Abstract

The pressure (or stress) wave generated by focusing a femtosecond laser pulse inside a glass has been considered one of the important factors in determining structures created in the laser focal region. In this paper, a method of the transient lens (TrL) analysis was proposed to characterize the pressure wave. Experimentally, the TrL signal exhibited damping oscillation within 2 ns. Simulations of the TrL signal showed that the shape of the oscillating signal depended on the width and amplitude of the pressure wave. Comparing the observed TrL signal with the simulated one, we estimated these properties of the pressure wave generated after femtosecond laser focusing inside a soda-lime glass.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, "Writing waveguides in glass with a femtosecond laser," Opt. Lett. 21, 1729-1731 (1996).
    [CrossRef] [PubMed]
  2. K. Miura, J. Qiu, H. Inouye, T. Mitsuyu, and K. Hirao, "Photowritten optical waveguides in various glasses with ultrashort pulse laser," Appl. Phys. Lett. 71, 3329-3331 (1997).
    [CrossRef]
  3. E. N. Glezer, M. Milosavljevic, L. Huang, R. J. Finlay, T.-H. Her, J. P. Callan, and E. Mazur, "Threedimensional optical storage inside transparent materials," Opt. Lett. 21, 2023-2025 (1996).
    [CrossRef] [PubMed]
  4. C. B. Schaffer, A. Brodeur, J. F. Garcia, and E. Mazur, "Micromachining bulk glass by use of femtosecond laser pulses with nanojoule energy," Opt. Lett. 26, 93-95 (2001).
    [CrossRef]
  5. E. N. Glezer, C. B. Schaffer, N. Nishimura, and E. Mazur, "Minimally disruptive laser-induced breakdown in water," Opt. Lett. 22, 1817 (1997).
    [CrossRef]
  6. C. B. Schaffer, N. Nishimura, E. N. Glezer, A. M.-T. Kim, and E. Mazur, "Dynamics of femtosecond laser-induced breakdown in water from femtoseconds to microseconds," Opt. Express 10, 196-203 (2002).
    [PubMed]
  7. A. M. Streltsov and N. F. Borrelli, "Study of femtosecond-laser-written waveguides in glasses," J. Opt. Soc. Am. B 19, 2496-2504 (2002).
    [CrossRef]
  8. C. B. Schaffer, A. Brodeur, and E. Mazur, "Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses," Meas. Sci. Technol. 12, 1784-1794 (2001).
    [CrossRef]
  9. J. W. Chan, T. R. Huster, S. H. Risbud and D. M. Krol, "Modification of the fused silica glass network associated with waveguide fabrication using femtosecond laser pulses," Appl. Phys. A 76, 367-372 (2003).
    [CrossRef]
  10. H. Zhang, S. M. Eaton, P. R. Herman, "Low-loss Type II waveguide writing in fused silica with single picosecond laser pulses," Opt. Express 14, 4826-4834 (2006).
    [CrossRef] [PubMed]
  11. K. König, I. Riemann, W. Fritzsche, "Nanodissection of human chromosomes with near-infrared femtosecond laser pulses," Opt. Lett. 26, 819-821 (2001).
    [CrossRef]
  12. P. S. Tsai, B. Friedman, A. I. Ifarraguerri, B. D. Thompson, V. L. Ram, C. B. Schaffer, Q. Xiong, R. Y. Tsien, J. A. Squier, and D. Kleinfeld, "All-Optical Histology Using Ultrashort Laser Pulses," Neuron 39, 27-41 (2003).
    [CrossRef] [PubMed]
  13. A. Vogel, J. Noack, G. Huttman, and G. Paltauf, "Mechanisms of femtosecond laser nanosurgery of cells and tissues," Appl. Phys. B 81, 1015-1047 (2005).
    [CrossRef]
  14. M. Sakakura, and M. Terazima, "Initial temporal and spatial changes of the refractive index induced by focused femtosecond pulsed laser irradiation inside a glass," Phys. Rev. B 71, 024113 (2005).
    [CrossRef]
  15. M. Sakakura and M. Terazima. "Oscillation of the refractive index at the focal region of a femtosecond laser pulse inside a glass," Opt. Lett. 29, 1548-1550 (2004).
    [CrossRef] [PubMed]
  16. G. Paltauf and P. E. Dyer, "Photomechanical processes and effects in ablation," Chem. Rev. 103, 487-518 (2003).
    [CrossRef] [PubMed]
  17. A. Vogel, S. Busch, and U. Parlitz, "Shock wave emission and cavitation bubble generation by picosecond and nanosecond optical breakdown in water," J. Acoust. Soc. Am. 100, 148-165 (1996).
    [CrossRef]
  18. M. Terazima and N. Hirota, "Rise profile of the thermal lens signal: Contribution of the temperature lens and population lens," J. Chem. Phys. 100, 2481-2486 (1994).
    [CrossRef]
  19. M. Terazima, "Temperature lens and temperature grating in aqueous solution," Chem.Phys. 189, 793-804 (1994).
    [CrossRef]
  20. M. Terazima and N. Hirota, "Population lens in thermal lens spectroscopy," J. Phys. Chem. 96, 7147-7150 (1992).
    [CrossRef]
  21. M. Terazima, "Transient lens spectroscopy in a fast time scale; Photoexcitation of Rhodamine 6G and Methyl Red solution," Chem. Phys. Lett. 230, 87-92 (1994).
    [CrossRef]
  22. M. Terazima, "Ultrafast transient Kerr lens in solution detected by the dual beam 'thermal lens' method," Opt. Lett. 20, 25-27 (1995).
    [CrossRef] [PubMed]
  23. J. F. Power, "Pulsed mode thermal lens effect detection in the near field via thermally induced probe beam spatial phase modulation: a theory," Appl. Opt. 29, 52-63 (1990).
    [CrossRef] [PubMed]
  24. R. Boyd, Nonlinear Optics 2nd Edition (Academic Press, 2003), Chap. 4.
  25. K. Iizuka, Engineering Optics (Springer-Verlag, Berlin; Tokyo, 1985), Chap. 2.
  26. S. M. Eaton, H. Zhang, P. Herman, F. Yoshino, L. Shah, J. Bovatsek, A. Y. Arai, "Heat accumulation effects in femtosecond laser-written waveguides with variable repetition rate," Opt. Express 13, 4708-4716 (2005).
    [CrossRef] [PubMed]
  27. I. Itzkan, D. Albagli, M. L. Dark, L. T. Perelman, C. von. Rosenberg, and M. S. Feld, "The thermoelastic basis of short pulsed laser ablation of biological tissure," Proc. Natl. Acad. Sci. USA 92, 1960-1964 (1995).
    [CrossRef] [PubMed]
  28. L. D. Landau and E. M. Lifshitz, Theory of Elasticity (Pergamon, Oxford, 1986), Chap. 3.
  29. M. Born and E. Wolf, Principles of Optics (Pergamon, Oxford, 1984), Chap. II.
  30. K. Uchiyama, A. Hibara, H. Kimura, T. Sawada, and T. Kitamori, "Thermal Lens Microscope," Jpn. J. Appl. Phys. 39, 5316 (2000).
    [CrossRef]
  31. S. -H. Cho, H. Kumagai, and K. Midorikawa, "In situ observation of dynamics of plasma formation and refractive index modification in silica glasses excited by a femtosecond laser," Opt. Commun. 207, 243-253 (2002).
    [CrossRef]
  32. A. A. Babin, A. M. Kiselev, D. I. Kulagin, K. I. Pravdenko, and A. N. Stepanov, "Shock-Wave Generation upon Axicon Focusing of Femtosecond Laser Radiation in Transparent Dielectrics," JETP Letters 80, 298-302 (2004).
    [CrossRef]
  33. J. B. Lonzaga, S. M. Avenesyan, S. C. Langford, and J. T. Dickinson, "Color center formation in soda-lime glass with femtosecond laser pulses," J. Appl. Phys. 94, 4332-4340 (2003).
    [CrossRef]

2006 (1)

2005 (3)

S. M. Eaton, H. Zhang, P. Herman, F. Yoshino, L. Shah, J. Bovatsek, A. Y. Arai, "Heat accumulation effects in femtosecond laser-written waveguides with variable repetition rate," Opt. Express 13, 4708-4716 (2005).
[CrossRef] [PubMed]

A. Vogel, J. Noack, G. Huttman, and G. Paltauf, "Mechanisms of femtosecond laser nanosurgery of cells and tissues," Appl. Phys. B 81, 1015-1047 (2005).
[CrossRef]

M. Sakakura, and M. Terazima, "Initial temporal and spatial changes of the refractive index induced by focused femtosecond pulsed laser irradiation inside a glass," Phys. Rev. B 71, 024113 (2005).
[CrossRef]

2004 (2)

M. Sakakura and M. Terazima. "Oscillation of the refractive index at the focal region of a femtosecond laser pulse inside a glass," Opt. Lett. 29, 1548-1550 (2004).
[CrossRef] [PubMed]

A. A. Babin, A. M. Kiselev, D. I. Kulagin, K. I. Pravdenko, and A. N. Stepanov, "Shock-Wave Generation upon Axicon Focusing of Femtosecond Laser Radiation in Transparent Dielectrics," JETP Letters 80, 298-302 (2004).
[CrossRef]

2003 (4)

J. B. Lonzaga, S. M. Avenesyan, S. C. Langford, and J. T. Dickinson, "Color center formation in soda-lime glass with femtosecond laser pulses," J. Appl. Phys. 94, 4332-4340 (2003).
[CrossRef]

P. S. Tsai, B. Friedman, A. I. Ifarraguerri, B. D. Thompson, V. L. Ram, C. B. Schaffer, Q. Xiong, R. Y. Tsien, J. A. Squier, and D. Kleinfeld, "All-Optical Histology Using Ultrashort Laser Pulses," Neuron 39, 27-41 (2003).
[CrossRef] [PubMed]

G. Paltauf and P. E. Dyer, "Photomechanical processes and effects in ablation," Chem. Rev. 103, 487-518 (2003).
[CrossRef] [PubMed]

J. W. Chan, T. R. Huster, S. H. Risbud and D. M. Krol, "Modification of the fused silica glass network associated with waveguide fabrication using femtosecond laser pulses," Appl. Phys. A 76, 367-372 (2003).
[CrossRef]

2002 (3)

2001 (3)

2000 (1)

K. Uchiyama, A. Hibara, H. Kimura, T. Sawada, and T. Kitamori, "Thermal Lens Microscope," Jpn. J. Appl. Phys. 39, 5316 (2000).
[CrossRef]

1997 (2)

E. N. Glezer, C. B. Schaffer, N. Nishimura, and E. Mazur, "Minimally disruptive laser-induced breakdown in water," Opt. Lett. 22, 1817 (1997).
[CrossRef]

K. Miura, J. Qiu, H. Inouye, T. Mitsuyu, and K. Hirao, "Photowritten optical waveguides in various glasses with ultrashort pulse laser," Appl. Phys. Lett. 71, 3329-3331 (1997).
[CrossRef]

1996 (3)

1995 (2)

I. Itzkan, D. Albagli, M. L. Dark, L. T. Perelman, C. von. Rosenberg, and M. S. Feld, "The thermoelastic basis of short pulsed laser ablation of biological tissure," Proc. Natl. Acad. Sci. USA 92, 1960-1964 (1995).
[CrossRef] [PubMed]

M. Terazima, "Ultrafast transient Kerr lens in solution detected by the dual beam 'thermal lens' method," Opt. Lett. 20, 25-27 (1995).
[CrossRef] [PubMed]

1994 (3)

M. Terazima, "Transient lens spectroscopy in a fast time scale; Photoexcitation of Rhodamine 6G and Methyl Red solution," Chem. Phys. Lett. 230, 87-92 (1994).
[CrossRef]

M. Terazima and N. Hirota, "Rise profile of the thermal lens signal: Contribution of the temperature lens and population lens," J. Chem. Phys. 100, 2481-2486 (1994).
[CrossRef]

M. Terazima, "Temperature lens and temperature grating in aqueous solution," Chem.Phys. 189, 793-804 (1994).
[CrossRef]

1992 (1)

M. Terazima and N. Hirota, "Population lens in thermal lens spectroscopy," J. Phys. Chem. 96, 7147-7150 (1992).
[CrossRef]

1990 (1)

Albagli, D.

I. Itzkan, D. Albagli, M. L. Dark, L. T. Perelman, C. von. Rosenberg, and M. S. Feld, "The thermoelastic basis of short pulsed laser ablation of biological tissure," Proc. Natl. Acad. Sci. USA 92, 1960-1964 (1995).
[CrossRef] [PubMed]

Arai, A. Y.

Avenesyan, S. M.

J. B. Lonzaga, S. M. Avenesyan, S. C. Langford, and J. T. Dickinson, "Color center formation in soda-lime glass with femtosecond laser pulses," J. Appl. Phys. 94, 4332-4340 (2003).
[CrossRef]

Babin, A. A.

A. A. Babin, A. M. Kiselev, D. I. Kulagin, K. I. Pravdenko, and A. N. Stepanov, "Shock-Wave Generation upon Axicon Focusing of Femtosecond Laser Radiation in Transparent Dielectrics," JETP Letters 80, 298-302 (2004).
[CrossRef]

Borrelli, N. F.

Bovatsek, J.

Brodeur, A.

C. B. Schaffer, A. Brodeur, and E. Mazur, "Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses," Meas. Sci. Technol. 12, 1784-1794 (2001).
[CrossRef]

C. B. Schaffer, A. Brodeur, J. F. Garcia, and E. Mazur, "Micromachining bulk glass by use of femtosecond laser pulses with nanojoule energy," Opt. Lett. 26, 93-95 (2001).
[CrossRef]

Busch, S.

A. Vogel, S. Busch, and U. Parlitz, "Shock wave emission and cavitation bubble generation by picosecond and nanosecond optical breakdown in water," J. Acoust. Soc. Am. 100, 148-165 (1996).
[CrossRef]

Callan, J. P.

Chan, J. W.

J. W. Chan, T. R. Huster, S. H. Risbud and D. M. Krol, "Modification of the fused silica glass network associated with waveguide fabrication using femtosecond laser pulses," Appl. Phys. A 76, 367-372 (2003).
[CrossRef]

Cho, S. -H.

S. -H. Cho, H. Kumagai, and K. Midorikawa, "In situ observation of dynamics of plasma formation and refractive index modification in silica glasses excited by a femtosecond laser," Opt. Commun. 207, 243-253 (2002).
[CrossRef]

Dark, M. L.

I. Itzkan, D. Albagli, M. L. Dark, L. T. Perelman, C. von. Rosenberg, and M. S. Feld, "The thermoelastic basis of short pulsed laser ablation of biological tissure," Proc. Natl. Acad. Sci. USA 92, 1960-1964 (1995).
[CrossRef] [PubMed]

Davis, K. M.

Dickinson, J. T.

J. B. Lonzaga, S. M. Avenesyan, S. C. Langford, and J. T. Dickinson, "Color center formation in soda-lime glass with femtosecond laser pulses," J. Appl. Phys. 94, 4332-4340 (2003).
[CrossRef]

Dyer, P. E.

G. Paltauf and P. E. Dyer, "Photomechanical processes and effects in ablation," Chem. Rev. 103, 487-518 (2003).
[CrossRef] [PubMed]

Eaton, S. M.

Finlay, R. J.

Friedman, B.

P. S. Tsai, B. Friedman, A. I. Ifarraguerri, B. D. Thompson, V. L. Ram, C. B. Schaffer, Q. Xiong, R. Y. Tsien, J. A. Squier, and D. Kleinfeld, "All-Optical Histology Using Ultrashort Laser Pulses," Neuron 39, 27-41 (2003).
[CrossRef] [PubMed]

Fritzsche, W.

Garcia, J. F.

Glezer, E. N.

Her, T.-H.

Herman, P.

Herman, P. R.

Hibara, A.

K. Uchiyama, A. Hibara, H. Kimura, T. Sawada, and T. Kitamori, "Thermal Lens Microscope," Jpn. J. Appl. Phys. 39, 5316 (2000).
[CrossRef]

Hirao, K.

K. Miura, J. Qiu, H. Inouye, T. Mitsuyu, and K. Hirao, "Photowritten optical waveguides in various glasses with ultrashort pulse laser," Appl. Phys. Lett. 71, 3329-3331 (1997).
[CrossRef]

K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, "Writing waveguides in glass with a femtosecond laser," Opt. Lett. 21, 1729-1731 (1996).
[CrossRef] [PubMed]

Hirota, N.

M. Terazima and N. Hirota, "Rise profile of the thermal lens signal: Contribution of the temperature lens and population lens," J. Chem. Phys. 100, 2481-2486 (1994).
[CrossRef]

M. Terazima and N. Hirota, "Population lens in thermal lens spectroscopy," J. Phys. Chem. 96, 7147-7150 (1992).
[CrossRef]

Huang, L.

Huster, T. R.

J. W. Chan, T. R. Huster, S. H. Risbud and D. M. Krol, "Modification of the fused silica glass network associated with waveguide fabrication using femtosecond laser pulses," Appl. Phys. A 76, 367-372 (2003).
[CrossRef]

Huttman, G.

A. Vogel, J. Noack, G. Huttman, and G. Paltauf, "Mechanisms of femtosecond laser nanosurgery of cells and tissues," Appl. Phys. B 81, 1015-1047 (2005).
[CrossRef]

Ifarraguerri, A. I.

P. S. Tsai, B. Friedman, A. I. Ifarraguerri, B. D. Thompson, V. L. Ram, C. B. Schaffer, Q. Xiong, R. Y. Tsien, J. A. Squier, and D. Kleinfeld, "All-Optical Histology Using Ultrashort Laser Pulses," Neuron 39, 27-41 (2003).
[CrossRef] [PubMed]

Inouye, H.

K. Miura, J. Qiu, H. Inouye, T. Mitsuyu, and K. Hirao, "Photowritten optical waveguides in various glasses with ultrashort pulse laser," Appl. Phys. Lett. 71, 3329-3331 (1997).
[CrossRef]

Itzkan, I.

I. Itzkan, D. Albagli, M. L. Dark, L. T. Perelman, C. von. Rosenberg, and M. S. Feld, "The thermoelastic basis of short pulsed laser ablation of biological tissure," Proc. Natl. Acad. Sci. USA 92, 1960-1964 (1995).
[CrossRef] [PubMed]

Kim, A. M.-T.

Kimura, H.

K. Uchiyama, A. Hibara, H. Kimura, T. Sawada, and T. Kitamori, "Thermal Lens Microscope," Jpn. J. Appl. Phys. 39, 5316 (2000).
[CrossRef]

Kiselev, A. M.

A. A. Babin, A. M. Kiselev, D. I. Kulagin, K. I. Pravdenko, and A. N. Stepanov, "Shock-Wave Generation upon Axicon Focusing of Femtosecond Laser Radiation in Transparent Dielectrics," JETP Letters 80, 298-302 (2004).
[CrossRef]

Kitamori, T.

K. Uchiyama, A. Hibara, H. Kimura, T. Sawada, and T. Kitamori, "Thermal Lens Microscope," Jpn. J. Appl. Phys. 39, 5316 (2000).
[CrossRef]

Kleinfeld, D.

P. S. Tsai, B. Friedman, A. I. Ifarraguerri, B. D. Thompson, V. L. Ram, C. B. Schaffer, Q. Xiong, R. Y. Tsien, J. A. Squier, and D. Kleinfeld, "All-Optical Histology Using Ultrashort Laser Pulses," Neuron 39, 27-41 (2003).
[CrossRef] [PubMed]

König, K.

Krol, D. M.

J. W. Chan, T. R. Huster, S. H. Risbud and D. M. Krol, "Modification of the fused silica glass network associated with waveguide fabrication using femtosecond laser pulses," Appl. Phys. A 76, 367-372 (2003).
[CrossRef]

Kulagin, D. I.

A. A. Babin, A. M. Kiselev, D. I. Kulagin, K. I. Pravdenko, and A. N. Stepanov, "Shock-Wave Generation upon Axicon Focusing of Femtosecond Laser Radiation in Transparent Dielectrics," JETP Letters 80, 298-302 (2004).
[CrossRef]

Kumagai, H.

S. -H. Cho, H. Kumagai, and K. Midorikawa, "In situ observation of dynamics of plasma formation and refractive index modification in silica glasses excited by a femtosecond laser," Opt. Commun. 207, 243-253 (2002).
[CrossRef]

Langford, S. C.

J. B. Lonzaga, S. M. Avenesyan, S. C. Langford, and J. T. Dickinson, "Color center formation in soda-lime glass with femtosecond laser pulses," J. Appl. Phys. 94, 4332-4340 (2003).
[CrossRef]

Lonzaga, J. B.

J. B. Lonzaga, S. M. Avenesyan, S. C. Langford, and J. T. Dickinson, "Color center formation in soda-lime glass with femtosecond laser pulses," J. Appl. Phys. 94, 4332-4340 (2003).
[CrossRef]

Mazur, E.

Midorikawa, K.

S. -H. Cho, H. Kumagai, and K. Midorikawa, "In situ observation of dynamics of plasma formation and refractive index modification in silica glasses excited by a femtosecond laser," Opt. Commun. 207, 243-253 (2002).
[CrossRef]

Milosavljevic, M.

Mitsuyu, T.

K. Miura, J. Qiu, H. Inouye, T. Mitsuyu, and K. Hirao, "Photowritten optical waveguides in various glasses with ultrashort pulse laser," Appl. Phys. Lett. 71, 3329-3331 (1997).
[CrossRef]

Miura, K.

K. Miura, J. Qiu, H. Inouye, T. Mitsuyu, and K. Hirao, "Photowritten optical waveguides in various glasses with ultrashort pulse laser," Appl. Phys. Lett. 71, 3329-3331 (1997).
[CrossRef]

K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, "Writing waveguides in glass with a femtosecond laser," Opt. Lett. 21, 1729-1731 (1996).
[CrossRef] [PubMed]

Nishimura, N.

Noack, J.

A. Vogel, J. Noack, G. Huttman, and G. Paltauf, "Mechanisms of femtosecond laser nanosurgery of cells and tissues," Appl. Phys. B 81, 1015-1047 (2005).
[CrossRef]

Paltauf, G.

A. Vogel, J. Noack, G. Huttman, and G. Paltauf, "Mechanisms of femtosecond laser nanosurgery of cells and tissues," Appl. Phys. B 81, 1015-1047 (2005).
[CrossRef]

G. Paltauf and P. E. Dyer, "Photomechanical processes and effects in ablation," Chem. Rev. 103, 487-518 (2003).
[CrossRef] [PubMed]

Parlitz, U.

A. Vogel, S. Busch, and U. Parlitz, "Shock wave emission and cavitation bubble generation by picosecond and nanosecond optical breakdown in water," J. Acoust. Soc. Am. 100, 148-165 (1996).
[CrossRef]

Perelman, L. T.

I. Itzkan, D. Albagli, M. L. Dark, L. T. Perelman, C. von. Rosenberg, and M. S. Feld, "The thermoelastic basis of short pulsed laser ablation of biological tissure," Proc. Natl. Acad. Sci. USA 92, 1960-1964 (1995).
[CrossRef] [PubMed]

Power, J. F.

Pravdenko, K. I.

A. A. Babin, A. M. Kiselev, D. I. Kulagin, K. I. Pravdenko, and A. N. Stepanov, "Shock-Wave Generation upon Axicon Focusing of Femtosecond Laser Radiation in Transparent Dielectrics," JETP Letters 80, 298-302 (2004).
[CrossRef]

Qiu, J.

K. Miura, J. Qiu, H. Inouye, T. Mitsuyu, and K. Hirao, "Photowritten optical waveguides in various glasses with ultrashort pulse laser," Appl. Phys. Lett. 71, 3329-3331 (1997).
[CrossRef]

Ram, V. L.

P. S. Tsai, B. Friedman, A. I. Ifarraguerri, B. D. Thompson, V. L. Ram, C. B. Schaffer, Q. Xiong, R. Y. Tsien, J. A. Squier, and D. Kleinfeld, "All-Optical Histology Using Ultrashort Laser Pulses," Neuron 39, 27-41 (2003).
[CrossRef] [PubMed]

Riemann, I.

Risbud, S. H.

J. W. Chan, T. R. Huster, S. H. Risbud and D. M. Krol, "Modification of the fused silica glass network associated with waveguide fabrication using femtosecond laser pulses," Appl. Phys. A 76, 367-372 (2003).
[CrossRef]

Sakakura, M.

M. Sakakura, and M. Terazima, "Initial temporal and spatial changes of the refractive index induced by focused femtosecond pulsed laser irradiation inside a glass," Phys. Rev. B 71, 024113 (2005).
[CrossRef]

M. Sakakura and M. Terazima. "Oscillation of the refractive index at the focal region of a femtosecond laser pulse inside a glass," Opt. Lett. 29, 1548-1550 (2004).
[CrossRef] [PubMed]

Sawada, T.

K. Uchiyama, A. Hibara, H. Kimura, T. Sawada, and T. Kitamori, "Thermal Lens Microscope," Jpn. J. Appl. Phys. 39, 5316 (2000).
[CrossRef]

Schaffer, C. B.

P. S. Tsai, B. Friedman, A. I. Ifarraguerri, B. D. Thompson, V. L. Ram, C. B. Schaffer, Q. Xiong, R. Y. Tsien, J. A. Squier, and D. Kleinfeld, "All-Optical Histology Using Ultrashort Laser Pulses," Neuron 39, 27-41 (2003).
[CrossRef] [PubMed]

C. B. Schaffer, N. Nishimura, E. N. Glezer, A. M.-T. Kim, and E. Mazur, "Dynamics of femtosecond laser-induced breakdown in water from femtoseconds to microseconds," Opt. Express 10, 196-203 (2002).
[PubMed]

C. B. Schaffer, A. Brodeur, and E. Mazur, "Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses," Meas. Sci. Technol. 12, 1784-1794 (2001).
[CrossRef]

C. B. Schaffer, A. Brodeur, J. F. Garcia, and E. Mazur, "Micromachining bulk glass by use of femtosecond laser pulses with nanojoule energy," Opt. Lett. 26, 93-95 (2001).
[CrossRef]

E. N. Glezer, C. B. Schaffer, N. Nishimura, and E. Mazur, "Minimally disruptive laser-induced breakdown in water," Opt. Lett. 22, 1817 (1997).
[CrossRef]

Shah, L.

Squier, J. A.

P. S. Tsai, B. Friedman, A. I. Ifarraguerri, B. D. Thompson, V. L. Ram, C. B. Schaffer, Q. Xiong, R. Y. Tsien, J. A. Squier, and D. Kleinfeld, "All-Optical Histology Using Ultrashort Laser Pulses," Neuron 39, 27-41 (2003).
[CrossRef] [PubMed]

Stepanov, A. N.

A. A. Babin, A. M. Kiselev, D. I. Kulagin, K. I. Pravdenko, and A. N. Stepanov, "Shock-Wave Generation upon Axicon Focusing of Femtosecond Laser Radiation in Transparent Dielectrics," JETP Letters 80, 298-302 (2004).
[CrossRef]

Streltsov, A. M.

Sugimoto, N.

Terazima, M.

M. Sakakura, and M. Terazima, "Initial temporal and spatial changes of the refractive index induced by focused femtosecond pulsed laser irradiation inside a glass," Phys. Rev. B 71, 024113 (2005).
[CrossRef]

M. Sakakura and M. Terazima. "Oscillation of the refractive index at the focal region of a femtosecond laser pulse inside a glass," Opt. Lett. 29, 1548-1550 (2004).
[CrossRef] [PubMed]

M. Terazima, "Ultrafast transient Kerr lens in solution detected by the dual beam 'thermal lens' method," Opt. Lett. 20, 25-27 (1995).
[CrossRef] [PubMed]

M. Terazima and N. Hirota, "Rise profile of the thermal lens signal: Contribution of the temperature lens and population lens," J. Chem. Phys. 100, 2481-2486 (1994).
[CrossRef]

M. Terazima, "Transient lens spectroscopy in a fast time scale; Photoexcitation of Rhodamine 6G and Methyl Red solution," Chem. Phys. Lett. 230, 87-92 (1994).
[CrossRef]

M. Terazima, "Temperature lens and temperature grating in aqueous solution," Chem.Phys. 189, 793-804 (1994).
[CrossRef]

M. Terazima and N. Hirota, "Population lens in thermal lens spectroscopy," J. Phys. Chem. 96, 7147-7150 (1992).
[CrossRef]

Thompson, B. D.

P. S. Tsai, B. Friedman, A. I. Ifarraguerri, B. D. Thompson, V. L. Ram, C. B. Schaffer, Q. Xiong, R. Y. Tsien, J. A. Squier, and D. Kleinfeld, "All-Optical Histology Using Ultrashort Laser Pulses," Neuron 39, 27-41 (2003).
[CrossRef] [PubMed]

Tsai, P. S.

P. S. Tsai, B. Friedman, A. I. Ifarraguerri, B. D. Thompson, V. L. Ram, C. B. Schaffer, Q. Xiong, R. Y. Tsien, J. A. Squier, and D. Kleinfeld, "All-Optical Histology Using Ultrashort Laser Pulses," Neuron 39, 27-41 (2003).
[CrossRef] [PubMed]

Tsien, R. Y.

P. S. Tsai, B. Friedman, A. I. Ifarraguerri, B. D. Thompson, V. L. Ram, C. B. Schaffer, Q. Xiong, R. Y. Tsien, J. A. Squier, and D. Kleinfeld, "All-Optical Histology Using Ultrashort Laser Pulses," Neuron 39, 27-41 (2003).
[CrossRef] [PubMed]

Uchiyama, K.

K. Uchiyama, A. Hibara, H. Kimura, T. Sawada, and T. Kitamori, "Thermal Lens Microscope," Jpn. J. Appl. Phys. 39, 5316 (2000).
[CrossRef]

Vogel, A.

A. Vogel, J. Noack, G. Huttman, and G. Paltauf, "Mechanisms of femtosecond laser nanosurgery of cells and tissues," Appl. Phys. B 81, 1015-1047 (2005).
[CrossRef]

A. Vogel, S. Busch, and U. Parlitz, "Shock wave emission and cavitation bubble generation by picosecond and nanosecond optical breakdown in water," J. Acoust. Soc. Am. 100, 148-165 (1996).
[CrossRef]

Xiong, Q.

P. S. Tsai, B. Friedman, A. I. Ifarraguerri, B. D. Thompson, V. L. Ram, C. B. Schaffer, Q. Xiong, R. Y. Tsien, J. A. Squier, and D. Kleinfeld, "All-Optical Histology Using Ultrashort Laser Pulses," Neuron 39, 27-41 (2003).
[CrossRef] [PubMed]

Yoshino, F.

Zhang, H.

Appl. Opt. (1)

Appl. Phys. A (1)

J. W. Chan, T. R. Huster, S. H. Risbud and D. M. Krol, "Modification of the fused silica glass network associated with waveguide fabrication using femtosecond laser pulses," Appl. Phys. A 76, 367-372 (2003).
[CrossRef]

Appl. Phys. B (1)

A. Vogel, J. Noack, G. Huttman, and G. Paltauf, "Mechanisms of femtosecond laser nanosurgery of cells and tissues," Appl. Phys. B 81, 1015-1047 (2005).
[CrossRef]

Appl. Phys. Lett. (1)

K. Miura, J. Qiu, H. Inouye, T. Mitsuyu, and K. Hirao, "Photowritten optical waveguides in various glasses with ultrashort pulse laser," Appl. Phys. Lett. 71, 3329-3331 (1997).
[CrossRef]

Chem. Phys. Lett. (1)

M. Terazima, "Transient lens spectroscopy in a fast time scale; Photoexcitation of Rhodamine 6G and Methyl Red solution," Chem. Phys. Lett. 230, 87-92 (1994).
[CrossRef]

Chem. Rev. (1)

G. Paltauf and P. E. Dyer, "Photomechanical processes and effects in ablation," Chem. Rev. 103, 487-518 (2003).
[CrossRef] [PubMed]

Chem.Phys. (1)

M. Terazima, "Temperature lens and temperature grating in aqueous solution," Chem.Phys. 189, 793-804 (1994).
[CrossRef]

J. Acoust. Soc. Am. (1)

A. Vogel, S. Busch, and U. Parlitz, "Shock wave emission and cavitation bubble generation by picosecond and nanosecond optical breakdown in water," J. Acoust. Soc. Am. 100, 148-165 (1996).
[CrossRef]

J. Appl. Phys. (1)

J. B. Lonzaga, S. M. Avenesyan, S. C. Langford, and J. T. Dickinson, "Color center formation in soda-lime glass with femtosecond laser pulses," J. Appl. Phys. 94, 4332-4340 (2003).
[CrossRef]

J. Chem. Phys. (1)

M. Terazima and N. Hirota, "Rise profile of the thermal lens signal: Contribution of the temperature lens and population lens," J. Chem. Phys. 100, 2481-2486 (1994).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. Chem. (1)

M. Terazima and N. Hirota, "Population lens in thermal lens spectroscopy," J. Phys. Chem. 96, 7147-7150 (1992).
[CrossRef]

JETP Letters (1)

A. A. Babin, A. M. Kiselev, D. I. Kulagin, K. I. Pravdenko, and A. N. Stepanov, "Shock-Wave Generation upon Axicon Focusing of Femtosecond Laser Radiation in Transparent Dielectrics," JETP Letters 80, 298-302 (2004).
[CrossRef]

Jpn. J. Appl. Phys. (1)

K. Uchiyama, A. Hibara, H. Kimura, T. Sawada, and T. Kitamori, "Thermal Lens Microscope," Jpn. J. Appl. Phys. 39, 5316 (2000).
[CrossRef]

Meas. Sci. Technol. (1)

C. B. Schaffer, A. Brodeur, and E. Mazur, "Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses," Meas. Sci. Technol. 12, 1784-1794 (2001).
[CrossRef]

Neuron (1)

P. S. Tsai, B. Friedman, A. I. Ifarraguerri, B. D. Thompson, V. L. Ram, C. B. Schaffer, Q. Xiong, R. Y. Tsien, J. A. Squier, and D. Kleinfeld, "All-Optical Histology Using Ultrashort Laser Pulses," Neuron 39, 27-41 (2003).
[CrossRef] [PubMed]

Opt. Commun. (1)

S. -H. Cho, H. Kumagai, and K. Midorikawa, "In situ observation of dynamics of plasma formation and refractive index modification in silica glasses excited by a femtosecond laser," Opt. Commun. 207, 243-253 (2002).
[CrossRef]

Opt. Express (3)

Opt. Lett. (7)

Phys. Rev. B (1)

M. Sakakura, and M. Terazima, "Initial temporal and spatial changes of the refractive index induced by focused femtosecond pulsed laser irradiation inside a glass," Phys. Rev. B 71, 024113 (2005).
[CrossRef]

Proc. Natl. Acad. Sci. USA (1)

I. Itzkan, D. Albagli, M. L. Dark, L. T. Perelman, C. von. Rosenberg, and M. S. Feld, "The thermoelastic basis of short pulsed laser ablation of biological tissure," Proc. Natl. Acad. Sci. USA 92, 1960-1964 (1995).
[CrossRef] [PubMed]

Other (4)

L. D. Landau and E. M. Lifshitz, Theory of Elasticity (Pergamon, Oxford, 1986), Chap. 3.

M. Born and E. Wolf, Principles of Optics (Pergamon, Oxford, 1984), Chap. II.

R. Boyd, Nonlinear Optics 2nd Edition (Academic Press, 2003), Chap. 4.

K. Iizuka, Engineering Optics (Springer-Verlag, Berlin; Tokyo, 1985), Chap. 2.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

(a). The temporal evolution of the phase distribution of the probe beam after the femtosecond laser irradiation inside a glass. It was obtained by the TrL method in our previous study. (b) The TrL signal after the femtosecond laser irradiation inside a glass.

Fig. 2.
Fig. 2.

Schematic illustration of the Transient Lens Method. (a) Red dotted lines indicate a pump beam, and blue solid lines indicate a probe beam. (b) Illustrates of how the probe beam profile is deformed by Δn(x,y,z) in the photoexcited region. Probe beam profile is Gaussian prior to entering photoexcited region (left). While passing through the photoexcited region, the wave front is deformed by Δn(x,y,z) (middle). Probe beam profile deformed by the diffraction is detected on the detection plane (right)

Fig. 3.
Fig. 3.

(a). The heated region (colored by red) which appears in the laser focal region. The broken red lines represent excitation laser. (b). The density distributions Δρ(t,r) at t=50 ps, 100 ps, 260 ps, 800 ps and 1500 ps obtained by the calculation of thermoelastic wave equation. (c). Temperature distribution used for calculation of Δρ(t,r) shown in (b). In this case, wth =2.0 μm (d). The phase distribution of the pressure wave at 260 ps in case of wth =2.0 μm and definition of specific phase shift Δϕp and specific width wp of the pressure wave. In this case, Δϕp =1.0 and wp =1.26 μm.

Fig. 4.
Fig. 4.

(a). Schematic of an experimental setup for the TrL method. L1, L2 and L4: lenses of f0= 150 mm; L3: lens of f1=30 mm; HS: harmonic separator for Ti: sapphire laser; BF: blue filter for attenuating the pump pulse. Arrow from CCD camera means that images detected by a CCD camera are transferred to a computer. (b) and (c) Probe beam profiles at the position of L3, which were imaged on a CCD camera without and with a pump pulse, respectively. TrL signal intensity is light intensity inside a red dotted circle.

Fig. 5.
Fig. 5.

(a). TrL signals simulated by Eq. (6) with various width wth and Δϕp =0.50, and (b) ones with various amplitude Δϕp and wth =2.0 μm. (c) The definition of oscillation amplitudes Aosci1 and Aosci2 . The solid lines are baselines of the TrL signals.

Fig. 6.
Fig. 6.

Plots of the oscillation decay ratio and Aosci1 against wth (a) and Δϕp (b). The blue closed circles and the red open circles are Rdecay and Aosci1 , respectively.

Fig. 7.
Fig. 7.

TrL signals measured with various excitation laser energies. (a) 0.10~0.30 μJ/pulse (b) 0.40 and 0.50 μJ/pulse. Each signal is offset for clarity. The broken line is the baseline (ITrL =1.0) for each TrL signal.

Figs. 8.
Figs. 8.

(a). and (b). Plots of the oscillation decay ratio and the oscillation amplitude against the excitation pulse energy, respectively.

Figs. 9.
Figs. 9.

(a). and (b). The width wth and the phase amplitudes Δϕp of the pressure wave are plotted against excitation pulse energy Iex , respectively.

Fig. 10.
Fig. 10.

(a). Red line is plot of the square of normalized ΔϕpW at t * vp =4* wth (red line), broken blue line is the lower limit of the integral for calculating the compression energy of the pressure wave QP , the area filled by green mean the region of the pressure wave, and the heated region is filled by yellow. (b) Δϕp 2 wth 2 is plotted against Iex .

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

E 0 x y = E 0 x y exp { i Δϕ x y }
E SIG x y = 1 z 0 E 0 x y exp ( x 2 + y 2 λz 0 )
I SIG x y = A 1 λ z 0 E 0 x y exp ( x 2 + y 2 λz 0 ) 2
I SIG ( r ) = A 2 π λ z 0 0 E 0 ( r ) exp { i ( Δϕ ( r ) + π r 2 λz 0 ) } J 0 ( 2 π λz 0 rr ) rdr 2
I TrL = S I SIG ( r ) dS S I REF ( r ) dS
T x y z = T 0 + Δ T exp [ r 2 ( w th 2 ) 2 ] ( l th 2 z l th 2 )
Δ ϕ PW t r = π ( n 0 2 1 ) Δ ρ t r n 0 ρ 0 λ l
Δϕ t r = Δ ϕ PW t r + Δϕ 0 exp { r ( w th 2 ) } 2
q compress = 9 2 B ( Δ ρ ρ 0 ) 2
q compress ( r ) = 9 2 B ( n 0 λ π ( n 0 2 1 ) l Δ ϕ PW t r ) 2
Q P = 9 2 B ( n 0 λ π ( n 0 2 1 ) l ) 2 l Δ ϕ p 2 r 0 ( Δ ϕ PW ( t , r w th ) Δ ϕ p ) 2 2 πrdr
Q p = 9 2 × 5.1 w th 2 Δ ϕ p 2 B ( n 0 λ π ( n 0 2 1 ) l ) 2 l

Metrics