett. (8)

D. P. Tsai and W. C. Lin, "Probing the near fields of the super-resolution near-field optical structure," Appl. Phys. Lett. 77,1413-1415 (2000).
[CrossRef]

J. Tominaga, C. Mihalcea, D. Buechel, H. Fukuda, T. Nakano, N. Atoda, H. Fuji, and T. Kikukawa, "Local plasmon photonic transistor," Appl. Phys. Lett. 78, 2417-2419 (2001).
[CrossRef]

T. Kikukawa, T. Nakano, T. Shima, and J. Tominaga, "Rigid bubble pit formation and huge signal enhancement in super-resolution near-field structure disk with platinum-oxide layer," Appl. Phys. Lett. 81, 4697-4699 (2002).
[CrossRef]

J. Wei and F. Gan, "Thermal lens model of Sb thin film in super-resolution near-field structure," Appl. Phys. Lett. 82,2607-2609 (2003).
[CrossRef]

J. Tominaga, T. Nakano, and N. Atoda, "An approach for recording and readout beyond the diffraction limit with an Sb thin film," Appl. Phys. Lett. 73, 2078-2080 (1998).
[CrossRef]

T. Fukaya, J. Tominaga, T. Nakano, and N. Atoda, "Optical switching property of a light-induced pinhole in antimony thin film," Appl. Phys. Lett. 75, 3114-3116 (1999).
[CrossRef]

J. H. Kim, I. Hwang, D. Yoon, I. Park, D. Shin, T. Kikukawa, T. Shima, and J. Tominaga, "Super-resolution by elliptical bubble formation with PtOx and AgInSbTe layers," Appl. Phys. Lett. 83, 1701-1703 (2003).
[CrossRef]

J. Wei and F. Gan, "Dynamic readout of subdiffraction-limited pit arrays with a silver superlens," Appl. Phys. Lett. 87, 211101-211103 (2005).
[CrossRef]

Chin. Phys. Lett. (1)

X. Jiao, J. Wei, and F. Gan, "Si underlayer induced nano-ablation in AgInSbTe thin films," Chin. Phys. Lett. (to be published).

Jpn. J. Appl. Phys. (4)

J. Kim, I. Hwang, J. Bae, J. Lee, and J. Tominaga, "High-speed fabrication of super-resolution near-field structure read-only memory master disc using PtOx thermal decomposition lithography," Jpn. J. Appl. Phys. 45, 1379-1383 (2006).
[CrossRef]

T. Kikukawa, N. Fukuzawa, and T. Kobayashi, "properties of super-resolution near-field structure with platinum-oxide layer in Blu-ray disc system," Jpn. J. Appl. Phys. 44, 3596 (2005)
[CrossRef]

T. Shima, Y. Yamakawa, and J. Tominaga, "Readout durability improvement of super-resolution near-field structure discs with PtOx-SiO2 recording and GeNy interfacial layers," Jpn. J. Appl. Phys. 46, L135-L137 (2007).
[CrossRef]

H. Fuji, J. Tominaga, L. Men, T. Nakano, H. Katayama, and N. Atoda, "A near-field recording and readout technology using a metallic probe in an optical disk," Jpn. J. Appl. Phys. 39, 980-981 (2000).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Schematic of the super-RENS disk: (a) recorded super-RENS disk, (b) simplified super-RENS disk.

Fig. 2.
Fig. 2.

Schematic configuration for experimental setup of transmittance T and reflectance R measurement. L, focused lens with 0.6 numerical aperture; BSP, beam splitter prism; OL, objective lens lens with a 10×magnification and a 0.21 numerical aperture; PD, photodetector; M, mirror; PS, pulse signal simulator; Sample, the simplified super-RENS disk on a nanoscale moving stage.

Fig. 3.
Fig. 3.

Transmitted pulse signal feature (a) for no PtO x decomposition, (b) for PtO x decomposition.

Fig. 4
Fig. 4

Curves for R and T versus irradiating time for different cover-layer thicknesses: (a) 140 nm, (b) 80 nm, (c) 40 nm.

Fig. 5.
Fig. 5.

AFM images and section analyses of the bubble for a 140 nm thick cover layer: (a) 0 s, (b) 1 s, (c) 10 s, (d) 20 s.

Fig. 6.
Fig. 6.

Bubble stability for a 140 nm thick cover layer. For a recording pulse energy of 27.6 µJ, stability changes with readout powers of (a) 0.5 mW, (b) 1.0 mW, and (c) 1.5 mW. For a fixed readout laser power (1 mW) stability variation with recording pulse energies of (d) 18.4 µJ, (e) 27.6 µJ, (f) 36.8 µJ.

Metrics