Abstract

This paper presents methodology developed for the computational modeling and design of negative refractive index materials (NIMs) based on molecular chirality. An application of the methodology is illustrated by ab initio computations on two organometallic molecules which constitute the monomer units of a chiral polymer. Comparisons with experimental data for the polymer are made. Even though the resulting chirality parameter for the pristine material is small, it is shown that negative index can be achieved by introducing sharp plasmonic resonances with metal nanoparticle inclusions.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. N. Grigorenko, "Negative refractive index in artificial metamaterials," Opt. Lett. 31, 2483-2485 (2006).
    [CrossRef] [PubMed]
  2. J. B. Pendry, "Negative refraction makes a perfect lens," Phys. Rev. Lett. 85, 3966-3969 (2000).
    [CrossRef] [PubMed]
  3. S. Tretyakov, I. Nefedov, A. Sihvola, S. Maslovski, and C. Simovski, "Waves and energy in chiral nihility," J. Electromagn. Waves Appl. 17, 695-706 (2003).
    [CrossRef]
  4. J. B. Pendry, "A chiral route to negative refraction," Science 306, 1353-1355 (2004).
    [CrossRef] [PubMed]
  5. Y. Jin and S. He, "Focusing by a slab of chiral medium," Opt. Express 13, 4974-4979 (2005).
    [CrossRef] [PubMed]
  6. J. Q. Shen and S. He, "Backward waves and negative refractive indices in gyrotropic chiral media," J. Phys. A: Math. Gen. 39, 457-466 (2006).
    [CrossRef]
  7. J. Q. Shen, M. Norgren, and S. He, "Negative refraction and quantum vacuum effects in gyroelectric chiral mnedium and anisotropic magnetoelectric material," Ann. Phys. (Leipzig) 15, 894-910 (2006).
    [CrossRef]
  8. V. M. Agranovich, Yu. N. Gartstein, and A. A. Zakhidov, "Negative refraction in gyrotropic media," Phys. Rev. B 73, 045114 (2006).
    [CrossRef]
  9. Q. Cheng and T. J. Cui, "Negative refractions in uniaxially anisotropic chiral media," Phys. Rev. B 73, 113104 (2006).
    [CrossRef]
  10. V. Yannopapas, "Negative index of refraction in artificial chiral materials," J. Phys.: Condens. Matter 18, 6883-6890 (2006).
    [CrossRef]
  11. E. U. Condon, "Theories of optical rotatory power," Rev. Mod. Phys. 9, 432-457 (1937).
    [CrossRef]
  12. K. Ruud and T. Helgaker, "Optical rotation studied by density-functional and coupled-cluster methods," Chem. Phys. Lett. 352, 533-539 (2002).
    [CrossRef]
  13. J. J. Maki and A. Persoons, "One-electron second-order optical activity of a helix," J. Chem. Phys. 104, 9340 (1996).
    [CrossRef]
  14. S. A. Tretyakov, F. Mariotte, C. R. Simovski, T. G. Kharina, and J.-P. Heliot, "Analytical antenna model for chiral scatterers: Comparison with numerical and experimental data," IEEE Trans. Antennas Propag. 44, 1006 (1996).
    [CrossRef]
  15. V. Percec, M. Glodde, T. K. Bera, Y. Miura, I. Shiyanovskaya, K. D. Singer, V. S. K. Balagurusamy, P. A. Heiney, I. Schnell, A. Rapp, H. W. Spiess, S. D. Hudson, and H. Duan, "Self-organization of supramolecular helical dendrimers into complex electronic materials," Nature 419, 384-387 (2002).
    [CrossRef] [PubMed]
  16. M. Krykunov, M. D. Kundrat, and J. Autschbach, "Calculation of circular dichroism spectra from optical rotatory dispersion, and vice versa, as complementary tools for theoretical studies of optical activity using time-dependent density functional theory," J. Chem. Phys. 125,194110-13 (2006).
    [CrossRef]
  17. C. R. Jeggo, "Nonlinear optics and optical activity," J. Phys. C: Solid State Physics 5, 330-337 (1972).
    [CrossRef]
  18. A. D. Buckingham and M. B. Dunn, "Optical activity of oriented molecules," J. Chem. Soc. A1988 (1971).
  19. M. Krykunov and J. Autschbach, "Calculation of origin independent optical rotation tensor components for chiral oriented systems in approximate time-dependent density functional theory," J. Chem. Phys. 125, 034102-10 (2006).
    [CrossRef]
  20. J. Autschbach and T. Ziegler, "Calculating electric and magnetic properties from time dependent density functional perturbation theory," J. Chem. Phys. 116, 891-896 (2002).
    [CrossRef]
  21. J. Autschbach, T. Ziegler, S. Patchkovskii, S. J. A. van Gisbergen, and E. J. Baerends, "Chiroptical properties from time-dependent density functional theory. II. Optical rotations of small to medium sized organic molecules," J. Chem. Phys. 117, 581-592 (2002).
    [CrossRef]
  22. E. J. Baerends et al., Amsterdam density functional, Theoretical Chemistry, Vrije Universiteit, Amsterdam (URL http://www.scm.com).
  23. M. Krykunov and J. Autschbach, "Calculation of optical rotation with time-periodic magnetic field-dependent basis functions in approximate time-dependent density functional theory," J. Chem. Phys. 123, 114103-10 (2005).
    [CrossRef]
  24. J. Autschbach, L. Jensen, G. C. Schatz, Y. C. E. Tse, and M. Krykunov, "Time-dependent density functional calculations of optical rotatory dispersion including resonance wavelengths as a potentially useful tool for determining absolute configurations of chiral molecules," J. Phys. Chem. A 110, 2461-2473 (2006).
    [CrossRef] [PubMed]
  25. W. T. Doyle, "Optical properties of a suspension of metal spheres," Phys. Rev. B 39, 9852-9858 (1989).
    [CrossRef]
  26. S. Tretyakov, A. Sihvola, and L. Jylhä, "Backward-wave regime and negative refraction in chiral composites," arXiv:cond-mat/0509287, 1 (2005).
  27. J. Autschbach, "Density Functional Theory applied to calculating optical and spectroscopic properties of metal complexes: NMR and Optical Activity," Coord. Chem. Rev., in press.

2006 (9)

J. Q. Shen and S. He, "Backward waves and negative refractive indices in gyrotropic chiral media," J. Phys. A: Math. Gen. 39, 457-466 (2006).
[CrossRef]

J. Q. Shen, M. Norgren, and S. He, "Negative refraction and quantum vacuum effects in gyroelectric chiral mnedium and anisotropic magnetoelectric material," Ann. Phys. (Leipzig) 15, 894-910 (2006).
[CrossRef]

V. M. Agranovich, Yu. N. Gartstein, and A. A. Zakhidov, "Negative refraction in gyrotropic media," Phys. Rev. B 73, 045114 (2006).
[CrossRef]

Q. Cheng and T. J. Cui, "Negative refractions in uniaxially anisotropic chiral media," Phys. Rev. B 73, 113104 (2006).
[CrossRef]

V. Yannopapas, "Negative index of refraction in artificial chiral materials," J. Phys.: Condens. Matter 18, 6883-6890 (2006).
[CrossRef]

M. Krykunov, M. D. Kundrat, and J. Autschbach, "Calculation of circular dichroism spectra from optical rotatory dispersion, and vice versa, as complementary tools for theoretical studies of optical activity using time-dependent density functional theory," J. Chem. Phys. 125,194110-13 (2006).
[CrossRef]

M. Krykunov and J. Autschbach, "Calculation of origin independent optical rotation tensor components for chiral oriented systems in approximate time-dependent density functional theory," J. Chem. Phys. 125, 034102-10 (2006).
[CrossRef]

J. Autschbach, L. Jensen, G. C. Schatz, Y. C. E. Tse, and M. Krykunov, "Time-dependent density functional calculations of optical rotatory dispersion including resonance wavelengths as a potentially useful tool for determining absolute configurations of chiral molecules," J. Phys. Chem. A 110, 2461-2473 (2006).
[CrossRef] [PubMed]

A. N. Grigorenko, "Negative refractive index in artificial metamaterials," Opt. Lett. 31, 2483-2485 (2006).
[CrossRef] [PubMed]

2005 (2)

Y. Jin and S. He, "Focusing by a slab of chiral medium," Opt. Express 13, 4974-4979 (2005).
[CrossRef] [PubMed]

M. Krykunov and J. Autschbach, "Calculation of optical rotation with time-periodic magnetic field-dependent basis functions in approximate time-dependent density functional theory," J. Chem. Phys. 123, 114103-10 (2005).
[CrossRef]

2004 (1)

J. B. Pendry, "A chiral route to negative refraction," Science 306, 1353-1355 (2004).
[CrossRef] [PubMed]

2003 (1)

S. Tretyakov, I. Nefedov, A. Sihvola, S. Maslovski, and C. Simovski, "Waves and energy in chiral nihility," J. Electromagn. Waves Appl. 17, 695-706 (2003).
[CrossRef]

2002 (4)

V. Percec, M. Glodde, T. K. Bera, Y. Miura, I. Shiyanovskaya, K. D. Singer, V. S. K. Balagurusamy, P. A. Heiney, I. Schnell, A. Rapp, H. W. Spiess, S. D. Hudson, and H. Duan, "Self-organization of supramolecular helical dendrimers into complex electronic materials," Nature 419, 384-387 (2002).
[CrossRef] [PubMed]

J. Autschbach and T. Ziegler, "Calculating electric and magnetic properties from time dependent density functional perturbation theory," J. Chem. Phys. 116, 891-896 (2002).
[CrossRef]

J. Autschbach, T. Ziegler, S. Patchkovskii, S. J. A. van Gisbergen, and E. J. Baerends, "Chiroptical properties from time-dependent density functional theory. II. Optical rotations of small to medium sized organic molecules," J. Chem. Phys. 117, 581-592 (2002).
[CrossRef]

K. Ruud and T. Helgaker, "Optical rotation studied by density-functional and coupled-cluster methods," Chem. Phys. Lett. 352, 533-539 (2002).
[CrossRef]

2000 (1)

J. B. Pendry, "Negative refraction makes a perfect lens," Phys. Rev. Lett. 85, 3966-3969 (2000).
[CrossRef] [PubMed]

1996 (2)

J. J. Maki and A. Persoons, "One-electron second-order optical activity of a helix," J. Chem. Phys. 104, 9340 (1996).
[CrossRef]

S. A. Tretyakov, F. Mariotte, C. R. Simovski, T. G. Kharina, and J.-P. Heliot, "Analytical antenna model for chiral scatterers: Comparison with numerical and experimental data," IEEE Trans. Antennas Propag. 44, 1006 (1996).
[CrossRef]

1989 (1)

W. T. Doyle, "Optical properties of a suspension of metal spheres," Phys. Rev. B 39, 9852-9858 (1989).
[CrossRef]

1972 (1)

C. R. Jeggo, "Nonlinear optics and optical activity," J. Phys. C: Solid State Physics 5, 330-337 (1972).
[CrossRef]

1971 (1)

A. D. Buckingham and M. B. Dunn, "Optical activity of oriented molecules," J. Chem. Soc. A1988 (1971).

1937 (1)

E. U. Condon, "Theories of optical rotatory power," Rev. Mod. Phys. 9, 432-457 (1937).
[CrossRef]

Agranovich, V. M.

V. M. Agranovich, Yu. N. Gartstein, and A. A. Zakhidov, "Negative refraction in gyrotropic media," Phys. Rev. B 73, 045114 (2006).
[CrossRef]

Autschbach, J.

M. Krykunov and J. Autschbach, "Calculation of origin independent optical rotation tensor components for chiral oriented systems in approximate time-dependent density functional theory," J. Chem. Phys. 125, 034102-10 (2006).
[CrossRef]

M. Krykunov, M. D. Kundrat, and J. Autschbach, "Calculation of circular dichroism spectra from optical rotatory dispersion, and vice versa, as complementary tools for theoretical studies of optical activity using time-dependent density functional theory," J. Chem. Phys. 125,194110-13 (2006).
[CrossRef]

J. Autschbach, L. Jensen, G. C. Schatz, Y. C. E. Tse, and M. Krykunov, "Time-dependent density functional calculations of optical rotatory dispersion including resonance wavelengths as a potentially useful tool for determining absolute configurations of chiral molecules," J. Phys. Chem. A 110, 2461-2473 (2006).
[CrossRef] [PubMed]

M. Krykunov and J. Autschbach, "Calculation of optical rotation with time-periodic magnetic field-dependent basis functions in approximate time-dependent density functional theory," J. Chem. Phys. 123, 114103-10 (2005).
[CrossRef]

J. Autschbach, T. Ziegler, S. Patchkovskii, S. J. A. van Gisbergen, and E. J. Baerends, "Chiroptical properties from time-dependent density functional theory. II. Optical rotations of small to medium sized organic molecules," J. Chem. Phys. 117, 581-592 (2002).
[CrossRef]

J. Autschbach and T. Ziegler, "Calculating electric and magnetic properties from time dependent density functional perturbation theory," J. Chem. Phys. 116, 891-896 (2002).
[CrossRef]

J. Autschbach, "Density Functional Theory applied to calculating optical and spectroscopic properties of metal complexes: NMR and Optical Activity," Coord. Chem. Rev., in press.

Baerends, E. J.

J. Autschbach, T. Ziegler, S. Patchkovskii, S. J. A. van Gisbergen, and E. J. Baerends, "Chiroptical properties from time-dependent density functional theory. II. Optical rotations of small to medium sized organic molecules," J. Chem. Phys. 117, 581-592 (2002).
[CrossRef]

Balagurusamy, V. S. K.

V. Percec, M. Glodde, T. K. Bera, Y. Miura, I. Shiyanovskaya, K. D. Singer, V. S. K. Balagurusamy, P. A. Heiney, I. Schnell, A. Rapp, H. W. Spiess, S. D. Hudson, and H. Duan, "Self-organization of supramolecular helical dendrimers into complex electronic materials," Nature 419, 384-387 (2002).
[CrossRef] [PubMed]

Bera, T. K.

V. Percec, M. Glodde, T. K. Bera, Y. Miura, I. Shiyanovskaya, K. D. Singer, V. S. K. Balagurusamy, P. A. Heiney, I. Schnell, A. Rapp, H. W. Spiess, S. D. Hudson, and H. Duan, "Self-organization of supramolecular helical dendrimers into complex electronic materials," Nature 419, 384-387 (2002).
[CrossRef] [PubMed]

Buckingham, A. D.

A. D. Buckingham and M. B. Dunn, "Optical activity of oriented molecules," J. Chem. Soc. A1988 (1971).

Cheng, Q.

Q. Cheng and T. J. Cui, "Negative refractions in uniaxially anisotropic chiral media," Phys. Rev. B 73, 113104 (2006).
[CrossRef]

Condon, E. U.

E. U. Condon, "Theories of optical rotatory power," Rev. Mod. Phys. 9, 432-457 (1937).
[CrossRef]

Cui, T. J.

Q. Cheng and T. J. Cui, "Negative refractions in uniaxially anisotropic chiral media," Phys. Rev. B 73, 113104 (2006).
[CrossRef]

Doyle, W. T.

W. T. Doyle, "Optical properties of a suspension of metal spheres," Phys. Rev. B 39, 9852-9858 (1989).
[CrossRef]

Duan, H.

V. Percec, M. Glodde, T. K. Bera, Y. Miura, I. Shiyanovskaya, K. D. Singer, V. S. K. Balagurusamy, P. A. Heiney, I. Schnell, A. Rapp, H. W. Spiess, S. D. Hudson, and H. Duan, "Self-organization of supramolecular helical dendrimers into complex electronic materials," Nature 419, 384-387 (2002).
[CrossRef] [PubMed]

Dunn, M. B.

A. D. Buckingham and M. B. Dunn, "Optical activity of oriented molecules," J. Chem. Soc. A1988 (1971).

Gartstein, Yu. N.

V. M. Agranovich, Yu. N. Gartstein, and A. A. Zakhidov, "Negative refraction in gyrotropic media," Phys. Rev. B 73, 045114 (2006).
[CrossRef]

Glodde, M.

V. Percec, M. Glodde, T. K. Bera, Y. Miura, I. Shiyanovskaya, K. D. Singer, V. S. K. Balagurusamy, P. A. Heiney, I. Schnell, A. Rapp, H. W. Spiess, S. D. Hudson, and H. Duan, "Self-organization of supramolecular helical dendrimers into complex electronic materials," Nature 419, 384-387 (2002).
[CrossRef] [PubMed]

Grigorenko, A. N.

He, S.

J. Q. Shen, M. Norgren, and S. He, "Negative refraction and quantum vacuum effects in gyroelectric chiral mnedium and anisotropic magnetoelectric material," Ann. Phys. (Leipzig) 15, 894-910 (2006).
[CrossRef]

J. Q. Shen and S. He, "Backward waves and negative refractive indices in gyrotropic chiral media," J. Phys. A: Math. Gen. 39, 457-466 (2006).
[CrossRef]

Y. Jin and S. He, "Focusing by a slab of chiral medium," Opt. Express 13, 4974-4979 (2005).
[CrossRef] [PubMed]

Heiney, P. A.

V. Percec, M. Glodde, T. K. Bera, Y. Miura, I. Shiyanovskaya, K. D. Singer, V. S. K. Balagurusamy, P. A. Heiney, I. Schnell, A. Rapp, H. W. Spiess, S. D. Hudson, and H. Duan, "Self-organization of supramolecular helical dendrimers into complex electronic materials," Nature 419, 384-387 (2002).
[CrossRef] [PubMed]

Helgaker, T.

K. Ruud and T. Helgaker, "Optical rotation studied by density-functional and coupled-cluster methods," Chem. Phys. Lett. 352, 533-539 (2002).
[CrossRef]

Heliot, J.-P.

S. A. Tretyakov, F. Mariotte, C. R. Simovski, T. G. Kharina, and J.-P. Heliot, "Analytical antenna model for chiral scatterers: Comparison with numerical and experimental data," IEEE Trans. Antennas Propag. 44, 1006 (1996).
[CrossRef]

Hudson, S. D.

V. Percec, M. Glodde, T. K. Bera, Y. Miura, I. Shiyanovskaya, K. D. Singer, V. S. K. Balagurusamy, P. A. Heiney, I. Schnell, A. Rapp, H. W. Spiess, S. D. Hudson, and H. Duan, "Self-organization of supramolecular helical dendrimers into complex electronic materials," Nature 419, 384-387 (2002).
[CrossRef] [PubMed]

Jeggo, C. R.

C. R. Jeggo, "Nonlinear optics and optical activity," J. Phys. C: Solid State Physics 5, 330-337 (1972).
[CrossRef]

Jensen, L.

J. Autschbach, L. Jensen, G. C. Schatz, Y. C. E. Tse, and M. Krykunov, "Time-dependent density functional calculations of optical rotatory dispersion including resonance wavelengths as a potentially useful tool for determining absolute configurations of chiral molecules," J. Phys. Chem. A 110, 2461-2473 (2006).
[CrossRef] [PubMed]

Jin, Y.

Kharina, T. G.

S. A. Tretyakov, F. Mariotte, C. R. Simovski, T. G. Kharina, and J.-P. Heliot, "Analytical antenna model for chiral scatterers: Comparison with numerical and experimental data," IEEE Trans. Antennas Propag. 44, 1006 (1996).
[CrossRef]

Krykunov, M.

J. Autschbach, L. Jensen, G. C. Schatz, Y. C. E. Tse, and M. Krykunov, "Time-dependent density functional calculations of optical rotatory dispersion including resonance wavelengths as a potentially useful tool for determining absolute configurations of chiral molecules," J. Phys. Chem. A 110, 2461-2473 (2006).
[CrossRef] [PubMed]

M. Krykunov, M. D. Kundrat, and J. Autschbach, "Calculation of circular dichroism spectra from optical rotatory dispersion, and vice versa, as complementary tools for theoretical studies of optical activity using time-dependent density functional theory," J. Chem. Phys. 125,194110-13 (2006).
[CrossRef]

M. Krykunov and J. Autschbach, "Calculation of origin independent optical rotation tensor components for chiral oriented systems in approximate time-dependent density functional theory," J. Chem. Phys. 125, 034102-10 (2006).
[CrossRef]

M. Krykunov and J. Autschbach, "Calculation of optical rotation with time-periodic magnetic field-dependent basis functions in approximate time-dependent density functional theory," J. Chem. Phys. 123, 114103-10 (2005).
[CrossRef]

Kundrat, M. D.

M. Krykunov, M. D. Kundrat, and J. Autschbach, "Calculation of circular dichroism spectra from optical rotatory dispersion, and vice versa, as complementary tools for theoretical studies of optical activity using time-dependent density functional theory," J. Chem. Phys. 125,194110-13 (2006).
[CrossRef]

Maki, J. J.

J. J. Maki and A. Persoons, "One-electron second-order optical activity of a helix," J. Chem. Phys. 104, 9340 (1996).
[CrossRef]

Mariotte, F.

S. A. Tretyakov, F. Mariotte, C. R. Simovski, T. G. Kharina, and J.-P. Heliot, "Analytical antenna model for chiral scatterers: Comparison with numerical and experimental data," IEEE Trans. Antennas Propag. 44, 1006 (1996).
[CrossRef]

Maslovski, S.

S. Tretyakov, I. Nefedov, A. Sihvola, S. Maslovski, and C. Simovski, "Waves and energy in chiral nihility," J. Electromagn. Waves Appl. 17, 695-706 (2003).
[CrossRef]

Miura, Y.

V. Percec, M. Glodde, T. K. Bera, Y. Miura, I. Shiyanovskaya, K. D. Singer, V. S. K. Balagurusamy, P. A. Heiney, I. Schnell, A. Rapp, H. W. Spiess, S. D. Hudson, and H. Duan, "Self-organization of supramolecular helical dendrimers into complex electronic materials," Nature 419, 384-387 (2002).
[CrossRef] [PubMed]

Nefedov, I.

S. Tretyakov, I. Nefedov, A. Sihvola, S. Maslovski, and C. Simovski, "Waves and energy in chiral nihility," J. Electromagn. Waves Appl. 17, 695-706 (2003).
[CrossRef]

Norgren, M.

J. Q. Shen, M. Norgren, and S. He, "Negative refraction and quantum vacuum effects in gyroelectric chiral mnedium and anisotropic magnetoelectric material," Ann. Phys. (Leipzig) 15, 894-910 (2006).
[CrossRef]

Patchkovskii, S.

J. Autschbach, T. Ziegler, S. Patchkovskii, S. J. A. van Gisbergen, and E. J. Baerends, "Chiroptical properties from time-dependent density functional theory. II. Optical rotations of small to medium sized organic molecules," J. Chem. Phys. 117, 581-592 (2002).
[CrossRef]

Pendry, J. B.

J. B. Pendry, "A chiral route to negative refraction," Science 306, 1353-1355 (2004).
[CrossRef] [PubMed]

J. B. Pendry, "Negative refraction makes a perfect lens," Phys. Rev. Lett. 85, 3966-3969 (2000).
[CrossRef] [PubMed]

Percec, V.

V. Percec, M. Glodde, T. K. Bera, Y. Miura, I. Shiyanovskaya, K. D. Singer, V. S. K. Balagurusamy, P. A. Heiney, I. Schnell, A. Rapp, H. W. Spiess, S. D. Hudson, and H. Duan, "Self-organization of supramolecular helical dendrimers into complex electronic materials," Nature 419, 384-387 (2002).
[CrossRef] [PubMed]

Persoons, A.

J. J. Maki and A. Persoons, "One-electron second-order optical activity of a helix," J. Chem. Phys. 104, 9340 (1996).
[CrossRef]

Rapp, A.

V. Percec, M. Glodde, T. K. Bera, Y. Miura, I. Shiyanovskaya, K. D. Singer, V. S. K. Balagurusamy, P. A. Heiney, I. Schnell, A. Rapp, H. W. Spiess, S. D. Hudson, and H. Duan, "Self-organization of supramolecular helical dendrimers into complex electronic materials," Nature 419, 384-387 (2002).
[CrossRef] [PubMed]

Ruud, K.

K. Ruud and T. Helgaker, "Optical rotation studied by density-functional and coupled-cluster methods," Chem. Phys. Lett. 352, 533-539 (2002).
[CrossRef]

Schatz, G. C.

J. Autschbach, L. Jensen, G. C. Schatz, Y. C. E. Tse, and M. Krykunov, "Time-dependent density functional calculations of optical rotatory dispersion including resonance wavelengths as a potentially useful tool for determining absolute configurations of chiral molecules," J. Phys. Chem. A 110, 2461-2473 (2006).
[CrossRef] [PubMed]

Schnell, I.

V. Percec, M. Glodde, T. K. Bera, Y. Miura, I. Shiyanovskaya, K. D. Singer, V. S. K. Balagurusamy, P. A. Heiney, I. Schnell, A. Rapp, H. W. Spiess, S. D. Hudson, and H. Duan, "Self-organization of supramolecular helical dendrimers into complex electronic materials," Nature 419, 384-387 (2002).
[CrossRef] [PubMed]

Shen, J. Q.

J. Q. Shen, M. Norgren, and S. He, "Negative refraction and quantum vacuum effects in gyroelectric chiral mnedium and anisotropic magnetoelectric material," Ann. Phys. (Leipzig) 15, 894-910 (2006).
[CrossRef]

J. Q. Shen and S. He, "Backward waves and negative refractive indices in gyrotropic chiral media," J. Phys. A: Math. Gen. 39, 457-466 (2006).
[CrossRef]

Shiyanovskaya, I.

V. Percec, M. Glodde, T. K. Bera, Y. Miura, I. Shiyanovskaya, K. D. Singer, V. S. K. Balagurusamy, P. A. Heiney, I. Schnell, A. Rapp, H. W. Spiess, S. D. Hudson, and H. Duan, "Self-organization of supramolecular helical dendrimers into complex electronic materials," Nature 419, 384-387 (2002).
[CrossRef] [PubMed]

Sihvola, A.

S. Tretyakov, I. Nefedov, A. Sihvola, S. Maslovski, and C. Simovski, "Waves and energy in chiral nihility," J. Electromagn. Waves Appl. 17, 695-706 (2003).
[CrossRef]

Simovski, C.

S. Tretyakov, I. Nefedov, A. Sihvola, S. Maslovski, and C. Simovski, "Waves and energy in chiral nihility," J. Electromagn. Waves Appl. 17, 695-706 (2003).
[CrossRef]

Simovski, C. R.

S. A. Tretyakov, F. Mariotte, C. R. Simovski, T. G. Kharina, and J.-P. Heliot, "Analytical antenna model for chiral scatterers: Comparison with numerical and experimental data," IEEE Trans. Antennas Propag. 44, 1006 (1996).
[CrossRef]

Singer, K. D.

V. Percec, M. Glodde, T. K. Bera, Y. Miura, I. Shiyanovskaya, K. D. Singer, V. S. K. Balagurusamy, P. A. Heiney, I. Schnell, A. Rapp, H. W. Spiess, S. D. Hudson, and H. Duan, "Self-organization of supramolecular helical dendrimers into complex electronic materials," Nature 419, 384-387 (2002).
[CrossRef] [PubMed]

Spiess, H. W.

V. Percec, M. Glodde, T. K. Bera, Y. Miura, I. Shiyanovskaya, K. D. Singer, V. S. K. Balagurusamy, P. A. Heiney, I. Schnell, A. Rapp, H. W. Spiess, S. D. Hudson, and H. Duan, "Self-organization of supramolecular helical dendrimers into complex electronic materials," Nature 419, 384-387 (2002).
[CrossRef] [PubMed]

Tretyakov, S.

S. Tretyakov, I. Nefedov, A. Sihvola, S. Maslovski, and C. Simovski, "Waves and energy in chiral nihility," J. Electromagn. Waves Appl. 17, 695-706 (2003).
[CrossRef]

Tretyakov, S. A.

S. A. Tretyakov, F. Mariotte, C. R. Simovski, T. G. Kharina, and J.-P. Heliot, "Analytical antenna model for chiral scatterers: Comparison with numerical and experimental data," IEEE Trans. Antennas Propag. 44, 1006 (1996).
[CrossRef]

Tse, Y. C. E.

J. Autschbach, L. Jensen, G. C. Schatz, Y. C. E. Tse, and M. Krykunov, "Time-dependent density functional calculations of optical rotatory dispersion including resonance wavelengths as a potentially useful tool for determining absolute configurations of chiral molecules," J. Phys. Chem. A 110, 2461-2473 (2006).
[CrossRef] [PubMed]

van Gisbergen, S. J. A.

J. Autschbach, T. Ziegler, S. Patchkovskii, S. J. A. van Gisbergen, and E. J. Baerends, "Chiroptical properties from time-dependent density functional theory. II. Optical rotations of small to medium sized organic molecules," J. Chem. Phys. 117, 581-592 (2002).
[CrossRef]

Yannopapas, V.

V. Yannopapas, "Negative index of refraction in artificial chiral materials," J. Phys.: Condens. Matter 18, 6883-6890 (2006).
[CrossRef]

Zakhidov, A. A.

V. M. Agranovich, Yu. N. Gartstein, and A. A. Zakhidov, "Negative refraction in gyrotropic media," Phys. Rev. B 73, 045114 (2006).
[CrossRef]

Ziegler, T.

J. Autschbach and T. Ziegler, "Calculating electric and magnetic properties from time dependent density functional perturbation theory," J. Chem. Phys. 116, 891-896 (2002).
[CrossRef]

J. Autschbach, T. Ziegler, S. Patchkovskii, S. J. A. van Gisbergen, and E. J. Baerends, "Chiroptical properties from time-dependent density functional theory. II. Optical rotations of small to medium sized organic molecules," J. Chem. Phys. 117, 581-592 (2002).
[CrossRef]

Ann. Phys. (Leipzig) (1)

J. Q. Shen, M. Norgren, and S. He, "Negative refraction and quantum vacuum effects in gyroelectric chiral mnedium and anisotropic magnetoelectric material," Ann. Phys. (Leipzig) 15, 894-910 (2006).
[CrossRef]

Chem. Phys. Lett. (1)

K. Ruud and T. Helgaker, "Optical rotation studied by density-functional and coupled-cluster methods," Chem. Phys. Lett. 352, 533-539 (2002).
[CrossRef]

Coord. Chem. Rev. (1)

J. Autschbach, "Density Functional Theory applied to calculating optical and spectroscopic properties of metal complexes: NMR and Optical Activity," Coord. Chem. Rev., in press.

IEEE Trans. Antennas Propag. (1)

S. A. Tretyakov, F. Mariotte, C. R. Simovski, T. G. Kharina, and J.-P. Heliot, "Analytical antenna model for chiral scatterers: Comparison with numerical and experimental data," IEEE Trans. Antennas Propag. 44, 1006 (1996).
[CrossRef]

J. Chem. Phys. (6)

J. J. Maki and A. Persoons, "One-electron second-order optical activity of a helix," J. Chem. Phys. 104, 9340 (1996).
[CrossRef]

M. Krykunov, M. D. Kundrat, and J. Autschbach, "Calculation of circular dichroism spectra from optical rotatory dispersion, and vice versa, as complementary tools for theoretical studies of optical activity using time-dependent density functional theory," J. Chem. Phys. 125,194110-13 (2006).
[CrossRef]

M. Krykunov and J. Autschbach, "Calculation of origin independent optical rotation tensor components for chiral oriented systems in approximate time-dependent density functional theory," J. Chem. Phys. 125, 034102-10 (2006).
[CrossRef]

J. Autschbach and T. Ziegler, "Calculating electric and magnetic properties from time dependent density functional perturbation theory," J. Chem. Phys. 116, 891-896 (2002).
[CrossRef]

J. Autschbach, T. Ziegler, S. Patchkovskii, S. J. A. van Gisbergen, and E. J. Baerends, "Chiroptical properties from time-dependent density functional theory. II. Optical rotations of small to medium sized organic molecules," J. Chem. Phys. 117, 581-592 (2002).
[CrossRef]

M. Krykunov and J. Autschbach, "Calculation of optical rotation with time-periodic magnetic field-dependent basis functions in approximate time-dependent density functional theory," J. Chem. Phys. 123, 114103-10 (2005).
[CrossRef]

J. Chem. Soc. A (1)

A. D. Buckingham and M. B. Dunn, "Optical activity of oriented molecules," J. Chem. Soc. A1988 (1971).

J. Electromagn. Waves Appl. (1)

S. Tretyakov, I. Nefedov, A. Sihvola, S. Maslovski, and C. Simovski, "Waves and energy in chiral nihility," J. Electromagn. Waves Appl. 17, 695-706 (2003).
[CrossRef]

J. Phys. A: Math. Gen. (1)

J. Q. Shen and S. He, "Backward waves and negative refractive indices in gyrotropic chiral media," J. Phys. A: Math. Gen. 39, 457-466 (2006).
[CrossRef]

J. Phys. C: Solid State Physics (1)

C. R. Jeggo, "Nonlinear optics and optical activity," J. Phys. C: Solid State Physics 5, 330-337 (1972).
[CrossRef]

J. Phys. Chem. A (1)

J. Autschbach, L. Jensen, G. C. Schatz, Y. C. E. Tse, and M. Krykunov, "Time-dependent density functional calculations of optical rotatory dispersion including resonance wavelengths as a potentially useful tool for determining absolute configurations of chiral molecules," J. Phys. Chem. A 110, 2461-2473 (2006).
[CrossRef] [PubMed]

J. Phys.: Condens. Matter (1)

V. Yannopapas, "Negative index of refraction in artificial chiral materials," J. Phys.: Condens. Matter 18, 6883-6890 (2006).
[CrossRef]

Nature (1)

V. Percec, M. Glodde, T. K. Bera, Y. Miura, I. Shiyanovskaya, K. D. Singer, V. S. K. Balagurusamy, P. A. Heiney, I. Schnell, A. Rapp, H. W. Spiess, S. D. Hudson, and H. Duan, "Self-organization of supramolecular helical dendrimers into complex electronic materials," Nature 419, 384-387 (2002).
[CrossRef] [PubMed]

Opt. Express (1)

Opt. Lett. (1)

Phys. Rev. B (3)

W. T. Doyle, "Optical properties of a suspension of metal spheres," Phys. Rev. B 39, 9852-9858 (1989).
[CrossRef]

V. M. Agranovich, Yu. N. Gartstein, and A. A. Zakhidov, "Negative refraction in gyrotropic media," Phys. Rev. B 73, 045114 (2006).
[CrossRef]

Q. Cheng and T. J. Cui, "Negative refractions in uniaxially anisotropic chiral media," Phys. Rev. B 73, 113104 (2006).
[CrossRef]

Phys. Rev. Lett. (1)

J. B. Pendry, "Negative refraction makes a perfect lens," Phys. Rev. Lett. 85, 3966-3969 (2000).
[CrossRef] [PubMed]

Rev. Mod. Phys. (1)

E. U. Condon, "Theories of optical rotatory power," Rev. Mod. Phys. 9, 432-457 (1937).
[CrossRef]

Science (1)

J. B. Pendry, "A chiral route to negative refraction," Science 306, 1353-1355 (2004).
[CrossRef] [PubMed]

Other (2)

S. Tretyakov, A. Sihvola, and L. Jylhä, "Backward-wave regime and negative refraction in chiral composites," arXiv:cond-mat/0509287, 1 (2005).

E. J. Baerends et al., Amsterdam density functional, Theoretical Chemistry, Vrije Universiteit, Amsterdam (URL http://www.scm.com).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Monomeric Ni complex 1. Right: monomer unit of the polymer. Left: model complex used in the ab-initio computations to represent the monomer.

Fig. 2.
Fig. 2.

Monomeric Co complex 2

Fig. 3.
Fig. 3.

(a). Dispersion of molar ellipticity (experimental data) and molar rotation (KK transform of CD spectrum), and (b) chirality parameter of the Ni complex 1

Fig. 4.
Fig. 4.

Theoretical chirality parameter for Ni complex 1

Fig. 5.
Fig. 5.

Material parameters of composite medium when electromagnetic coupling between chiral molecules and nanospheres is neglected: (a) Chirality parameter, (b) Effective dielectric permittivity, (c) Effective index of refraction.

Fig. 6.
Fig. 6.

Material parameters of composite medium when electromagnetic coupling between chiral molecules and nanospheres is accounted for: (a) Chirality parameter, (b) Effective dielectric permittivity, (c) Effective index of refraction.

Tables (2)

Tables Icon

Table I Dispersion of electric polarizability, magnetizability, and optical rotatory parameter for Ni complex 1

Tables Icon

Table II Dispersion of optical rotatory parameter for Co complex 2

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

D ˉ = ε E ˉ + ( χ ) ε 0 μ 0 H ˉ ,
B ˉ = μ H ˉ + ( χ + ) ε 0 μ 0 E ˉ
k ± = k 0 ( εμ ± κ ) .
κ = N μ 0 βωc ,
φ = 1 3 ω 2 ( n 2 + 2 ) N μ 0 β ,
β = 1 ω ( G xx + G yy + G zz ) 3 ,
G αβ ω ω = 2 ħ n 0 ω ω n 0 2 ω 2 m ( 0 μ ̂ α n n m ̂ β 0 ) .
ε eff = ε host x 3 3 if T 1 E x 3 + 3 if T 1 E 2 ,

Metrics