Abstract

We present a system for reconstructing single-exposure on-line (SEOL) digital holograms with improved resolution using a synthetic aperture. Several recordings are made in order to compose the synthetic aperture, shifting the camera within the hologram plane. After processing the synthetic hologram, an inverse Fresnel transformation provides an enhanced resolution reconstruction. We show that recognition capacity for high frequency details is increased. Experimental results with a test target and with a microscopic biological sample are presented. Both visualization and correlation results are reported.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. J. W. Goodman and R.W. Lawrence, "Digital image formation from electronically detected holograms," Appl. Phys. Lett. 11, 77-79 (1967).
    [CrossRef]
  2. U. Schnars and W.P.O. Jüptner, "Digital recording and numerical reconstruction of holograms," Meas. Sci. Technol. 13, R85-R101 (2002).
    [CrossRef]
  3. W. Osten, T. Baumbach, and W. Jüptner, "Comparative digital holography," Opt. Lett. 27, 1764-1766 (2002).
    [CrossRef]
  4. P. Ferraro, S. De Nicola, G. Coppola, A. Finizio, D. Alfieri, and G. Pierattini, "Controlling image size as a function of distance and wavelength in Fresnel-transform reconstruction of digital holograms," Opt. Lett. 29, 854-856 (2004).
    [CrossRef] [PubMed]
  5. T. Kreis, Handbook of Holographic Interferometry, (Wiley-VCH, 2005).
  6. Y. Frauel, T.J. Naughton, O. Matoba, E. Tahajuerce, and B. Javidi, "Three-dimensional imaging and processing using computational holographic imaging," Proc. IEEE 94, 636-653 (2006).
    [CrossRef]
  7. T. Nomura, S. Murata, E. Nitanai, and T. Numata, "Phase-shifting digital holography with a phase difference between orthogonal polarizations," Appl. Opt. 45, 4873-4877 (2006).
    [CrossRef] [PubMed]
  8. C.P. McElhinney, J.B. McDonald, A. Castro, Y. Frauel, B. Javidi, and T.J. Naughton, "Depth-independent segmentation of macroscopic three-dimensional objects encoded in single perspectives of digital holograms," Opt. Lett. 32, 1229-1231 (2007).
    [CrossRef] [PubMed]
  9. A. Stern and B. Javidi, "Theoretical analysis of three-dimensional imaging and recognition of micro-organisms with a single-exposure on-line holographic microscope," J. Opt. Soc. Am. A 24, 163-168 (2007).
    [CrossRef]
  10. B. Javidi and E. Tajahuerce, "Three-dimensional-object recognition by use of digital holography," Opt. Lett. 25, 610-612 (2000).
    [CrossRef]
  11. J. Swoger, M. Martínez-Corral, J. Huisken, and E.H.K. Stelzer, "Optical scanning holography as a technique for high-resolution three-dimensional biological microscopy," J. Opt. Soc. Am. A 19, 1910-1918 (2002).
    [CrossRef]
  12. V. Mico, Z. Zalevsky, P. García-Martínez, and J. García, "Synthetic aperture superresolution with multiple off-axis holograms," J.Opt. Soc. Am. A 23, 3162-3170 (2006).
    [CrossRef]
  13. S. A. Alexandrov, T. R. Hillman, T. Gutzler, and D. Sampson, "Synthetic aperture Fourier holographic optical microscopy," Phys. Rev. Lett 97, 168102.1-168102.4 (2006).
    [CrossRef] [PubMed]
  14. F. Le Clerc, M. Gross, and L. Collot, "Synthetic aperture experiment in the visible with on-axis digital heterodyne holography," Opt. Lett. 26, 1550-1552 (2001).
    [CrossRef]
  15. R. Binet, J. Colineau, and J.-C. Lehureau, "Imagerie optique à synthèse d'ouverture: nouveau concept et premiers résultats," Rev. Electr. Electron. 2, 31-37 (2001).
  16. R. Binet, J. Colineau, and J.-C. Lehureau, "Short-range synthetic aperture at 633 nm by digital holography," Appl. Opt. 41, 4775-4782 (2002).
    [CrossRef] [PubMed]
  17. J. H. Massig, "Digital off-axis holography with a synthetic aperture," Opt. Lett. 27, 2179-2181 (2002).
    [CrossRef]
  18. T. Kreis, M. Adams, and W. Jüptner, "Aperture synthesis in digital holography," Proc. SPIE 4777, 69-76 (2002).
    [CrossRef]
  19. D. Kim and B. Javidi, "Distortion-tolerant 3-D object recognition by using single exposure on-axis digital holography," Opt. Express 12, 5539-5548 (2004).
    [CrossRef] [PubMed]
  20. I. Yamaguchi and T. Zhang, "Phase-shifting digital holography," Opt. Lett. 22, 1268-1270 (1997).
    [CrossRef] [PubMed]
  21. U. Schnars and W. Jüptner, "Direct recording of holograms by a CCD target and numerical reconstructions," Appl. Opt. 33, 179-181 (1994).
    [CrossRef] [PubMed]
  22. S. Yeom, I. Moon and B. Javidi, "Real-time 3-D sensing, visualization and recognition of dynamic biological microorganisms," Proc. IEEE 94, 550-556 (2006).
    [CrossRef]
  23. B. Javidi and D. Kim, "Three-dimensional-object recognition by use of single-exposure on-axis digital holography," Opt. Lett. 30, 236-238 (2005).
    [CrossRef] [PubMed]
  24. E.N. Leith and J. Upatnieks, "Wavefront reconstruction with diffused illumination and three-dimensional objects," J. Opt. Soc. Am. 54, 1295-1301 (1964).
    [CrossRef]

2007 (2)

2006 (4)

Y. Frauel, T.J. Naughton, O. Matoba, E. Tahajuerce, and B. Javidi, "Three-dimensional imaging and processing using computational holographic imaging," Proc. IEEE 94, 636-653 (2006).
[CrossRef]

T. Nomura, S. Murata, E. Nitanai, and T. Numata, "Phase-shifting digital holography with a phase difference between orthogonal polarizations," Appl. Opt. 45, 4873-4877 (2006).
[CrossRef] [PubMed]

V. Mico, Z. Zalevsky, P. García-Martínez, and J. García, "Synthetic aperture superresolution with multiple off-axis holograms," J.Opt. Soc. Am. A 23, 3162-3170 (2006).
[CrossRef]

S. Yeom, I. Moon and B. Javidi, "Real-time 3-D sensing, visualization and recognition of dynamic biological microorganisms," Proc. IEEE 94, 550-556 (2006).
[CrossRef]

2005 (1)

2004 (2)

2002 (6)

2001 (2)

F. Le Clerc, M. Gross, and L. Collot, "Synthetic aperture experiment in the visible with on-axis digital heterodyne holography," Opt. Lett. 26, 1550-1552 (2001).
[CrossRef]

R. Binet, J. Colineau, and J.-C. Lehureau, "Imagerie optique à synthèse d'ouverture: nouveau concept et premiers résultats," Rev. Electr. Electron. 2, 31-37 (2001).

2000 (1)

1997 (1)

1994 (1)

1967 (1)

J. W. Goodman and R.W. Lawrence, "Digital image formation from electronically detected holograms," Appl. Phys. Lett. 11, 77-79 (1967).
[CrossRef]

1964 (1)

Appl. Opt. (3)

Appl. Phys. Lett. (1)

J. W. Goodman and R.W. Lawrence, "Digital image formation from electronically detected holograms," Appl. Phys. Lett. 11, 77-79 (1967).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (2)

J.Opt. Soc. Am. A (1)

V. Mico, Z. Zalevsky, P. García-Martínez, and J. García, "Synthetic aperture superresolution with multiple off-axis holograms," J.Opt. Soc. Am. A 23, 3162-3170 (2006).
[CrossRef]

Meas. Sci. Technol. (1)

U. Schnars and W.P.O. Jüptner, "Digital recording and numerical reconstruction of holograms," Meas. Sci. Technol. 13, R85-R101 (2002).
[CrossRef]

Opt. Express (1)

Opt. Lett. (8)

Proc. IEEE (2)

Y. Frauel, T.J. Naughton, O. Matoba, E. Tahajuerce, and B. Javidi, "Three-dimensional imaging and processing using computational holographic imaging," Proc. IEEE 94, 636-653 (2006).
[CrossRef]

S. Yeom, I. Moon and B. Javidi, "Real-time 3-D sensing, visualization and recognition of dynamic biological microorganisms," Proc. IEEE 94, 550-556 (2006).
[CrossRef]

Proc. SPIE (1)

T. Kreis, M. Adams, and W. Jüptner, "Aperture synthesis in digital holography," Proc. SPIE 4777, 69-76 (2002).
[CrossRef]

Rev. Electr. Electron. (1)

R. Binet, J. Colineau, and J.-C. Lehureau, "Imagerie optique à synthèse d'ouverture: nouveau concept et premiers résultats," Rev. Electr. Electron. 2, 31-37 (2001).

Other (2)

S. A. Alexandrov, T. R. Hillman, T. Gutzler, and D. Sampson, "Synthetic aperture Fourier holographic optical microscopy," Phys. Rev. Lett 97, 168102.1-168102.4 (2006).
[CrossRef] [PubMed]

T. Kreis, Handbook of Holographic Interferometry, (Wiley-VCH, 2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Experimental set-up. SF, spatial filter; L1, collimating lens; BS1, BS2, beam splitters; L2, L3, lenses in object and reference beams; M1, M2, mirrors; OBJ, sample object.

Fig. 2.
Fig. 2.

Reconstruction of a USAF resolution test target using a low resolution (a), a synthetic aperture (b), and a high resolution digital hologram (c).

Fig. 3.
Fig. 3.

Correlation between high frequency groups in the resolution test target reconstructions. Correlation peaks, comparing with the high resolution hologram, for the low resolution (a) and the synthetic aperture hologram (b), and autocorrelation for the high resolution hologram (c). Images of the high frequency regions used for these calculations, with groups 6 and 7 in the resolution chart, are also shown: low resolution (d), synthetic aperture (e), and high resolution digital holograms (f).

Fig. 4.
Fig. 4.

Reconstruction of a sphacelaria alga sample using a low resolution (a), a synthetic aperture (b), and a high resolution digital hologram (c).

Fig. 5.
Fig. 5.

Reconstruction of a USAF resolution test target, with a diffuser next to it, using a low resolution (a), a synthetic aperture (b), and a high resolution digital hologram (c).

Fig. 6.
Fig. 6.

Reconstruction detail of the resolution test target, with a diffuser, showing the speckle size for a low resolution (a), a synthetic aperture (b), and a high resolution digital hologram (c).

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

H ( x , y ) = O ( x , y ) + R ( x , y ) 2 O ( x , y ) 2 R ( x , y ) 2
= R ( x , y ) O * ( x , y ) + R * ( x , y ) O ( x , y ) ,
O ( m , n ) = exp [ i π λ d ( m 2 Δ x 2 + n 2 Δ y 2 ) ] m = 1 M n = 1 N R ( m , n ) H ( m , n )
× exp [ i π λ d ( m 2 Δ x 2 + n 2 Δ y 2 ) ] exp [ i 2 π λ d ( m Δ x m Δ x + n Δ y n Δ y ) ] .
Δ x = λ d M Δ x , Δ y = λ d N Δ y .

Metrics