Abstract

We propose simple and compact methods for implementing all-fiber interferometers. The interference between the core and the cladding modes of a photonic crystal fiber (PCF) is utilized. To excite the cladding modes from the fundamental core mode of a PCF, a coupling point or region is formed by using two methods. One is fusion splicing two pieces of a PCF with a small lateral offset, and the other is partially collapsing the air-holes in a single piece of PCF. By making another coupling point at a different location along the fiber, the proposed all-PCF interferometer is implemented. The spectral response of the interferometer is investigated mainly in terms of its wavelength spectrum. The spatial frequency of the spectrum was proportional to the physical length of the interferometer and the difference between the modal group indices of involved waveguide modes. For the splicing type interferometer, only a single spatial frequency component was dominantly observed, while the collapsing type was associated with several components at a time. By analyzing the spatial frequency spectrum of the wavelength spectrum, the modal group index differences of the PCF were obtained from 2.83×10-3 to 4.65 ×10-3 . As potential applications of the all-PCF interferometer, strain sensing is experimentally demonstrated and ultra-high temperature sensing is proposed.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. A. Birks, J. C. Knight, and P. St. J. Russell, "Endlessly single-mode photonic crystal fiber," Opt. Lett. 22, 961-963 (1997).
    [CrossRef] [PubMed]
  2. J. C. Knight, T. A. Birks, R. F. Cregan, P. St. J. Russell, and J. -P. de Sandro, "Large mode area photonic crystal fibre," Electron. Lett. 34, 1347-1348 (1998).
    [CrossRef]
  3. D. Mogilevtsev, T. A. Birks, and P. St. J. Russell, "Group-velocity dispersion in photonic crystal fibers," Opt. Lett. 23, 1662-1664 (1998).
    [CrossRef]
  4. A. Ferrando, E. Silvestre, J. J. Miret, J. A. Monsoriu, M. V. Andrés, and P. St. J. Russell, "Designing a photonic crystal fibre with flattened chromatic dispersion," Electron. Lett. 35, 325-327 (1999).
    [CrossRef]
  5. G. Renversez, B. Kuhlmey, and R. McPhedran, "Dispersion management with microstructured optical fibers: ultraflattened chromatic dispersion with low losses," Opt. Lett. 28, 989-991 (2003).
    [CrossRef] [PubMed]
  6. B. H. Lee, and J. Nishii, "Dependence of fringe spacing on the grating separation in a long-period fiber grating pair," Appl. Opt. 38, 3450-3459 (1999).
    [CrossRef]
  7. S. Lacroix, F. Gonthier, R. J. Black, and J. Bures, "Tapered-fiber interferometric wavelength response: the achromatic fringe," Opt. Lett. 13, 395-397 (1988).
    [CrossRef] [PubMed]
  8. J. H. Lim, H. S. Jang, K. S. Lee, J. C. Kim, and B. H. Lee, "Mach-Zehnder interferometer formed in a photonic crystal fiber based on a pair of long-period fiber gratings," Opt. Lett. 29, 346-348 (2004).
    [CrossRef] [PubMed]
  9. J.l Villatoro, V. P. Minkovich, and D. Monzón-Hernández, "Compact modal interferometer built with tapered microstructured optical fiber," IEEE Photon. Technol. Lett. 18, 1258-1260 (2006).
    [CrossRef]
  10. V. P. Minkovich, J. Villatoro, D. Monzón-Hernández, S. Calixto, A. B. Sotsky, and L. I. Sotskaya, "Holey fiber tapers with resonance transmission for high-resolution refractive index sensing," Opt. Express 13, 7609-7614 (2005).
    [CrossRef] [PubMed]
  11. Y.-G. Han, S. B. Lee, C.-S. Kim, J. U. Kang, U.-C. Paek, and Y. Chung, "Simultaneous measurement of temperature and strain using dual long-period fiber gratings with controlled temperature and strain sensitivities," Opt. Express 11, 476-481 (2003).
    [CrossRef] [PubMed]
  12. H. Chi, X.-M. Tao, D.-X. Yang, and K.-S. Chen, "Simultaneous measurement of axial strain, temperature, and transverse load by a superstructure fiber grating," Opt. Lett. 26, 1949-1951 (2001).
    [CrossRef]
  13. P. Polynkin, A. Polynkin, N. Peyghambarian, and M. Mansuripur, "Evanescent field-based optical fiber sensing device for measuring the refractive index of liquids in microfluidic channels," Opt. Lett. 30, 1273-1275 (2005).
    [CrossRef] [PubMed]
  14. Y. Zhu, P. Shum, H.-W. Bay, M. Yan, X. Yu, J. Hu, J. Hao, and C. Lu, "Strain-insensitive and high-temperature long-period gratings inscribed in photonic crystal fiber," Opt. Lett. 30, 367-369 (2005).
    [CrossRef] [PubMed]

2006

J.l Villatoro, V. P. Minkovich, and D. Monzón-Hernández, "Compact modal interferometer built with tapered microstructured optical fiber," IEEE Photon. Technol. Lett. 18, 1258-1260 (2006).
[CrossRef]

2005

2004

2003

2001

1999

B. H. Lee, and J. Nishii, "Dependence of fringe spacing on the grating separation in a long-period fiber grating pair," Appl. Opt. 38, 3450-3459 (1999).
[CrossRef]

A. Ferrando, E. Silvestre, J. J. Miret, J. A. Monsoriu, M. V. Andrés, and P. St. J. Russell, "Designing a photonic crystal fibre with flattened chromatic dispersion," Electron. Lett. 35, 325-327 (1999).
[CrossRef]

1998

J. C. Knight, T. A. Birks, R. F. Cregan, P. St. J. Russell, and J. -P. de Sandro, "Large mode area photonic crystal fibre," Electron. Lett. 34, 1347-1348 (1998).
[CrossRef]

D. Mogilevtsev, T. A. Birks, and P. St. J. Russell, "Group-velocity dispersion in photonic crystal fibers," Opt. Lett. 23, 1662-1664 (1998).
[CrossRef]

1997

1988

Andrés, M. V.

A. Ferrando, E. Silvestre, J. J. Miret, J. A. Monsoriu, M. V. Andrés, and P. St. J. Russell, "Designing a photonic crystal fibre with flattened chromatic dispersion," Electron. Lett. 35, 325-327 (1999).
[CrossRef]

Bay, H.-W.

Birks, T. A.

Black, R. J.

Bures, J.

Calixto, S.

Chen, K.-S.

Chi, H.

Chung, Y.

Cregan, R. F.

J. C. Knight, T. A. Birks, R. F. Cregan, P. St. J. Russell, and J. -P. de Sandro, "Large mode area photonic crystal fibre," Electron. Lett. 34, 1347-1348 (1998).
[CrossRef]

de Sandro, J. -P.

J. C. Knight, T. A. Birks, R. F. Cregan, P. St. J. Russell, and J. -P. de Sandro, "Large mode area photonic crystal fibre," Electron. Lett. 34, 1347-1348 (1998).
[CrossRef]

Ferrando, A.

A. Ferrando, E. Silvestre, J. J. Miret, J. A. Monsoriu, M. V. Andrés, and P. St. J. Russell, "Designing a photonic crystal fibre with flattened chromatic dispersion," Electron. Lett. 35, 325-327 (1999).
[CrossRef]

Gonthier, F.

Han, Y.-G.

Hao, J.

Hu, J.

Jang, H. S.

Kang, J. U.

Kim, C.-S.

Kim, J. C.

Knight, J. C.

J. C. Knight, T. A. Birks, R. F. Cregan, P. St. J. Russell, and J. -P. de Sandro, "Large mode area photonic crystal fibre," Electron. Lett. 34, 1347-1348 (1998).
[CrossRef]

T. A. Birks, J. C. Knight, and P. St. J. Russell, "Endlessly single-mode photonic crystal fiber," Opt. Lett. 22, 961-963 (1997).
[CrossRef] [PubMed]

Kuhlmey, B.

Lacroix, S.

Lee, B. H.

Lee, K. S.

Lee, S. B.

Lim, J. H.

Lu, C.

Mansuripur, M.

McPhedran, R.

Minkovich, V. P.

Miret, J. J.

A. Ferrando, E. Silvestre, J. J. Miret, J. A. Monsoriu, M. V. Andrés, and P. St. J. Russell, "Designing a photonic crystal fibre with flattened chromatic dispersion," Electron. Lett. 35, 325-327 (1999).
[CrossRef]

Mogilevtsev, D.

Monsoriu, J. A.

A. Ferrando, E. Silvestre, J. J. Miret, J. A. Monsoriu, M. V. Andrés, and P. St. J. Russell, "Designing a photonic crystal fibre with flattened chromatic dispersion," Electron. Lett. 35, 325-327 (1999).
[CrossRef]

Monzón-Hernández, D.

Nishii, J.

Paek, U.-C.

Peyghambarian, N.

Polynkin, A.

Polynkin, P.

Renversez, G.

Russell, P. St. J.

A. Ferrando, E. Silvestre, J. J. Miret, J. A. Monsoriu, M. V. Andrés, and P. St. J. Russell, "Designing a photonic crystal fibre with flattened chromatic dispersion," Electron. Lett. 35, 325-327 (1999).
[CrossRef]

J. C. Knight, T. A. Birks, R. F. Cregan, P. St. J. Russell, and J. -P. de Sandro, "Large mode area photonic crystal fibre," Electron. Lett. 34, 1347-1348 (1998).
[CrossRef]

D. Mogilevtsev, T. A. Birks, and P. St. J. Russell, "Group-velocity dispersion in photonic crystal fibers," Opt. Lett. 23, 1662-1664 (1998).
[CrossRef]

T. A. Birks, J. C. Knight, and P. St. J. Russell, "Endlessly single-mode photonic crystal fiber," Opt. Lett. 22, 961-963 (1997).
[CrossRef] [PubMed]

Shum, P.

Silvestre, E.

A. Ferrando, E. Silvestre, J. J. Miret, J. A. Monsoriu, M. V. Andrés, and P. St. J. Russell, "Designing a photonic crystal fibre with flattened chromatic dispersion," Electron. Lett. 35, 325-327 (1999).
[CrossRef]

Sotskaya, L. I.

Sotsky, A. B.

Tao, X.-M.

Villatoro, J.

Yan, M.

Yang, D.-X.

Yu, X.

Zhu, Y.

Appl. Opt.

Electron. Lett.

J. C. Knight, T. A. Birks, R. F. Cregan, P. St. J. Russell, and J. -P. de Sandro, "Large mode area photonic crystal fibre," Electron. Lett. 34, 1347-1348 (1998).
[CrossRef]

A. Ferrando, E. Silvestre, J. J. Miret, J. A. Monsoriu, M. V. Andrés, and P. St. J. Russell, "Designing a photonic crystal fibre with flattened chromatic dispersion," Electron. Lett. 35, 325-327 (1999).
[CrossRef]

IEEE Photon. Technol. Lett.

J.l Villatoro, V. P. Minkovich, and D. Monzón-Hernández, "Compact modal interferometer built with tapered microstructured optical fiber," IEEE Photon. Technol. Lett. 18, 1258-1260 (2006).
[CrossRef]

Opt. Express

Opt. Lett.

D. Mogilevtsev, T. A. Birks, and P. St. J. Russell, "Group-velocity dispersion in photonic crystal fibers," Opt. Lett. 23, 1662-1664 (1998).
[CrossRef]

H. Chi, X.-M. Tao, D.-X. Yang, and K.-S. Chen, "Simultaneous measurement of axial strain, temperature, and transverse load by a superstructure fiber grating," Opt. Lett. 26, 1949-1951 (2001).
[CrossRef]

G. Renversez, B. Kuhlmey, and R. McPhedran, "Dispersion management with microstructured optical fibers: ultraflattened chromatic dispersion with low losses," Opt. Lett. 28, 989-991 (2003).
[CrossRef] [PubMed]

J. H. Lim, H. S. Jang, K. S. Lee, J. C. Kim, and B. H. Lee, "Mach-Zehnder interferometer formed in a photonic crystal fiber based on a pair of long-period fiber gratings," Opt. Lett. 29, 346-348 (2004).
[CrossRef] [PubMed]

Y. Zhu, P. Shum, H.-W. Bay, M. Yan, X. Yu, J. Hu, J. Hao, and C. Lu, "Strain-insensitive and high-temperature long-period gratings inscribed in photonic crystal fiber," Opt. Lett. 30, 367-369 (2005).
[CrossRef] [PubMed]

P. Polynkin, A. Polynkin, N. Peyghambarian, and M. Mansuripur, "Evanescent field-based optical fiber sensing device for measuring the refractive index of liquids in microfluidic channels," Opt. Lett. 30, 1273-1275 (2005).
[CrossRef] [PubMed]

T. A. Birks, J. C. Knight, and P. St. J. Russell, "Endlessly single-mode photonic crystal fiber," Opt. Lett. 22, 961-963 (1997).
[CrossRef] [PubMed]

S. Lacroix, F. Gonthier, R. J. Black, and J. Bures, "Tapered-fiber interferometric wavelength response: the achromatic fringe," Opt. Lett. 13, 395-397 (1988).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Schematics of the interferometers based on (a) splicing and (b) collapsing methods, and (c) the cross sectional view of the PCF. The insets are microscope images of the coupling points. A small lateral offset was intentionally induced in (a) while fusion splicing. In (b), only collapsing was made without cleaving and splicing.

Fig. 2.
Fig. 2.

The wavelength spectra measured with several interferometer lengths: top line figures (a), (b), and (c) were obtained by the splicing method, and the bottom line figures (d), (e), and (f) were obtained by the collapsing method. The length of the interferometer is denoted at the right top corner of each figure.

Fig. 3.
Fig. 3.

The spatial frequency spectra of the proposed interferometers measured at several interferometer lengths. The splicing method (a) gave just one dominant spatial frequency, while the collapsing method (b) induced several spatial frequencies.

Fig. 4.
Fig. 4.

Variations of the spatial frequencies for the splicing method (a) and the collapsing method (b) plotted in terms of the interference length. Each straight line is the fitted linear curve only for the group of data points resulted from the same order of cladding mode.

Fig. 5.
Fig. 5.

Transmission spectra of the interferometer measured at 0 and 1730 με strain. The interferometer based on the collapsing method and having a 12 cm length was utilized. The interference fringe was shifted toward the shorter wavelength direction with the strain.

Fig. 6.
Fig. 6.

The strain responses of the interference peaks centered at 1487 nm (a) and 1560 nm (b), respectively. The straight lines are the linear fits. The strain sensitivities were −2.16 pm/με at 1487 nm (a) and −2.28 pm/με at 1560 nm (b).

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

I total = I core + I clad + 2 I core I clad cos ϕ ,
ϕ = k Δ n eff L .
Δ n eff n eff core n eff clad .
ϕ ϕ 0 2 π Δ λ λ 0 2 Δ n eff L .
ϕ ϕ 0 2 π Δ λ λ 0 2 Δ m eff L ,
Δ m eff = Δ n eff λ 0 λ Δ n eff .
cos ( 2 πξ Δ λ ) .
Δ m eff = λ 0 2 ξ L .
ξ = 1 λ 0 2 Δ m eff L .

Metrics