Abstract

The trend in silicon photonics, in the last few years has been to reduce waveguide size to obtain maximum gain in the real estate of devices as well as to increase the performance of active devices. Using different methods for the modulation, optical modulators in silicon have seen their bandwidth increased to reach multi GHz frequencies. In order to simplify fabrication, one requirement for a waveguide, as well as for a modulator, is to retain polarisation independence in any state of operation and to be as small as possible. In this paper we provide a way to obtain polarisation independence and improve the efficiency of an optical modulator using a V-shaped pn junction base on the natural etch angle of silicon, 54.7 deg. This modulator is compared to a flat junction depletion type modulator of the same size and doping concentration.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Liao, D. Samara-Rubio, M. Morse, A. Liu, D. Hodge, D. Rubin, U. D. Keil and T. Franck, "High speed silicon mach-zehnder modulator," Opt. Express 13, 3129-3135 (2005).
    [CrossRef] [PubMed]
  2. A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccla, "An all-silicon Raman laser," Nature 433, 292-294 (2005).
    [CrossRef] [PubMed]
  3. Y.-H. Kuo, Y. K. Lee, Y. Ge, S. Ren, J. E. Roth, T. I. Kamins, D. A. B. Miller, and J. S. Harris, "Strong quantumconfined Stark effect in germanium quantum-well structures on silicon," Nature 437, 1334-1336 (2005).
    [CrossRef] [PubMed]
  4. J. Wei, G. Lanlan, C. Xiaonan, and R. T. Chen, "80-micron interaction length silicon photonic crystal waveguide modulator," Appl. Phys. Lett. 87, 221105-1 (2005).
  5. F. Y. Gardes, G. T. Reed, N. G. Emerson, and C. E. Png, "A sub-micron depletion-type photonic modulator in silicon on insulator," Opt. Express 13, 8845-8854 (2005).
    [CrossRef] [PubMed]
  6. G. Z. Masanovic, V. M. N. Passaro, and G. T. Reed, "Coupling to nanophotonic waveguides using a dual gratingassisted directional coupler," IEE Proceedings Optoelectronics 152, 41-48 (2005).
    [CrossRef]
  7. W. R. Headley, G. T. Reed, S. Howe, A. Liu, and M. Paniccia, "Polarization-independent optical racetrack resonators using rib waveguides on silicon-on-insulator," Appl. Phys. Lett. 85, 5523-5 (2004).
    [CrossRef]
  8. R. A. Soref and B. R. Bennett, "Kramers-Kronig analysis of electro-optical switching in silicon," presented at Proc. SPIE: Integrated Optical Circuit Engineering IV, 16-17 Sept. 1986, Cambridge, MA, USA, 1987, 32-37.
  9. Silvaco Internationnal, 4701 Patrick Henry Drive, Bldg 1, Santa Clara, CA 94054, http://www.silvaco.com.
  10. K. L. Tsakmakidis, C. Hermann, A. Klaedtke, C. Jamois, and O. Hess, "Systematic modal analysis of 3-D dielectric waveguides using conventional and high-accuracy nonstandard FDTD algorithms," IEEE Photon. Technol. Lett. 17, 2598-2600 (2005).
    [CrossRef]
  11. K. L. Tsakmakidis, B. Weiss, and O. Hess, "Full-wave electromagnetic modelling of an InP/InGaAs travellingwave heterojunction phototransistor," J. Phys. D: Appl. Phys. 39, 1805-1814 (2006).
    [CrossRef]

2006 (1)

K. L. Tsakmakidis, B. Weiss, and O. Hess, "Full-wave electromagnetic modelling of an InP/InGaAs travellingwave heterojunction phototransistor," J. Phys. D: Appl. Phys. 39, 1805-1814 (2006).
[CrossRef]

2005 (7)

K. L. Tsakmakidis, C. Hermann, A. Klaedtke, C. Jamois, and O. Hess, "Systematic modal analysis of 3-D dielectric waveguides using conventional and high-accuracy nonstandard FDTD algorithms," IEEE Photon. Technol. Lett. 17, 2598-2600 (2005).
[CrossRef]

L. Liao, D. Samara-Rubio, M. Morse, A. Liu, D. Hodge, D. Rubin, U. D. Keil and T. Franck, "High speed silicon mach-zehnder modulator," Opt. Express 13, 3129-3135 (2005).
[CrossRef] [PubMed]

A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccla, "An all-silicon Raman laser," Nature 433, 292-294 (2005).
[CrossRef] [PubMed]

Y.-H. Kuo, Y. K. Lee, Y. Ge, S. Ren, J. E. Roth, T. I. Kamins, D. A. B. Miller, and J. S. Harris, "Strong quantumconfined Stark effect in germanium quantum-well structures on silicon," Nature 437, 1334-1336 (2005).
[CrossRef] [PubMed]

J. Wei, G. Lanlan, C. Xiaonan, and R. T. Chen, "80-micron interaction length silicon photonic crystal waveguide modulator," Appl. Phys. Lett. 87, 221105-1 (2005).

F. Y. Gardes, G. T. Reed, N. G. Emerson, and C. E. Png, "A sub-micron depletion-type photonic modulator in silicon on insulator," Opt. Express 13, 8845-8854 (2005).
[CrossRef] [PubMed]

G. Z. Masanovic, V. M. N. Passaro, and G. T. Reed, "Coupling to nanophotonic waveguides using a dual gratingassisted directional coupler," IEE Proceedings Optoelectronics 152, 41-48 (2005).
[CrossRef]

2004 (1)

W. R. Headley, G. T. Reed, S. Howe, A. Liu, and M. Paniccia, "Polarization-independent optical racetrack resonators using rib waveguides on silicon-on-insulator," Appl. Phys. Lett. 85, 5523-5 (2004).
[CrossRef]

Chen, R. T.

J. Wei, G. Lanlan, C. Xiaonan, and R. T. Chen, "80-micron interaction length silicon photonic crystal waveguide modulator," Appl. Phys. Lett. 87, 221105-1 (2005).

Cohen, O.

A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccla, "An all-silicon Raman laser," Nature 433, 292-294 (2005).
[CrossRef] [PubMed]

Emerson, N. G.

Fang, A.

A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccla, "An all-silicon Raman laser," Nature 433, 292-294 (2005).
[CrossRef] [PubMed]

Franck, T.

Gardes, F. Y.

Ge, Y.

Y.-H. Kuo, Y. K. Lee, Y. Ge, S. Ren, J. E. Roth, T. I. Kamins, D. A. B. Miller, and J. S. Harris, "Strong quantumconfined Stark effect in germanium quantum-well structures on silicon," Nature 437, 1334-1336 (2005).
[CrossRef] [PubMed]

Hak, D.

A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccla, "An all-silicon Raman laser," Nature 433, 292-294 (2005).
[CrossRef] [PubMed]

Harris, J. S.

Y.-H. Kuo, Y. K. Lee, Y. Ge, S. Ren, J. E. Roth, T. I. Kamins, D. A. B. Miller, and J. S. Harris, "Strong quantumconfined Stark effect in germanium quantum-well structures on silicon," Nature 437, 1334-1336 (2005).
[CrossRef] [PubMed]

Headley, W. R.

W. R. Headley, G. T. Reed, S. Howe, A. Liu, and M. Paniccia, "Polarization-independent optical racetrack resonators using rib waveguides on silicon-on-insulator," Appl. Phys. Lett. 85, 5523-5 (2004).
[CrossRef]

Hermann, C.

K. L. Tsakmakidis, C. Hermann, A. Klaedtke, C. Jamois, and O. Hess, "Systematic modal analysis of 3-D dielectric waveguides using conventional and high-accuracy nonstandard FDTD algorithms," IEEE Photon. Technol. Lett. 17, 2598-2600 (2005).
[CrossRef]

Hess, O.

K. L. Tsakmakidis, B. Weiss, and O. Hess, "Full-wave electromagnetic modelling of an InP/InGaAs travellingwave heterojunction phototransistor," J. Phys. D: Appl. Phys. 39, 1805-1814 (2006).
[CrossRef]

K. L. Tsakmakidis, C. Hermann, A. Klaedtke, C. Jamois, and O. Hess, "Systematic modal analysis of 3-D dielectric waveguides using conventional and high-accuracy nonstandard FDTD algorithms," IEEE Photon. Technol. Lett. 17, 2598-2600 (2005).
[CrossRef]

Hodge, D.

Howe, S.

W. R. Headley, G. T. Reed, S. Howe, A. Liu, and M. Paniccia, "Polarization-independent optical racetrack resonators using rib waveguides on silicon-on-insulator," Appl. Phys. Lett. 85, 5523-5 (2004).
[CrossRef]

Jamois, C.

K. L. Tsakmakidis, C. Hermann, A. Klaedtke, C. Jamois, and O. Hess, "Systematic modal analysis of 3-D dielectric waveguides using conventional and high-accuracy nonstandard FDTD algorithms," IEEE Photon. Technol. Lett. 17, 2598-2600 (2005).
[CrossRef]

Jones, R.

A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccla, "An all-silicon Raman laser," Nature 433, 292-294 (2005).
[CrossRef] [PubMed]

Kamins, T. I.

Y.-H. Kuo, Y. K. Lee, Y. Ge, S. Ren, J. E. Roth, T. I. Kamins, D. A. B. Miller, and J. S. Harris, "Strong quantumconfined Stark effect in germanium quantum-well structures on silicon," Nature 437, 1334-1336 (2005).
[CrossRef] [PubMed]

Keil, U. D.

Klaedtke, A.

K. L. Tsakmakidis, C. Hermann, A. Klaedtke, C. Jamois, and O. Hess, "Systematic modal analysis of 3-D dielectric waveguides using conventional and high-accuracy nonstandard FDTD algorithms," IEEE Photon. Technol. Lett. 17, 2598-2600 (2005).
[CrossRef]

Kuo, Y.-H.

Y.-H. Kuo, Y. K. Lee, Y. Ge, S. Ren, J. E. Roth, T. I. Kamins, D. A. B. Miller, and J. S. Harris, "Strong quantumconfined Stark effect in germanium quantum-well structures on silicon," Nature 437, 1334-1336 (2005).
[CrossRef] [PubMed]

Lanlan, G.

J. Wei, G. Lanlan, C. Xiaonan, and R. T. Chen, "80-micron interaction length silicon photonic crystal waveguide modulator," Appl. Phys. Lett. 87, 221105-1 (2005).

Lee, Y. K.

Y.-H. Kuo, Y. K. Lee, Y. Ge, S. Ren, J. E. Roth, T. I. Kamins, D. A. B. Miller, and J. S. Harris, "Strong quantumconfined Stark effect in germanium quantum-well structures on silicon," Nature 437, 1334-1336 (2005).
[CrossRef] [PubMed]

Liao, L.

Liu, A.

A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccla, "An all-silicon Raman laser," Nature 433, 292-294 (2005).
[CrossRef] [PubMed]

L. Liao, D. Samara-Rubio, M. Morse, A. Liu, D. Hodge, D. Rubin, U. D. Keil and T. Franck, "High speed silicon mach-zehnder modulator," Opt. Express 13, 3129-3135 (2005).
[CrossRef] [PubMed]

W. R. Headley, G. T. Reed, S. Howe, A. Liu, and M. Paniccia, "Polarization-independent optical racetrack resonators using rib waveguides on silicon-on-insulator," Appl. Phys. Lett. 85, 5523-5 (2004).
[CrossRef]

Masanovic, G. Z.

G. Z. Masanovic, V. M. N. Passaro, and G. T. Reed, "Coupling to nanophotonic waveguides using a dual gratingassisted directional coupler," IEE Proceedings Optoelectronics 152, 41-48 (2005).
[CrossRef]

Miller, D. A. B.

Y.-H. Kuo, Y. K. Lee, Y. Ge, S. Ren, J. E. Roth, T. I. Kamins, D. A. B. Miller, and J. S. Harris, "Strong quantumconfined Stark effect in germanium quantum-well structures on silicon," Nature 437, 1334-1336 (2005).
[CrossRef] [PubMed]

Morse, M.

Nicolaescu, R.

A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccla, "An all-silicon Raman laser," Nature 433, 292-294 (2005).
[CrossRef] [PubMed]

Paniccia, M.

W. R. Headley, G. T. Reed, S. Howe, A. Liu, and M. Paniccia, "Polarization-independent optical racetrack resonators using rib waveguides on silicon-on-insulator," Appl. Phys. Lett. 85, 5523-5 (2004).
[CrossRef]

Paniccla, M.

A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccla, "An all-silicon Raman laser," Nature 433, 292-294 (2005).
[CrossRef] [PubMed]

Passaro, V. M. N.

G. Z. Masanovic, V. M. N. Passaro, and G. T. Reed, "Coupling to nanophotonic waveguides using a dual gratingassisted directional coupler," IEE Proceedings Optoelectronics 152, 41-48 (2005).
[CrossRef]

Png, C. E.

Reed, G. T.

F. Y. Gardes, G. T. Reed, N. G. Emerson, and C. E. Png, "A sub-micron depletion-type photonic modulator in silicon on insulator," Opt. Express 13, 8845-8854 (2005).
[CrossRef] [PubMed]

G. Z. Masanovic, V. M. N. Passaro, and G. T. Reed, "Coupling to nanophotonic waveguides using a dual gratingassisted directional coupler," IEE Proceedings Optoelectronics 152, 41-48 (2005).
[CrossRef]

W. R. Headley, G. T. Reed, S. Howe, A. Liu, and M. Paniccia, "Polarization-independent optical racetrack resonators using rib waveguides on silicon-on-insulator," Appl. Phys. Lett. 85, 5523-5 (2004).
[CrossRef]

Ren, S.

Y.-H. Kuo, Y. K. Lee, Y. Ge, S. Ren, J. E. Roth, T. I. Kamins, D. A. B. Miller, and J. S. Harris, "Strong quantumconfined Stark effect in germanium quantum-well structures on silicon," Nature 437, 1334-1336 (2005).
[CrossRef] [PubMed]

Roth, J. E.

Y.-H. Kuo, Y. K. Lee, Y. Ge, S. Ren, J. E. Roth, T. I. Kamins, D. A. B. Miller, and J. S. Harris, "Strong quantumconfined Stark effect in germanium quantum-well structures on silicon," Nature 437, 1334-1336 (2005).
[CrossRef] [PubMed]

Rubin, D.

Samara-Rubio, D.

Tsakmakidis, K. L.

K. L. Tsakmakidis, B. Weiss, and O. Hess, "Full-wave electromagnetic modelling of an InP/InGaAs travellingwave heterojunction phototransistor," J. Phys. D: Appl. Phys. 39, 1805-1814 (2006).
[CrossRef]

K. L. Tsakmakidis, C. Hermann, A. Klaedtke, C. Jamois, and O. Hess, "Systematic modal analysis of 3-D dielectric waveguides using conventional and high-accuracy nonstandard FDTD algorithms," IEEE Photon. Technol. Lett. 17, 2598-2600 (2005).
[CrossRef]

Wei, J.

J. Wei, G. Lanlan, C. Xiaonan, and R. T. Chen, "80-micron interaction length silicon photonic crystal waveguide modulator," Appl. Phys. Lett. 87, 221105-1 (2005).

Weiss, B.

K. L. Tsakmakidis, B. Weiss, and O. Hess, "Full-wave electromagnetic modelling of an InP/InGaAs travellingwave heterojunction phototransistor," J. Phys. D: Appl. Phys. 39, 1805-1814 (2006).
[CrossRef]

Xiaonan, C.

J. Wei, G. Lanlan, C. Xiaonan, and R. T. Chen, "80-micron interaction length silicon photonic crystal waveguide modulator," Appl. Phys. Lett. 87, 221105-1 (2005).

Appl. Phys. Lett. (2)

J. Wei, G. Lanlan, C. Xiaonan, and R. T. Chen, "80-micron interaction length silicon photonic crystal waveguide modulator," Appl. Phys. Lett. 87, 221105-1 (2005).

W. R. Headley, G. T. Reed, S. Howe, A. Liu, and M. Paniccia, "Polarization-independent optical racetrack resonators using rib waveguides on silicon-on-insulator," Appl. Phys. Lett. 85, 5523-5 (2004).
[CrossRef]

IEE Proceedings: Optoelectronics (1)

G. Z. Masanovic, V. M. N. Passaro, and G. T. Reed, "Coupling to nanophotonic waveguides using a dual gratingassisted directional coupler," IEE Proceedings Optoelectronics 152, 41-48 (2005).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

K. L. Tsakmakidis, C. Hermann, A. Klaedtke, C. Jamois, and O. Hess, "Systematic modal analysis of 3-D dielectric waveguides using conventional and high-accuracy nonstandard FDTD algorithms," IEEE Photon. Technol. Lett. 17, 2598-2600 (2005).
[CrossRef]

J. Phys. D: Appl. Phys. (1)

K. L. Tsakmakidis, B. Weiss, and O. Hess, "Full-wave electromagnetic modelling of an InP/InGaAs travellingwave heterojunction phototransistor," J. Phys. D: Appl. Phys. 39, 1805-1814 (2006).
[CrossRef]

Nature (2)

A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccla, "An all-silicon Raman laser," Nature 433, 292-294 (2005).
[CrossRef] [PubMed]

Y.-H. Kuo, Y. K. Lee, Y. Ge, S. Ren, J. E. Roth, T. I. Kamins, D. A. B. Miller, and J. S. Harris, "Strong quantumconfined Stark effect in germanium quantum-well structures on silicon," Nature 437, 1334-1336 (2005).
[CrossRef] [PubMed]

Opt. Express (2)

Other (2)

R. A. Soref and B. R. Bennett, "Kramers-Kronig analysis of electro-optical switching in silicon," presented at Proc. SPIE: Integrated Optical Circuit Engineering IV, 16-17 Sept. 1986, Cambridge, MA, USA, 1987, 32-37.

Silvaco Internationnal, 4701 Patrick Henry Drive, Bldg 1, Santa Clara, CA 94054, http://www.silvaco.com.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

(A). Flat pn junction optical modulator in silicon on insulator. (B). V-shape pn junction optical modulator in silicon on insulator.

Fig. 2.
Fig. 2.

(A).Phase shift modulation dependence for TE and TM using a flat pn junction. (B). Phase shift modulation dependence for TE and TM using a V-shaped pn junction.

Fig. 3.
Fig. 3.

(A). Phase shift against transient time for TE and TM for the flat junction. (B). Phase shift against transient time for TE and TM for the V-shaped junction.

Tables (2)

Tables Icon

Table 1. Optical simulation parameters.

Tables Icon

Table 2. Electrical simulation parameters.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Δ n eff = λ 2 L π
Δn = Δ n e + Δ n h = [ 8.8 × 10 22 × Δ N e + 8.5 × 10 18 × Δ N h 0.8 ]

Metrics