Abstract

We present a methodology to measure the systematic changes of aberrations induced by small changes in amplitude of accommodation. We use a method similar the one used in electrophysiology, where a periodic stimulus is presented to the eye and many periods (epochs) of the stimulus are averaged. Using this technique we have measured changes in higher order aberrations from 0.006μm to 0.02μm and correlated them with amplitude changes of accommodation as small as 0.14D. These small changes would have been undetectable without epoch averaging. The correlation coefficients of Zernike terms with defocus were calculated, demonstrating higher values of correlation for epoch averaging. The accurate monitoring of defocus at the start of the accommodation response has shown some interesting trends that may be related with the mechanisms behind accommodation.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Young. "On the mechanism of the eye," Phil. Trans. 91, 69 (1801).
  2. J. Liang, B. Grimm, S. Goelz, and J.F. Bille. "Objective measurement of wave aberration of the human eye with the use of a Hartmann-Shack wave-front sensor," J. Opt. Soc. Am. A. 11, 1949-1957 (1994).
    [CrossRef]
  3. H. Hofer, P. Artal, B. Singer, J.L Arag’on, and D.R. Williams. "Dynamics of the eye’s wave aberration," J. Opt. Soc. Am. A. 18, 597-506 (2001).
    [CrossRef]
  4. H.T. Kasprzak and J. W. Jaronski. "Measurement of fine dynamic changes of the corneal topography by use of interferometry," In W. Osten, editor, Interferometer XI: Applications, SPIE-The International Society for Optical Engineering 4778, 169-176 (2002).
  5. L. Diaz-Santana, C. Torti, I. Munro, P. Gasson, and C. Dainty. "Benefit of higher closed-loop bandwidths in ocular adaptive optics," Opt. Express 11, 2597-2605 (2003).
    [CrossRef] [PubMed]
  6. T. Nirmaier, G. Pudasaini, and J. Bille. "Very fast wavefront measurements at the human eye with a custom CMOS-based Hartmann-Shack sensor," Opt. Express 11, 2704—2716 (2003).
    [CrossRef] [PubMed]
  7. D.R. Iskander, M.J. Collins, M.R. Morelande and M. Zhu. "Analyzing the dynamic wavefront aberrations in the human eye," IEEE Trans. Biomed. Eng. 51, 1969-1980 (2004).
    [CrossRef] [PubMed]
  8. K. M. Hampson, I. Munro, C. Paterson, and C. Daint. "Weak correlation between the aberration dynamics of the human eye and the cardiopulmonary system," J. Opt. Soc. Am. A. 22, 1241-1250 (2005).
    [CrossRef]
  9. J.J. Gicquel, J.L. Nguyen-Khoa, N. Lopez-Gil, R. Legras, P. Dighiero, D.A. Lebuisson, and J.F. Le Gargasson. "Optical aberrations variations of the human eye during accommodation," Invest. Ophthalmol. Vis. Sci.EAbstract 1993:B762 (2005).
  10. H. Cheng, J.K. Barnett, A.S. Vilupuru, J.D. Marsack, S. Kasthurirangan, R. A. Applegate, and A. Roorda. "A population study on changes in wave aberrations with accommodation," J. of Vision 4, 272-280 (2004).
  11. N. Davies, L. Diaz-Santana, and D. Lara-Saucedo. "Repeatability of ocular wavefront measurement," Optom. Vis. Sci. 80, 142-150 (2003).
    [CrossRef] [PubMed]
  12. H. Ginis, S. Plainis, and A. Pallikaris. "Variability of wavefront aberration measurements in small pupil sizes using a clinical shack-hartmann aberrometer," BMC Ophthalmology 4, 1471-2415 (2004).
    [CrossRef]
  13. R.B Rabbetts. Bennett & Rabbetts Clinical Visual Optics. Butterworth and Heinemann, 5th edition (1998).
  14. A. Dubinin, T. Cherezova, A. Belyakov and A. Kudryashov. Human eye anisoplanatism: eye as a lamellar structure. In F. Manns, P. G. S¨oderberg, and A. Ho, editors, Ophthalmic Technologies XVI. Edited by Manns, Fabrice; Söderberg, Per G.; Ho, Arthur. Proceedings of the SPIE, 6138, 260-266 (2006).
  15. J. Arines. Imagen de alta resoluci’on del fondo de ojo por deconvoluci’on tras compensacion parcial. PhD thesis, Universidade de Santiago de Compostela (2006).
  16. ANSI. American national standard for ophtalmics. ANSI-Z80.28-2004, Methods for reporting optical aberrations of eyes. American national standards institute, Inc. (2004).
    [PubMed]
  17. L. Diaz Santana Haro and J.C. Dainty. "Effects of retinal scattering in the ocular double-pass process," J. Opt. Soc. Am. 18, 1437-1444 (2001).
    [CrossRef]
  18. L. Diaz Santana Haro and J.C. Dainty. "Single-pass measurements of the wave-front aberrations of the human eye by use of retinal lipofuscin autofluorescence," Opt. Lett. 24, 61-63 (1999).
    [CrossRef]
  19. H. Li and C. Rao. "Precision analysis of hartmann-shack wave-front sensor with modal reconstruction," J. Phys. Conference Series 48, 952-956 (2006).
    [CrossRef]
  20. J.S. Wolffsohn, B. Gilmartin, E.A. Mallen, and S. Tsujimura. "Continuous recording of accommodation and pupil size using the shin-nippon srw-5000 autorefractor," Ophthalmic Physiol. Opt. 21,108-113 (2001).
    [CrossRef] [PubMed]
  21. David Regan. Human Brain Electrophysiology. Evoked Potentials and Evoked Magnetic Fields in Science and Medicine. Elsevier Science Publishing, (1989).
    [PubMed]

2006 (1)

H. Li and C. Rao. "Precision analysis of hartmann-shack wave-front sensor with modal reconstruction," J. Phys. Conference Series 48, 952-956 (2006).
[CrossRef]

2005 (2)

K. M. Hampson, I. Munro, C. Paterson, and C. Daint. "Weak correlation between the aberration dynamics of the human eye and the cardiopulmonary system," J. Opt. Soc. Am. A. 22, 1241-1250 (2005).
[CrossRef]

J.J. Gicquel, J.L. Nguyen-Khoa, N. Lopez-Gil, R. Legras, P. Dighiero, D.A. Lebuisson, and J.F. Le Gargasson. "Optical aberrations variations of the human eye during accommodation," Invest. Ophthalmol. Vis. Sci.EAbstract 1993:B762 (2005).

2004 (3)

H. Cheng, J.K. Barnett, A.S. Vilupuru, J.D. Marsack, S. Kasthurirangan, R. A. Applegate, and A. Roorda. "A population study on changes in wave aberrations with accommodation," J. of Vision 4, 272-280 (2004).

D.R. Iskander, M.J. Collins, M.R. Morelande and M. Zhu. "Analyzing the dynamic wavefront aberrations in the human eye," IEEE Trans. Biomed. Eng. 51, 1969-1980 (2004).
[CrossRef] [PubMed]

H. Ginis, S. Plainis, and A. Pallikaris. "Variability of wavefront aberration measurements in small pupil sizes using a clinical shack-hartmann aberrometer," BMC Ophthalmology 4, 1471-2415 (2004).
[CrossRef]

2003 (3)

2001 (3)

L. Diaz Santana Haro and J.C. Dainty. "Effects of retinal scattering in the ocular double-pass process," J. Opt. Soc. Am. 18, 1437-1444 (2001).
[CrossRef]

H. Hofer, P. Artal, B. Singer, J.L Arag’on, and D.R. Williams. "Dynamics of the eye’s wave aberration," J. Opt. Soc. Am. A. 18, 597-506 (2001).
[CrossRef]

J.S. Wolffsohn, B. Gilmartin, E.A. Mallen, and S. Tsujimura. "Continuous recording of accommodation and pupil size using the shin-nippon srw-5000 autorefractor," Ophthalmic Physiol. Opt. 21,108-113 (2001).
[CrossRef] [PubMed]

1999 (1)

1994 (1)

J. Liang, B. Grimm, S. Goelz, and J.F. Bille. "Objective measurement of wave aberration of the human eye with the use of a Hartmann-Shack wave-front sensor," J. Opt. Soc. Am. A. 11, 1949-1957 (1994).
[CrossRef]

1801 (1)

T. Young. "On the mechanism of the eye," Phil. Trans. 91, 69 (1801).

Applegate, R. A.

H. Cheng, J.K. Barnett, A.S. Vilupuru, J.D. Marsack, S. Kasthurirangan, R. A. Applegate, and A. Roorda. "A population study on changes in wave aberrations with accommodation," J. of Vision 4, 272-280 (2004).

Arag’on, J.L

H. Hofer, P. Artal, B. Singer, J.L Arag’on, and D.R. Williams. "Dynamics of the eye’s wave aberration," J. Opt. Soc. Am. A. 18, 597-506 (2001).
[CrossRef]

Artal, P.

H. Hofer, P. Artal, B. Singer, J.L Arag’on, and D.R. Williams. "Dynamics of the eye’s wave aberration," J. Opt. Soc. Am. A. 18, 597-506 (2001).
[CrossRef]

Barnett, J.K.

H. Cheng, J.K. Barnett, A.S. Vilupuru, J.D. Marsack, S. Kasthurirangan, R. A. Applegate, and A. Roorda. "A population study on changes in wave aberrations with accommodation," J. of Vision 4, 272-280 (2004).

Bille, J.

Bille, J.F.

J. Liang, B. Grimm, S. Goelz, and J.F. Bille. "Objective measurement of wave aberration of the human eye with the use of a Hartmann-Shack wave-front sensor," J. Opt. Soc. Am. A. 11, 1949-1957 (1994).
[CrossRef]

Cheng, H.

H. Cheng, J.K. Barnett, A.S. Vilupuru, J.D. Marsack, S. Kasthurirangan, R. A. Applegate, and A. Roorda. "A population study on changes in wave aberrations with accommodation," J. of Vision 4, 272-280 (2004).

Collins, M.J.

D.R. Iskander, M.J. Collins, M.R. Morelande and M. Zhu. "Analyzing the dynamic wavefront aberrations in the human eye," IEEE Trans. Biomed. Eng. 51, 1969-1980 (2004).
[CrossRef] [PubMed]

Daint, C.

K. M. Hampson, I. Munro, C. Paterson, and C. Daint. "Weak correlation between the aberration dynamics of the human eye and the cardiopulmonary system," J. Opt. Soc. Am. A. 22, 1241-1250 (2005).
[CrossRef]

Dainty, C.

Dainty, J.C.

L. Diaz Santana Haro and J.C. Dainty. "Effects of retinal scattering in the ocular double-pass process," J. Opt. Soc. Am. 18, 1437-1444 (2001).
[CrossRef]

L. Diaz Santana Haro and J.C. Dainty. "Single-pass measurements of the wave-front aberrations of the human eye by use of retinal lipofuscin autofluorescence," Opt. Lett. 24, 61-63 (1999).
[CrossRef]

Davies, N.

N. Davies, L. Diaz-Santana, and D. Lara-Saucedo. "Repeatability of ocular wavefront measurement," Optom. Vis. Sci. 80, 142-150 (2003).
[CrossRef] [PubMed]

Diaz Santana Haro, L.

L. Diaz Santana Haro and J.C. Dainty. "Effects of retinal scattering in the ocular double-pass process," J. Opt. Soc. Am. 18, 1437-1444 (2001).
[CrossRef]

L. Diaz Santana Haro and J.C. Dainty. "Single-pass measurements of the wave-front aberrations of the human eye by use of retinal lipofuscin autofluorescence," Opt. Lett. 24, 61-63 (1999).
[CrossRef]

Diaz-Santana, L.

Dighiero, P.

J.J. Gicquel, J.L. Nguyen-Khoa, N. Lopez-Gil, R. Legras, P. Dighiero, D.A. Lebuisson, and J.F. Le Gargasson. "Optical aberrations variations of the human eye during accommodation," Invest. Ophthalmol. Vis. Sci.EAbstract 1993:B762 (2005).

Gasson, P.

Gicquel, J.J.

J.J. Gicquel, J.L. Nguyen-Khoa, N. Lopez-Gil, R. Legras, P. Dighiero, D.A. Lebuisson, and J.F. Le Gargasson. "Optical aberrations variations of the human eye during accommodation," Invest. Ophthalmol. Vis. Sci.EAbstract 1993:B762 (2005).

Gilmartin, B.

J.S. Wolffsohn, B. Gilmartin, E.A. Mallen, and S. Tsujimura. "Continuous recording of accommodation and pupil size using the shin-nippon srw-5000 autorefractor," Ophthalmic Physiol. Opt. 21,108-113 (2001).
[CrossRef] [PubMed]

Ginis, H.

H. Ginis, S. Plainis, and A. Pallikaris. "Variability of wavefront aberration measurements in small pupil sizes using a clinical shack-hartmann aberrometer," BMC Ophthalmology 4, 1471-2415 (2004).
[CrossRef]

Goelz, S.

J. Liang, B. Grimm, S. Goelz, and J.F. Bille. "Objective measurement of wave aberration of the human eye with the use of a Hartmann-Shack wave-front sensor," J. Opt. Soc. Am. A. 11, 1949-1957 (1994).
[CrossRef]

Grimm, B.

J. Liang, B. Grimm, S. Goelz, and J.F. Bille. "Objective measurement of wave aberration of the human eye with the use of a Hartmann-Shack wave-front sensor," J. Opt. Soc. Am. A. 11, 1949-1957 (1994).
[CrossRef]

Hampson, K. M.

K. M. Hampson, I. Munro, C. Paterson, and C. Daint. "Weak correlation between the aberration dynamics of the human eye and the cardiopulmonary system," J. Opt. Soc. Am. A. 22, 1241-1250 (2005).
[CrossRef]

Hofer, H.

H. Hofer, P. Artal, B. Singer, J.L Arag’on, and D.R. Williams. "Dynamics of the eye’s wave aberration," J. Opt. Soc. Am. A. 18, 597-506 (2001).
[CrossRef]

Iskander, D.R.

D.R. Iskander, M.J. Collins, M.R. Morelande and M. Zhu. "Analyzing the dynamic wavefront aberrations in the human eye," IEEE Trans. Biomed. Eng. 51, 1969-1980 (2004).
[CrossRef] [PubMed]

Kasthurirangan, S.

H. Cheng, J.K. Barnett, A.S. Vilupuru, J.D. Marsack, S. Kasthurirangan, R. A. Applegate, and A. Roorda. "A population study on changes in wave aberrations with accommodation," J. of Vision 4, 272-280 (2004).

Lara-Saucedo, D.

N. Davies, L. Diaz-Santana, and D. Lara-Saucedo. "Repeatability of ocular wavefront measurement," Optom. Vis. Sci. 80, 142-150 (2003).
[CrossRef] [PubMed]

Le Gargasson, J.F.

J.J. Gicquel, J.L. Nguyen-Khoa, N. Lopez-Gil, R. Legras, P. Dighiero, D.A. Lebuisson, and J.F. Le Gargasson. "Optical aberrations variations of the human eye during accommodation," Invest. Ophthalmol. Vis. Sci.EAbstract 1993:B762 (2005).

Lebuisson, D.A.

J.J. Gicquel, J.L. Nguyen-Khoa, N. Lopez-Gil, R. Legras, P. Dighiero, D.A. Lebuisson, and J.F. Le Gargasson. "Optical aberrations variations of the human eye during accommodation," Invest. Ophthalmol. Vis. Sci.EAbstract 1993:B762 (2005).

Legras, R.

J.J. Gicquel, J.L. Nguyen-Khoa, N. Lopez-Gil, R. Legras, P. Dighiero, D.A. Lebuisson, and J.F. Le Gargasson. "Optical aberrations variations of the human eye during accommodation," Invest. Ophthalmol. Vis. Sci.EAbstract 1993:B762 (2005).

Li, H.

H. Li and C. Rao. "Precision analysis of hartmann-shack wave-front sensor with modal reconstruction," J. Phys. Conference Series 48, 952-956 (2006).
[CrossRef]

Liang, J.

J. Liang, B. Grimm, S. Goelz, and J.F. Bille. "Objective measurement of wave aberration of the human eye with the use of a Hartmann-Shack wave-front sensor," J. Opt. Soc. Am. A. 11, 1949-1957 (1994).
[CrossRef]

Lopez-Gil, N.

J.J. Gicquel, J.L. Nguyen-Khoa, N. Lopez-Gil, R. Legras, P. Dighiero, D.A. Lebuisson, and J.F. Le Gargasson. "Optical aberrations variations of the human eye during accommodation," Invest. Ophthalmol. Vis. Sci.EAbstract 1993:B762 (2005).

Mallen, E.A.

J.S. Wolffsohn, B. Gilmartin, E.A. Mallen, and S. Tsujimura. "Continuous recording of accommodation and pupil size using the shin-nippon srw-5000 autorefractor," Ophthalmic Physiol. Opt. 21,108-113 (2001).
[CrossRef] [PubMed]

Marsack, J.D.

H. Cheng, J.K. Barnett, A.S. Vilupuru, J.D. Marsack, S. Kasthurirangan, R. A. Applegate, and A. Roorda. "A population study on changes in wave aberrations with accommodation," J. of Vision 4, 272-280 (2004).

Morelande, M.R.

D.R. Iskander, M.J. Collins, M.R. Morelande and M. Zhu. "Analyzing the dynamic wavefront aberrations in the human eye," IEEE Trans. Biomed. Eng. 51, 1969-1980 (2004).
[CrossRef] [PubMed]

Munro, I.

K. M. Hampson, I. Munro, C. Paterson, and C. Daint. "Weak correlation between the aberration dynamics of the human eye and the cardiopulmonary system," J. Opt. Soc. Am. A. 22, 1241-1250 (2005).
[CrossRef]

L. Diaz-Santana, C. Torti, I. Munro, P. Gasson, and C. Dainty. "Benefit of higher closed-loop bandwidths in ocular adaptive optics," Opt. Express 11, 2597-2605 (2003).
[CrossRef] [PubMed]

Nguyen-Khoa, J.L.

J.J. Gicquel, J.L. Nguyen-Khoa, N. Lopez-Gil, R. Legras, P. Dighiero, D.A. Lebuisson, and J.F. Le Gargasson. "Optical aberrations variations of the human eye during accommodation," Invest. Ophthalmol. Vis. Sci.EAbstract 1993:B762 (2005).

Nirmaier, T.

Pallikaris, A.

H. Ginis, S. Plainis, and A. Pallikaris. "Variability of wavefront aberration measurements in small pupil sizes using a clinical shack-hartmann aberrometer," BMC Ophthalmology 4, 1471-2415 (2004).
[CrossRef]

Paterson, C.

K. M. Hampson, I. Munro, C. Paterson, and C. Daint. "Weak correlation between the aberration dynamics of the human eye and the cardiopulmonary system," J. Opt. Soc. Am. A. 22, 1241-1250 (2005).
[CrossRef]

Plainis, S.

H. Ginis, S. Plainis, and A. Pallikaris. "Variability of wavefront aberration measurements in small pupil sizes using a clinical shack-hartmann aberrometer," BMC Ophthalmology 4, 1471-2415 (2004).
[CrossRef]

Pudasaini, G.

Rao, C.

H. Li and C. Rao. "Precision analysis of hartmann-shack wave-front sensor with modal reconstruction," J. Phys. Conference Series 48, 952-956 (2006).
[CrossRef]

Roorda, A.

H. Cheng, J.K. Barnett, A.S. Vilupuru, J.D. Marsack, S. Kasthurirangan, R. A. Applegate, and A. Roorda. "A population study on changes in wave aberrations with accommodation," J. of Vision 4, 272-280 (2004).

Singer, B.

H. Hofer, P. Artal, B. Singer, J.L Arag’on, and D.R. Williams. "Dynamics of the eye’s wave aberration," J. Opt. Soc. Am. A. 18, 597-506 (2001).
[CrossRef]

Torti, C.

Tsujimura, S.

J.S. Wolffsohn, B. Gilmartin, E.A. Mallen, and S. Tsujimura. "Continuous recording of accommodation and pupil size using the shin-nippon srw-5000 autorefractor," Ophthalmic Physiol. Opt. 21,108-113 (2001).
[CrossRef] [PubMed]

Vilupuru, A.S.

H. Cheng, J.K. Barnett, A.S. Vilupuru, J.D. Marsack, S. Kasthurirangan, R. A. Applegate, and A. Roorda. "A population study on changes in wave aberrations with accommodation," J. of Vision 4, 272-280 (2004).

Williams, D.R.

H. Hofer, P. Artal, B. Singer, J.L Arag’on, and D.R. Williams. "Dynamics of the eye’s wave aberration," J. Opt. Soc. Am. A. 18, 597-506 (2001).
[CrossRef]

Wolffsohn, J.S.

J.S. Wolffsohn, B. Gilmartin, E.A. Mallen, and S. Tsujimura. "Continuous recording of accommodation and pupil size using the shin-nippon srw-5000 autorefractor," Ophthalmic Physiol. Opt. 21,108-113 (2001).
[CrossRef] [PubMed]

Young, T.

T. Young. "On the mechanism of the eye," Phil. Trans. 91, 69 (1801).

Zhu, M.

D.R. Iskander, M.J. Collins, M.R. Morelande and M. Zhu. "Analyzing the dynamic wavefront aberrations in the human eye," IEEE Trans. Biomed. Eng. 51, 1969-1980 (2004).
[CrossRef] [PubMed]

BMC Ophthalmology (1)

H. Ginis, S. Plainis, and A. Pallikaris. "Variability of wavefront aberration measurements in small pupil sizes using a clinical shack-hartmann aberrometer," BMC Ophthalmology 4, 1471-2415 (2004).
[CrossRef]

EAbstract (1)

J.J. Gicquel, J.L. Nguyen-Khoa, N. Lopez-Gil, R. Legras, P. Dighiero, D.A. Lebuisson, and J.F. Le Gargasson. "Optical aberrations variations of the human eye during accommodation," Invest. Ophthalmol. Vis. Sci.EAbstract 1993:B762 (2005).

IEEE Trans. Biomed. Eng. (1)

D.R. Iskander, M.J. Collins, M.R. Morelande and M. Zhu. "Analyzing the dynamic wavefront aberrations in the human eye," IEEE Trans. Biomed. Eng. 51, 1969-1980 (2004).
[CrossRef] [PubMed]

J. of Vision (1)

H. Cheng, J.K. Barnett, A.S. Vilupuru, J.D. Marsack, S. Kasthurirangan, R. A. Applegate, and A. Roorda. "A population study on changes in wave aberrations with accommodation," J. of Vision 4, 272-280 (2004).

J. Opt. Soc. Am. (1)

L. Diaz Santana Haro and J.C. Dainty. "Effects of retinal scattering in the ocular double-pass process," J. Opt. Soc. Am. 18, 1437-1444 (2001).
[CrossRef]

J. Opt. Soc. Am. A. (3)

K. M. Hampson, I. Munro, C. Paterson, and C. Daint. "Weak correlation between the aberration dynamics of the human eye and the cardiopulmonary system," J. Opt. Soc. Am. A. 22, 1241-1250 (2005).
[CrossRef]

J. Liang, B. Grimm, S. Goelz, and J.F. Bille. "Objective measurement of wave aberration of the human eye with the use of a Hartmann-Shack wave-front sensor," J. Opt. Soc. Am. A. 11, 1949-1957 (1994).
[CrossRef]

H. Hofer, P. Artal, B. Singer, J.L Arag’on, and D.R. Williams. "Dynamics of the eye’s wave aberration," J. Opt. Soc. Am. A. 18, 597-506 (2001).
[CrossRef]

J. Phys. Conference Series (1)

H. Li and C. Rao. "Precision analysis of hartmann-shack wave-front sensor with modal reconstruction," J. Phys. Conference Series 48, 952-956 (2006).
[CrossRef]

Ophthalmic Physiol. Opt. (1)

J.S. Wolffsohn, B. Gilmartin, E.A. Mallen, and S. Tsujimura. "Continuous recording of accommodation and pupil size using the shin-nippon srw-5000 autorefractor," Ophthalmic Physiol. Opt. 21,108-113 (2001).
[CrossRef] [PubMed]

Opt. Express (2)

Opt. Lett. (1)

Optom. Vis. Sci. (1)

N. Davies, L. Diaz-Santana, and D. Lara-Saucedo. "Repeatability of ocular wavefront measurement," Optom. Vis. Sci. 80, 142-150 (2003).
[CrossRef] [PubMed]

Phil. Trans. (1)

T. Young. "On the mechanism of the eye," Phil. Trans. 91, 69 (1801).

Other (6)

H.T. Kasprzak and J. W. Jaronski. "Measurement of fine dynamic changes of the corneal topography by use of interferometry," In W. Osten, editor, Interferometer XI: Applications, SPIE-The International Society for Optical Engineering 4778, 169-176 (2002).

David Regan. Human Brain Electrophysiology. Evoked Potentials and Evoked Magnetic Fields in Science and Medicine. Elsevier Science Publishing, (1989).
[PubMed]

R.B Rabbetts. Bennett & Rabbetts Clinical Visual Optics. Butterworth and Heinemann, 5th edition (1998).

A. Dubinin, T. Cherezova, A. Belyakov and A. Kudryashov. Human eye anisoplanatism: eye as a lamellar structure. In F. Manns, P. G. S¨oderberg, and A. Ho, editors, Ophthalmic Technologies XVI. Edited by Manns, Fabrice; Söderberg, Per G.; Ho, Arthur. Proceedings of the SPIE, 6138, 260-266 (2006).

J. Arines. Imagen de alta resoluci’on del fondo de ojo por deconvoluci’on tras compensacion parcial. PhD thesis, Universidade de Santiago de Compostela (2006).

ANSI. American national standard for ophtalmics. ANSI-Z80.28-2004, Methods for reporting optical aberrations of eyes. American national standards institute, Inc. (2004).
[PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1.

Schematic representation of the Optical Set-Up

Fig. 2.
Fig. 2.

Interferograms depicting the resultant zernike pairs using Eqs. 1 and 2. As the values of the Zernike coefficeints C ±n m in each pair change the amplitude and angle of the interferogram will vary. The colour code under each image will be used below in section 3. Z 0 4 has been included for completeness.

Fig. 3.
Fig. 3.

Response of accommodation to the blue red stimuli. In both figures the areas in red correspond to the time when the stimulus was in red, and similarly for blue. (a) Measured changes in defocus over 12 seconds without any averaging. (b) Effect of running averages in the measurement of defocus. In black no averaging, green running average of 10 epochs, in blue 30 epochs and in red 75 epochs

Fig. 4.
Fig. 4.

Improvement of the signal to noise ratio (S/N ratio) in the measurements of 2nd order aberrations with running averages. In all graphics the x-axis is the number of epochs averaged, while the y-axis is the S/N ratio in decibels. Defocus appears in green, and astigmatism in red and blue. It is worth noticing that power dB are a logarithmic scale, not a linear one.

Fig. 5.
Fig. 5.

Average response of accommodation to the red-blue stimulus described in section 2.2 for the four participating subjects. In all cases an average of 75 epochs is shown. As before, the background colour represents the corresponding colour of the stimulus at that time.

Fig. 6.
Fig. 6.

Impact of running averages in the measurement of higher order aberrations. (a) Single measurement of C −1 5 in black, average of 10 epochs in red. (b) Average measurement of C −1 5; 30 epochs in black and 75 in red.

Fig. 7.
Fig. 7.

Improvement of signal to noise ratio (S/N ratio) of higher order aberrations with running averages. In all figures the x-axis is the number of epochs averaged, while the y-axis is the S/N ratio in decibels. The top row shows 3rd order aberrations, and the bottom row shows 5th order aberrations. It is worth noticing that power dB are a logarithmic scale, not a linear one.

Fig. 8.
Fig. 8.

Example scatter plots showing the correlation between changes in defocus and changes in astigmatism ((a) and (b)) and between changes in defocus and changes in one of the 5th order terms ((c) and (d)) for subject LD. (a) and (c) show in blue the resultant scatter plot for one epoch, and in red for an average of 10 epochs. (b) and (d) show in blue the scatter plot for an average on 30 epochs and in red for 75 epochs. Correlation coefficients are for each case are shown in the insert in each plot

Fig. 9.
Fig. 9.

Absolute value of the correlation coefficients between defocus and each individual Zernike term for all subjects (95% confidence). The top row shows the correlation values for an average of 75 epochs while the second row shows them for an average of 10 epochs. Zernike pairs that can be coupled using Eqs. 1 and 2 are shaded in the same colour. The key is show in the bottom row.

Fig. 10.
Fig. 10.

Examples of how changes in defocus correlate with changes in amplitude and/or angle of other Zernike terms. All plots show in blue and in the left y-axis changes in de-focus. In red and in the right y-axis are shown changes in amplitude (top row) or angle (bottom row) of CC ±3 3 (first column), of C ±5 5 (second column) and of C ±4 4 (third column)

Fig. 11.
Fig. 11.

Absolute value of the correlation coefficients between defocus and the individual Zernike terms expressed as amplitude (blue) and angle (red). Each zernike pair is coded as letters A to I. The key at the bottom of the figure uses the same colours as Fig. 9

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

a nm = ( c n m ) 2 + ( c n m ) 2
θ nm = arctan ( c n m c n m ) m
a nm = C n m A 2 + 1

Metrics