Abstract

We demonstrate magneto-optic switching in femtosecond-laser micromachined waveguides written inside bulk terbium-doped Faraday glass. By measuring the polarization phase shift of the light as a function of the applied magnetic field, we find that there is a slight reduction in the effective Verdet constant of the waveguide compared to that of bulk Faraday glass. Electron Paramagnetic Resonance (EPR) measurements confirm that the micromachining leaves the concentration of the terbium ions that are responsible for the Faraday effect virtually unchanged.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, "Writing waveguides in glass with a femtosecond laser," Opt. Lett. 21, 1729-1731 (1996).
    [CrossRef] [PubMed]
  2. C. Florea and K. A. Winick, "Fabrication and characterization of photonic devices directly written in glass using femtosecond laser pulses," J. Lightwave Technol. 21, 246-253 (2003).
    [CrossRef]
  3. S. Nolte, M. Will, J. Burghoff, and A. Tuennermann, "Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics," Appl. Phys.A-Mater. 77, 109-111 (2003).
    [CrossRef]
  4. R. Osellame, S. Taccheo, M. Marangoni, R. Ramponi, P. Laporta, D. Polli, S. De Silvestri, and G. Cerullo, "Femtosecond writing of active optical waveguides with astigmatically shaped beams," J. Opt. Soc. Am. B 20, 1559-1567 (2003).
    [CrossRef]
  5. C. B. Schaffer, A. Brodeur, J. F. Garcia, and E. Mazur, "Micromachining bulk glass by use of femtosecond laser pulses with nanojoule energy," Opt. Lett. 26, 93-95 (2001).
    [CrossRef]
  6. G. Della Valle, R. Osellame, N. Chiodo, S. Taccheo, G. Cerullo, P. Laporta, A. Killi, U. Morgner, M. Lederer, and D. Kopf, "C-band waveguide amplifier produced by femtosecond laser writing," Opt. Express 13, 5976-5982 (2005).
    [CrossRef] [PubMed]
  7. A. M. Kowalevicz, V. Sharma, E. P. Ippen, J. G. Fujimoto, and K. Minoshima, "Three-dimensional photonic devices fabricated in glass by use of a femtosecond laser oscillator," Opt. Lett. 30, 1060-1062 (2005).
    [CrossRef] [PubMed]
  8. K. Minoshima, A. M. Kowalevicz, E. P. Ippen, and J. G. Fujimoto, "Fabrication of coupled mode photonic devices in glass by nonlinear femtosecond laser materials processing," Opt. Express 10, 645-652 (2002).
    [PubMed]
  9. Y. Sikorski, A. A. Said, P. Bado, R. Maynard, C. Florea, and K. A. Winick, "Optical waveguide amplifier in Nd-doped glass written with near-IR femtosecond laser pulses," Electron. Lett. 36, 226-227 (2000).
    [CrossRef]
  10. A. M. Streltsov and N. F. Borrelli, "Fabrication and analysis of a directional coupler written in glass by nanojoule femtosecond laser pulses," Opt. Lett. 26, 42-43 (2001).
    [CrossRef]
  11. S. Taccheo, G. Della Valle, R. Osellame, G. Cerullo, N. Chiodo, P. Laporta, O. Svelto, A. Killi, U. Morgner, M. Lederer, and D. Kopf, "Er : Yb-doped waveguide laser fabricated by femtosecond laser pulses," Opt. Lett. 29, 2626-2628 (2004).
    [CrossRef] [PubMed]
  12. M. Born and E. Wolf, "Principles of Optics" (1980).
  13. H. Dotsch, N. Bahlmann, O. Zhuromskyy, M. Hammer, L. Wilkens, R. Gerhardt, P. Hertel, and A. F. Popkov, "Applications of magneto-optical waveguides in integrated optics: review," J. Opt. Soc. Am. B 22, 240-253 (2005).
    [CrossRef]
  14. M. Levy, H. Hegde, F. J. Cadieu, R. Wolfe, V. J. Fratello, and R. M. J. Osgood, "Integrated optical isolators with sputter-deposited thin-film magnets," IEEE Photonic Technol. Lett. 8, 903-905 (1996).
    [CrossRef]
  15. M. Levy, I. Ilic, R. Scarmozzino, R. M. J. Osgood, R. Wolfe, C. J. Gutierrez, and G. A. Prinz, "Thin-film-magnet magnetooptic waveguide isolator," IEEE Photonic. Tech. Lett. 5, 198-200 (1993).
    [CrossRef]
  16. M. Kamata, M. Obara, R. R. Gattass, L. R. Cerami, and E. Mazur, "Optical vibration sensor fabricated by femtosecond laser micromachining," Appl. Phys. Lett. 87, 051106-051101-051103 (2005).
    [CrossRef]
  17. R. Osellame, N. Chiodo, V. Maselli, A. Yin, M. Zavelani-Rossi, G. Cerullo, P. Laporta, L. Aiello, S. De Nicola, P. Ferraro, A. Finizio, and G. Pierattini, "Optical properties of waveguides written by a 26 MHz stretched cavity Ti : sapphire femtosecond oscillator," Opt. Express 13, 612-620 (2005).
    [CrossRef] [PubMed]
  18. H. Ebendorff-Heidepriem and D. Ehrt: "Effect of Tb3+ ions on X-ray induced defect formation in phosphate containing glasses," Opt. Mater. 18, 419-422 (2002).
    [CrossRef]
  19. H. Ebendorff-Heidepriem and D. Ehrt: "Electron spin resonance spectra of Eu2+ and Tb4+ ions in glasses," J. Phys-Condens.Mat. 11, 7627-7629 (1999).
    [CrossRef]
  20. J. Qiu, J. B. Qiu, H. Higuchi, Y. Kawamoto, and K. Hirao: "Faraday effect of GaS3/2-GeS2-LaS3/2-based glasses containing various rare-earth ions," J. Appl. Phys. 80, 5297-5300 (1996).
    [CrossRef]

2005 (4)

2004 (1)

2003 (3)

2002 (2)

K. Minoshima, A. M. Kowalevicz, E. P. Ippen, and J. G. Fujimoto, "Fabrication of coupled mode photonic devices in glass by nonlinear femtosecond laser materials processing," Opt. Express 10, 645-652 (2002).
[PubMed]

H. Ebendorff-Heidepriem and D. Ehrt: "Effect of Tb3+ ions on X-ray induced defect formation in phosphate containing glasses," Opt. Mater. 18, 419-422 (2002).
[CrossRef]

2001 (2)

2000 (1)

Y. Sikorski, A. A. Said, P. Bado, R. Maynard, C. Florea, and K. A. Winick, "Optical waveguide amplifier in Nd-doped glass written with near-IR femtosecond laser pulses," Electron. Lett. 36, 226-227 (2000).
[CrossRef]

1999 (1)

H. Ebendorff-Heidepriem and D. Ehrt: "Electron spin resonance spectra of Eu2+ and Tb4+ ions in glasses," J. Phys-Condens.Mat. 11, 7627-7629 (1999).
[CrossRef]

1996 (3)

J. Qiu, J. B. Qiu, H. Higuchi, Y. Kawamoto, and K. Hirao: "Faraday effect of GaS3/2-GeS2-LaS3/2-based glasses containing various rare-earth ions," J. Appl. Phys. 80, 5297-5300 (1996).
[CrossRef]

K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, "Writing waveguides in glass with a femtosecond laser," Opt. Lett. 21, 1729-1731 (1996).
[CrossRef] [PubMed]

M. Levy, H. Hegde, F. J. Cadieu, R. Wolfe, V. J. Fratello, and R. M. J. Osgood, "Integrated optical isolators with sputter-deposited thin-film magnets," IEEE Photonic Technol. Lett. 8, 903-905 (1996).
[CrossRef]

1993 (1)

M. Levy, I. Ilic, R. Scarmozzino, R. M. J. Osgood, R. Wolfe, C. J. Gutierrez, and G. A. Prinz, "Thin-film-magnet magnetooptic waveguide isolator," IEEE Photonic. Tech. Lett. 5, 198-200 (1993).
[CrossRef]

Aiello, L.

Bado, P.

Y. Sikorski, A. A. Said, P. Bado, R. Maynard, C. Florea, and K. A. Winick, "Optical waveguide amplifier in Nd-doped glass written with near-IR femtosecond laser pulses," Electron. Lett. 36, 226-227 (2000).
[CrossRef]

Bahlmann, N.

Borrelli, N. F.

Brodeur, A.

Burghoff, J.

S. Nolte, M. Will, J. Burghoff, and A. Tuennermann, "Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics," Appl. Phys.A-Mater. 77, 109-111 (2003).
[CrossRef]

Cadieu, F. J.

M. Levy, H. Hegde, F. J. Cadieu, R. Wolfe, V. J. Fratello, and R. M. J. Osgood, "Integrated optical isolators with sputter-deposited thin-film magnets," IEEE Photonic Technol. Lett. 8, 903-905 (1996).
[CrossRef]

Cerami, L. R.

M. Kamata, M. Obara, R. R. Gattass, L. R. Cerami, and E. Mazur, "Optical vibration sensor fabricated by femtosecond laser micromachining," Appl. Phys. Lett. 87, 051106-051101-051103 (2005).
[CrossRef]

Cerullo, G.

Chiodo, N.

Davis, K. M.

De Nicola, S.

De Silvestri, S.

Della Valle, G.

Dotsch, H.

Ebendorff-Heidepriem, H.

H. Ebendorff-Heidepriem and D. Ehrt: "Effect of Tb3+ ions on X-ray induced defect formation in phosphate containing glasses," Opt. Mater. 18, 419-422 (2002).
[CrossRef]

H. Ebendorff-Heidepriem and D. Ehrt: "Electron spin resonance spectra of Eu2+ and Tb4+ ions in glasses," J. Phys-Condens.Mat. 11, 7627-7629 (1999).
[CrossRef]

Ehrt, D.

H. Ebendorff-Heidepriem and D. Ehrt: "Effect of Tb3+ ions on X-ray induced defect formation in phosphate containing glasses," Opt. Mater. 18, 419-422 (2002).
[CrossRef]

H. Ebendorff-Heidepriem and D. Ehrt: "Electron spin resonance spectra of Eu2+ and Tb4+ ions in glasses," J. Phys-Condens.Mat. 11, 7627-7629 (1999).
[CrossRef]

Ferraro, P.

Finizio, A.

Florea, C.

C. Florea and K. A. Winick, "Fabrication and characterization of photonic devices directly written in glass using femtosecond laser pulses," J. Lightwave Technol. 21, 246-253 (2003).
[CrossRef]

Y. Sikorski, A. A. Said, P. Bado, R. Maynard, C. Florea, and K. A. Winick, "Optical waveguide amplifier in Nd-doped glass written with near-IR femtosecond laser pulses," Electron. Lett. 36, 226-227 (2000).
[CrossRef]

Fratello, V. J.

M. Levy, H. Hegde, F. J. Cadieu, R. Wolfe, V. J. Fratello, and R. M. J. Osgood, "Integrated optical isolators with sputter-deposited thin-film magnets," IEEE Photonic Technol. Lett. 8, 903-905 (1996).
[CrossRef]

Fujimoto, J. G.

Garcia, J. F.

Gattass, R. R.

M. Kamata, M. Obara, R. R. Gattass, L. R. Cerami, and E. Mazur, "Optical vibration sensor fabricated by femtosecond laser micromachining," Appl. Phys. Lett. 87, 051106-051101-051103 (2005).
[CrossRef]

Gerhardt, R.

Gutierrez, C. J.

M. Levy, I. Ilic, R. Scarmozzino, R. M. J. Osgood, R. Wolfe, C. J. Gutierrez, and G. A. Prinz, "Thin-film-magnet magnetooptic waveguide isolator," IEEE Photonic. Tech. Lett. 5, 198-200 (1993).
[CrossRef]

Hammer, M.

Hegde, H.

M. Levy, H. Hegde, F. J. Cadieu, R. Wolfe, V. J. Fratello, and R. M. J. Osgood, "Integrated optical isolators with sputter-deposited thin-film magnets," IEEE Photonic Technol. Lett. 8, 903-905 (1996).
[CrossRef]

Hertel, P.

Higuchi, H.

J. Qiu, J. B. Qiu, H. Higuchi, Y. Kawamoto, and K. Hirao: "Faraday effect of GaS3/2-GeS2-LaS3/2-based glasses containing various rare-earth ions," J. Appl. Phys. 80, 5297-5300 (1996).
[CrossRef]

Hirao, K.

J. Qiu, J. B. Qiu, H. Higuchi, Y. Kawamoto, and K. Hirao: "Faraday effect of GaS3/2-GeS2-LaS3/2-based glasses containing various rare-earth ions," J. Appl. Phys. 80, 5297-5300 (1996).
[CrossRef]

K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, "Writing waveguides in glass with a femtosecond laser," Opt. Lett. 21, 1729-1731 (1996).
[CrossRef] [PubMed]

Ilic, I.

M. Levy, I. Ilic, R. Scarmozzino, R. M. J. Osgood, R. Wolfe, C. J. Gutierrez, and G. A. Prinz, "Thin-film-magnet magnetooptic waveguide isolator," IEEE Photonic. Tech. Lett. 5, 198-200 (1993).
[CrossRef]

Ippen, E. P.

Kamata, M.

M. Kamata, M. Obara, R. R. Gattass, L. R. Cerami, and E. Mazur, "Optical vibration sensor fabricated by femtosecond laser micromachining," Appl. Phys. Lett. 87, 051106-051101-051103 (2005).
[CrossRef]

Kawamoto, Y.

J. Qiu, J. B. Qiu, H. Higuchi, Y. Kawamoto, and K. Hirao: "Faraday effect of GaS3/2-GeS2-LaS3/2-based glasses containing various rare-earth ions," J. Appl. Phys. 80, 5297-5300 (1996).
[CrossRef]

Killi, A.

Kopf, D.

Kowalevicz, A. M.

Laporta, P.

Lederer, M.

Levy, M.

M. Levy, H. Hegde, F. J. Cadieu, R. Wolfe, V. J. Fratello, and R. M. J. Osgood, "Integrated optical isolators with sputter-deposited thin-film magnets," IEEE Photonic Technol. Lett. 8, 903-905 (1996).
[CrossRef]

M. Levy, I. Ilic, R. Scarmozzino, R. M. J. Osgood, R. Wolfe, C. J. Gutierrez, and G. A. Prinz, "Thin-film-magnet magnetooptic waveguide isolator," IEEE Photonic. Tech. Lett. 5, 198-200 (1993).
[CrossRef]

Marangoni, M.

Maselli, V.

Maynard, R.

Y. Sikorski, A. A. Said, P. Bado, R. Maynard, C. Florea, and K. A. Winick, "Optical waveguide amplifier in Nd-doped glass written with near-IR femtosecond laser pulses," Electron. Lett. 36, 226-227 (2000).
[CrossRef]

Mazur, E.

C. B. Schaffer, A. Brodeur, J. F. Garcia, and E. Mazur, "Micromachining bulk glass by use of femtosecond laser pulses with nanojoule energy," Opt. Lett. 26, 93-95 (2001).
[CrossRef]

M. Kamata, M. Obara, R. R. Gattass, L. R. Cerami, and E. Mazur, "Optical vibration sensor fabricated by femtosecond laser micromachining," Appl. Phys. Lett. 87, 051106-051101-051103 (2005).
[CrossRef]

Minoshima, K.

Miura, K.

Morgner, U.

Nolte, S.

S. Nolte, M. Will, J. Burghoff, and A. Tuennermann, "Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics," Appl. Phys.A-Mater. 77, 109-111 (2003).
[CrossRef]

Obara, M.

M. Kamata, M. Obara, R. R. Gattass, L. R. Cerami, and E. Mazur, "Optical vibration sensor fabricated by femtosecond laser micromachining," Appl. Phys. Lett. 87, 051106-051101-051103 (2005).
[CrossRef]

Osellame, R.

Osgood, R. M. J.

M. Levy, H. Hegde, F. J. Cadieu, R. Wolfe, V. J. Fratello, and R. M. J. Osgood, "Integrated optical isolators with sputter-deposited thin-film magnets," IEEE Photonic Technol. Lett. 8, 903-905 (1996).
[CrossRef]

M. Levy, I. Ilic, R. Scarmozzino, R. M. J. Osgood, R. Wolfe, C. J. Gutierrez, and G. A. Prinz, "Thin-film-magnet magnetooptic waveguide isolator," IEEE Photonic. Tech. Lett. 5, 198-200 (1993).
[CrossRef]

Pierattini, G.

Polli, D.

Popkov, A. F.

Prinz, G. A.

M. Levy, I. Ilic, R. Scarmozzino, R. M. J. Osgood, R. Wolfe, C. J. Gutierrez, and G. A. Prinz, "Thin-film-magnet magnetooptic waveguide isolator," IEEE Photonic. Tech. Lett. 5, 198-200 (1993).
[CrossRef]

Qiu, J.

J. Qiu, J. B. Qiu, H. Higuchi, Y. Kawamoto, and K. Hirao: "Faraday effect of GaS3/2-GeS2-LaS3/2-based glasses containing various rare-earth ions," J. Appl. Phys. 80, 5297-5300 (1996).
[CrossRef]

Qiu, J. B.

J. Qiu, J. B. Qiu, H. Higuchi, Y. Kawamoto, and K. Hirao: "Faraday effect of GaS3/2-GeS2-LaS3/2-based glasses containing various rare-earth ions," J. Appl. Phys. 80, 5297-5300 (1996).
[CrossRef]

Ramponi, R.

Said, A. A.

Y. Sikorski, A. A. Said, P. Bado, R. Maynard, C. Florea, and K. A. Winick, "Optical waveguide amplifier in Nd-doped glass written with near-IR femtosecond laser pulses," Electron. Lett. 36, 226-227 (2000).
[CrossRef]

Scarmozzino, R.

M. Levy, I. Ilic, R. Scarmozzino, R. M. J. Osgood, R. Wolfe, C. J. Gutierrez, and G. A. Prinz, "Thin-film-magnet magnetooptic waveguide isolator," IEEE Photonic. Tech. Lett. 5, 198-200 (1993).
[CrossRef]

Schaffer, C. B.

Sharma, V.

Sikorski, Y.

Y. Sikorski, A. A. Said, P. Bado, R. Maynard, C. Florea, and K. A. Winick, "Optical waveguide amplifier in Nd-doped glass written with near-IR femtosecond laser pulses," Electron. Lett. 36, 226-227 (2000).
[CrossRef]

Streltsov, A. M.

Sugimoto, N.

Svelto, O.

Taccheo, S.

Tuennermann, A.

S. Nolte, M. Will, J. Burghoff, and A. Tuennermann, "Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics," Appl. Phys.A-Mater. 77, 109-111 (2003).
[CrossRef]

Wilkens, L.

Will, M.

S. Nolte, M. Will, J. Burghoff, and A. Tuennermann, "Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics," Appl. Phys.A-Mater. 77, 109-111 (2003).
[CrossRef]

Winick, K. A.

C. Florea and K. A. Winick, "Fabrication and characterization of photonic devices directly written in glass using femtosecond laser pulses," J. Lightwave Technol. 21, 246-253 (2003).
[CrossRef]

Y. Sikorski, A. A. Said, P. Bado, R. Maynard, C. Florea, and K. A. Winick, "Optical waveguide amplifier in Nd-doped glass written with near-IR femtosecond laser pulses," Electron. Lett. 36, 226-227 (2000).
[CrossRef]

Wolfe, R.

M. Levy, H. Hegde, F. J. Cadieu, R. Wolfe, V. J. Fratello, and R. M. J. Osgood, "Integrated optical isolators with sputter-deposited thin-film magnets," IEEE Photonic Technol. Lett. 8, 903-905 (1996).
[CrossRef]

M. Levy, I. Ilic, R. Scarmozzino, R. M. J. Osgood, R. Wolfe, C. J. Gutierrez, and G. A. Prinz, "Thin-film-magnet magnetooptic waveguide isolator," IEEE Photonic. Tech. Lett. 5, 198-200 (1993).
[CrossRef]

Yin, A.

Zavelani-Rossi, M.

Zhuromskyy, O.

A-Mater. (1)

S. Nolte, M. Will, J. Burghoff, and A. Tuennermann, "Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics," Appl. Phys.A-Mater. 77, 109-111 (2003).
[CrossRef]

Electron. Lett. (1)

Y. Sikorski, A. A. Said, P. Bado, R. Maynard, C. Florea, and K. A. Winick, "Optical waveguide amplifier in Nd-doped glass written with near-IR femtosecond laser pulses," Electron. Lett. 36, 226-227 (2000).
[CrossRef]

IEEE Photonic Technol. Lett. (1)

M. Levy, H. Hegde, F. J. Cadieu, R. Wolfe, V. J. Fratello, and R. M. J. Osgood, "Integrated optical isolators with sputter-deposited thin-film magnets," IEEE Photonic Technol. Lett. 8, 903-905 (1996).
[CrossRef]

IEEE Photonic. Tech. Lett. (1)

M. Levy, I. Ilic, R. Scarmozzino, R. M. J. Osgood, R. Wolfe, C. J. Gutierrez, and G. A. Prinz, "Thin-film-magnet magnetooptic waveguide isolator," IEEE Photonic. Tech. Lett. 5, 198-200 (1993).
[CrossRef]

J. Appl. Phys. (1)

J. Qiu, J. B. Qiu, H. Higuchi, Y. Kawamoto, and K. Hirao: "Faraday effect of GaS3/2-GeS2-LaS3/2-based glasses containing various rare-earth ions," J. Appl. Phys. 80, 5297-5300 (1996).
[CrossRef]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (2)

Mat. (1)

H. Ebendorff-Heidepriem and D. Ehrt: "Electron spin resonance spectra of Eu2+ and Tb4+ ions in glasses," J. Phys-Condens.Mat. 11, 7627-7629 (1999).
[CrossRef]

Opt. Express (3)

Opt. Lett. (5)

Opt. Mater. (1)

H. Ebendorff-Heidepriem and D. Ehrt: "Effect of Tb3+ ions on X-ray induced defect formation in phosphate containing glasses," Opt. Mater. 18, 419-422 (2002).
[CrossRef]

Other (2)

M. Kamata, M. Obara, R. R. Gattass, L. R. Cerami, and E. Mazur, "Optical vibration sensor fabricated by femtosecond laser micromachining," Appl. Phys. Lett. 87, 051106-051101-051103 (2005).
[CrossRef]

M. Born and E. Wolf, "Principles of Optics" (1980).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Optical microscope image of micromachined waveguides inside the Faraday glass. Left Inset: Cross-sectional view of waveguide. Right Inset: Observed multimode behavior at 632 nm.

Fig. 2.
Fig. 2.

Experimental setup for measuring Faraday rotation. A 632.8-nm laser beam is sent through a linear polarizer, coupled into and out of the sample using 10× microscope objectives, and finally analyzed by a rotating linear polarizer mounted on a motorized wheel.

Fig. 3.
Fig. 3.

Oscilloscope traces of the signal transmitted through the bulk Faraday glass for values of the integrated magnetic field profile of ±0.2 T∙m. The observed phase shift gives the relative Faraday polarization rotation angle.

Fig. 4.
Fig. 4.

Linear dependence of the induced phase change on the integrated magnetic field profile for (a) bulk Faraday glass and (b) a waveguide written in Faraday glass.

Fig. 5.
Fig. 5.

Electron Paramagnetic Resonance spectrum of bulk Faraday glass. The shaded region shows the paramagnetic resonance due to the Tb4+ ions.

Fig. 6.
Fig. 6.

Paramagnetic resonance due to the Tb4+ ions in the Electron Paramagnetic Resonance spectrum of Faraday glass (a) before and (b) after irradiation with femtosecond laser pulses. The curves show a Lorentzian fit to the data.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

V = θ 0 L B ( x ) dx .

Metrics