Abstract

We demonstrate the ability to characterize independently the vector components of the electric field associated with terahertz surface plasmons. This is accomplished via electro-optic sampling, using an electro-optic crystal placed in close proximity to a corrugated metal foil. The individual electric field vector components are measured using two separate ZnTe crystals. Since ZnTe exhibits isotropic dielectric properties, all of the detection configurations obey identical phase-matching constraints. Furthermore, since ZnTe is characterized by a single independent electro-optic tensor component, the field measurements may be directly compared against one another.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings, in Springer Tracts in Modern Physics, (Springer-Verlag, Berlin, 1988). Vol. 3.
  2. H. A. Atwater, S. Maier, A. Polman, J. A. Dionne, and L. Sweatlock, "The new "p-n junction": plasmonics enables photonic access to the nanoworld," MRS Bull. 30, 385-389 (2005).
    [CrossRef]
  3. D. Shankaran, K. Gobi, and N. Miura, "Recent advancements in surface plasmon resonance immunosensors for detection of small molecules of biomedical, food and environmental interest," Sens. Actuators B: Chemical 121, 158-177 (2007).
    [CrossRef]
  4. Z.-W. Liu, Q.-H. Wei, and X. Zhang, "Surface plasmon interference nanolithography," Nano Lett. 5, 957-961 (2005).
    [CrossRef] [PubMed]
  5. A. V. Zayats and I. I. Smolyaninov, "Near-field photonics: surfaceplasmon polaritons and localized surfaceplasmons," J. Opt. Soc. Am. A 5, S16-S50 (2003).
    [CrossRef]
  6. D. van Labeke and D. J. Barchiesi, "Probes for scanning tunneling optical microscopy: a theoretical comparison," J. Opt. Soc. Am. A 10, 2193-2201 (1993).
    [CrossRef]
  7. F. Zenhausern, M. P. O’Boyle, and H. K. Wickramasinghe, "Apertureless near-field optical microscope," Appl. Phys. Lett. 65, 1623-1625 (1994).
    [CrossRef]
  8. N. C. J. van der Valk and P. C. M. Planken, "Electro-optic detection of subwavelength terahertz spot sizes in the near field of a metal tip," Appl. Phys. Lett. 81, 1558-1560 (2002).
    [CrossRef]
  9. K. G. Lee, H. W. Kihm, J. E. Kihm, W. J. Choi, H. Kim, C. Ropers, D. J. Park, Y. C. Yoon, S. B. Choi, D. H. Woo, J. Kim, B. Lee, Q. H. Park, C. Lienau, and D. S. Kim, "Vector field microscopic imaging of light," Nature Photonics 1, 53-56 (2007).
    [CrossRef]
  10. A. Agrawal, H. Cao, and A. Nahata, "Time-domain analysis of enhanced transmission through a single subwavelength aperture," Opt. Express 13, 3535-3542 (2005).
    [CrossRef] [PubMed]
  11. B. H. Kolner and D. M. Bloom, "Electroopic sampling in GaAs integrated circuits," IEEE J. Quantum Electron. QE-22, 79-93 (1986).
    [CrossRef]
  12. K. Yang, L. P. B. Katehi, and J. F. Whitaker, "Electro-optic field mapping system utilizing external gallium arsenide probes," Appl. Phys. Lett. 77, 486-488 (2000).
    [CrossRef]
  13. Q. Chen, M. Tani, Z. Jiang, and X.-C. Zhang, "Electro-optic transceivers for terahertz-wave applications," J. Opt. Soc. Am. B 18, 823-831 (2001).
    [CrossRef]
  14. A. Nahata, A. S. Weling, and T. F. Heinz, "A wide band coherent terahertz spectroscopy system using optical rectification and electro-optic sampling," Appl. Phys. Lett. 69, 2321-2323 (1996).
    [CrossRef]
  15. H. Cao and A. Nahata, "Resonantly enhanced transmission of terahertz radiation through a periodic array of subwavelength apertures," Opt. Express 12, 1004-1010 (2004).
    [CrossRef] [PubMed]
  16. A. Yariv, Quantum Electronics (Wiley, New York, 1988).
  17. N. C. J. van der Valk, T. Wenckebach, and P. C. M. Planken, "Full mathematical description of electro-optic detection in optically isotropic crystals," J. Opt. Soc. Am. B 21, 622-631 (2004).
    [CrossRef]
  18. M. van Exter, Ch. Fattinger, and D. Grischkowsky, "Terahertz time-domain spectroscopy of water vapor," Opt. Lett. 14, 1128-1130 (1989).
    [CrossRef]
  19. Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, "Focusing surface plasmons with a plasmonic lens," Nano Lett. 5, 1726-1729 (2005).
    [CrossRef] [PubMed]
  20. T.-I. Jeon and D. Grischkowsky, "THz Zenneck surface wave (THz surface plasmon) propagation on a metal sheet," Appl. Phys. Lett. 88, 061113 (2006).
    [CrossRef]
  21. M. A. Ordal, L. L. Long, R. J. Bell, S. E. Bell, R. R. Bell, R. W. Alexander, Jr., and C. A. Ward, "Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared," Appl. Opt. 22, 1099-1120 (1983).
    [CrossRef] [PubMed]

2007

D. Shankaran, K. Gobi, and N. Miura, "Recent advancements in surface plasmon resonance immunosensors for detection of small molecules of biomedical, food and environmental interest," Sens. Actuators B: Chemical 121, 158-177 (2007).
[CrossRef]

K. G. Lee, H. W. Kihm, J. E. Kihm, W. J. Choi, H. Kim, C. Ropers, D. J. Park, Y. C. Yoon, S. B. Choi, D. H. Woo, J. Kim, B. Lee, Q. H. Park, C. Lienau, and D. S. Kim, "Vector field microscopic imaging of light," Nature Photonics 1, 53-56 (2007).
[CrossRef]

2006

T.-I. Jeon and D. Grischkowsky, "THz Zenneck surface wave (THz surface plasmon) propagation on a metal sheet," Appl. Phys. Lett. 88, 061113 (2006).
[CrossRef]

2005

A. Agrawal, H. Cao, and A. Nahata, "Time-domain analysis of enhanced transmission through a single subwavelength aperture," Opt. Express 13, 3535-3542 (2005).
[CrossRef] [PubMed]

H. A. Atwater, S. Maier, A. Polman, J. A. Dionne, and L. Sweatlock, "The new "p-n junction": plasmonics enables photonic access to the nanoworld," MRS Bull. 30, 385-389 (2005).
[CrossRef]

Z.-W. Liu, Q.-H. Wei, and X. Zhang, "Surface plasmon interference nanolithography," Nano Lett. 5, 957-961 (2005).
[CrossRef] [PubMed]

Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, "Focusing surface plasmons with a plasmonic lens," Nano Lett. 5, 1726-1729 (2005).
[CrossRef] [PubMed]

2004

2003

A. V. Zayats and I. I. Smolyaninov, "Near-field photonics: surfaceplasmon polaritons and localized surfaceplasmons," J. Opt. Soc. Am. A 5, S16-S50 (2003).
[CrossRef]

2002

N. C. J. van der Valk and P. C. M. Planken, "Electro-optic detection of subwavelength terahertz spot sizes in the near field of a metal tip," Appl. Phys. Lett. 81, 1558-1560 (2002).
[CrossRef]

2001

2000

K. Yang, L. P. B. Katehi, and J. F. Whitaker, "Electro-optic field mapping system utilizing external gallium arsenide probes," Appl. Phys. Lett. 77, 486-488 (2000).
[CrossRef]

1996

A. Nahata, A. S. Weling, and T. F. Heinz, "A wide band coherent terahertz spectroscopy system using optical rectification and electro-optic sampling," Appl. Phys. Lett. 69, 2321-2323 (1996).
[CrossRef]

1994

F. Zenhausern, M. P. O’Boyle, and H. K. Wickramasinghe, "Apertureless near-field optical microscope," Appl. Phys. Lett. 65, 1623-1625 (1994).
[CrossRef]

1993

1989

1986

B. H. Kolner and D. M. Bloom, "Electroopic sampling in GaAs integrated circuits," IEEE J. Quantum Electron. QE-22, 79-93 (1986).
[CrossRef]

1983

Agrawal, A.

Alexander, R. W.

Atwater, H. A.

H. A. Atwater, S. Maier, A. Polman, J. A. Dionne, and L. Sweatlock, "The new "p-n junction": plasmonics enables photonic access to the nanoworld," MRS Bull. 30, 385-389 (2005).
[CrossRef]

Barchiesi, D. J.

Bell, R. J.

Bell, R. R.

Bell, S. E.

Bloom, D. M.

B. H. Kolner and D. M. Bloom, "Electroopic sampling in GaAs integrated circuits," IEEE J. Quantum Electron. QE-22, 79-93 (1986).
[CrossRef]

Cao, H.

Chen, Q.

Choi, S. B.

K. G. Lee, H. W. Kihm, J. E. Kihm, W. J. Choi, H. Kim, C. Ropers, D. J. Park, Y. C. Yoon, S. B. Choi, D. H. Woo, J. Kim, B. Lee, Q. H. Park, C. Lienau, and D. S. Kim, "Vector field microscopic imaging of light," Nature Photonics 1, 53-56 (2007).
[CrossRef]

Choi, W. J.

K. G. Lee, H. W. Kihm, J. E. Kihm, W. J. Choi, H. Kim, C. Ropers, D. J. Park, Y. C. Yoon, S. B. Choi, D. H. Woo, J. Kim, B. Lee, Q. H. Park, C. Lienau, and D. S. Kim, "Vector field microscopic imaging of light," Nature Photonics 1, 53-56 (2007).
[CrossRef]

Dionne, J. A.

H. A. Atwater, S. Maier, A. Polman, J. A. Dionne, and L. Sweatlock, "The new "p-n junction": plasmonics enables photonic access to the nanoworld," MRS Bull. 30, 385-389 (2005).
[CrossRef]

Fattinger, Ch.

Gobi, K.

D. Shankaran, K. Gobi, and N. Miura, "Recent advancements in surface plasmon resonance immunosensors for detection of small molecules of biomedical, food and environmental interest," Sens. Actuators B: Chemical 121, 158-177 (2007).
[CrossRef]

Grischkowsky, D.

T.-I. Jeon and D. Grischkowsky, "THz Zenneck surface wave (THz surface plasmon) propagation on a metal sheet," Appl. Phys. Lett. 88, 061113 (2006).
[CrossRef]

M. van Exter, Ch. Fattinger, and D. Grischkowsky, "Terahertz time-domain spectroscopy of water vapor," Opt. Lett. 14, 1128-1130 (1989).
[CrossRef]

Heinz, T. F.

A. Nahata, A. S. Weling, and T. F. Heinz, "A wide band coherent terahertz spectroscopy system using optical rectification and electro-optic sampling," Appl. Phys. Lett. 69, 2321-2323 (1996).
[CrossRef]

Jeon, T.-I.

T.-I. Jeon and D. Grischkowsky, "THz Zenneck surface wave (THz surface plasmon) propagation on a metal sheet," Appl. Phys. Lett. 88, 061113 (2006).
[CrossRef]

Jiang, Z.

Katehi, L. P. B.

K. Yang, L. P. B. Katehi, and J. F. Whitaker, "Electro-optic field mapping system utilizing external gallium arsenide probes," Appl. Phys. Lett. 77, 486-488 (2000).
[CrossRef]

Kihm, H. W.

K. G. Lee, H. W. Kihm, J. E. Kihm, W. J. Choi, H. Kim, C. Ropers, D. J. Park, Y. C. Yoon, S. B. Choi, D. H. Woo, J. Kim, B. Lee, Q. H. Park, C. Lienau, and D. S. Kim, "Vector field microscopic imaging of light," Nature Photonics 1, 53-56 (2007).
[CrossRef]

Kihm, J. E.

K. G. Lee, H. W. Kihm, J. E. Kihm, W. J. Choi, H. Kim, C. Ropers, D. J. Park, Y. C. Yoon, S. B. Choi, D. H. Woo, J. Kim, B. Lee, Q. H. Park, C. Lienau, and D. S. Kim, "Vector field microscopic imaging of light," Nature Photonics 1, 53-56 (2007).
[CrossRef]

Kim, D. S.

K. G. Lee, H. W. Kihm, J. E. Kihm, W. J. Choi, H. Kim, C. Ropers, D. J. Park, Y. C. Yoon, S. B. Choi, D. H. Woo, J. Kim, B. Lee, Q. H. Park, C. Lienau, and D. S. Kim, "Vector field microscopic imaging of light," Nature Photonics 1, 53-56 (2007).
[CrossRef]

Kim, H.

K. G. Lee, H. W. Kihm, J. E. Kihm, W. J. Choi, H. Kim, C. Ropers, D. J. Park, Y. C. Yoon, S. B. Choi, D. H. Woo, J. Kim, B. Lee, Q. H. Park, C. Lienau, and D. S. Kim, "Vector field microscopic imaging of light," Nature Photonics 1, 53-56 (2007).
[CrossRef]

Kim, J.

K. G. Lee, H. W. Kihm, J. E. Kihm, W. J. Choi, H. Kim, C. Ropers, D. J. Park, Y. C. Yoon, S. B. Choi, D. H. Woo, J. Kim, B. Lee, Q. H. Park, C. Lienau, and D. S. Kim, "Vector field microscopic imaging of light," Nature Photonics 1, 53-56 (2007).
[CrossRef]

Kolner, B. H.

B. H. Kolner and D. M. Bloom, "Electroopic sampling in GaAs integrated circuits," IEEE J. Quantum Electron. QE-22, 79-93 (1986).
[CrossRef]

Lee, B.

K. G. Lee, H. W. Kihm, J. E. Kihm, W. J. Choi, H. Kim, C. Ropers, D. J. Park, Y. C. Yoon, S. B. Choi, D. H. Woo, J. Kim, B. Lee, Q. H. Park, C. Lienau, and D. S. Kim, "Vector field microscopic imaging of light," Nature Photonics 1, 53-56 (2007).
[CrossRef]

Lee, K. G.

K. G. Lee, H. W. Kihm, J. E. Kihm, W. J. Choi, H. Kim, C. Ropers, D. J. Park, Y. C. Yoon, S. B. Choi, D. H. Woo, J. Kim, B. Lee, Q. H. Park, C. Lienau, and D. S. Kim, "Vector field microscopic imaging of light," Nature Photonics 1, 53-56 (2007).
[CrossRef]

Lienau, C.

K. G. Lee, H. W. Kihm, J. E. Kihm, W. J. Choi, H. Kim, C. Ropers, D. J. Park, Y. C. Yoon, S. B. Choi, D. H. Woo, J. Kim, B. Lee, Q. H. Park, C. Lienau, and D. S. Kim, "Vector field microscopic imaging of light," Nature Photonics 1, 53-56 (2007).
[CrossRef]

Liu, Z.

Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, "Focusing surface plasmons with a plasmonic lens," Nano Lett. 5, 1726-1729 (2005).
[CrossRef] [PubMed]

Liu, Z.-W.

Z.-W. Liu, Q.-H. Wei, and X. Zhang, "Surface plasmon interference nanolithography," Nano Lett. 5, 957-961 (2005).
[CrossRef] [PubMed]

Long, L. L.

Maier, S.

H. A. Atwater, S. Maier, A. Polman, J. A. Dionne, and L. Sweatlock, "The new "p-n junction": plasmonics enables photonic access to the nanoworld," MRS Bull. 30, 385-389 (2005).
[CrossRef]

Miura, N.

D. Shankaran, K. Gobi, and N. Miura, "Recent advancements in surface plasmon resonance immunosensors for detection of small molecules of biomedical, food and environmental interest," Sens. Actuators B: Chemical 121, 158-177 (2007).
[CrossRef]

Nahata, A.

O’Boyle, M. P.

F. Zenhausern, M. P. O’Boyle, and H. K. Wickramasinghe, "Apertureless near-field optical microscope," Appl. Phys. Lett. 65, 1623-1625 (1994).
[CrossRef]

Ordal, M. A.

Park, D. J.

K. G. Lee, H. W. Kihm, J. E. Kihm, W. J. Choi, H. Kim, C. Ropers, D. J. Park, Y. C. Yoon, S. B. Choi, D. H. Woo, J. Kim, B. Lee, Q. H. Park, C. Lienau, and D. S. Kim, "Vector field microscopic imaging of light," Nature Photonics 1, 53-56 (2007).
[CrossRef]

Park, Q. H.

K. G. Lee, H. W. Kihm, J. E. Kihm, W. J. Choi, H. Kim, C. Ropers, D. J. Park, Y. C. Yoon, S. B. Choi, D. H. Woo, J. Kim, B. Lee, Q. H. Park, C. Lienau, and D. S. Kim, "Vector field microscopic imaging of light," Nature Photonics 1, 53-56 (2007).
[CrossRef]

Pikus, Y.

Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, "Focusing surface plasmons with a plasmonic lens," Nano Lett. 5, 1726-1729 (2005).
[CrossRef] [PubMed]

Planken, P. C. M.

N. C. J. van der Valk, T. Wenckebach, and P. C. M. Planken, "Full mathematical description of electro-optic detection in optically isotropic crystals," J. Opt. Soc. Am. B 21, 622-631 (2004).
[CrossRef]

N. C. J. van der Valk and P. C. M. Planken, "Electro-optic detection of subwavelength terahertz spot sizes in the near field of a metal tip," Appl. Phys. Lett. 81, 1558-1560 (2002).
[CrossRef]

Polman, A.

H. A. Atwater, S. Maier, A. Polman, J. A. Dionne, and L. Sweatlock, "The new "p-n junction": plasmonics enables photonic access to the nanoworld," MRS Bull. 30, 385-389 (2005).
[CrossRef]

Ropers, C.

K. G. Lee, H. W. Kihm, J. E. Kihm, W. J. Choi, H. Kim, C. Ropers, D. J. Park, Y. C. Yoon, S. B. Choi, D. H. Woo, J. Kim, B. Lee, Q. H. Park, C. Lienau, and D. S. Kim, "Vector field microscopic imaging of light," Nature Photonics 1, 53-56 (2007).
[CrossRef]

Shankaran, D.

D. Shankaran, K. Gobi, and N. Miura, "Recent advancements in surface plasmon resonance immunosensors for detection of small molecules of biomedical, food and environmental interest," Sens. Actuators B: Chemical 121, 158-177 (2007).
[CrossRef]

Smolyaninov, I. I.

A. V. Zayats and I. I. Smolyaninov, "Near-field photonics: surfaceplasmon polaritons and localized surfaceplasmons," J. Opt. Soc. Am. A 5, S16-S50 (2003).
[CrossRef]

Srituravanich, W.

Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, "Focusing surface plasmons with a plasmonic lens," Nano Lett. 5, 1726-1729 (2005).
[CrossRef] [PubMed]

Steele, J. M.

Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, "Focusing surface plasmons with a plasmonic lens," Nano Lett. 5, 1726-1729 (2005).
[CrossRef] [PubMed]

Sun, C.

Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, "Focusing surface plasmons with a plasmonic lens," Nano Lett. 5, 1726-1729 (2005).
[CrossRef] [PubMed]

Sweatlock, L.

H. A. Atwater, S. Maier, A. Polman, J. A. Dionne, and L. Sweatlock, "The new "p-n junction": plasmonics enables photonic access to the nanoworld," MRS Bull. 30, 385-389 (2005).
[CrossRef]

Tani, M.

van der Valk, N. C. J.

N. C. J. van der Valk, T. Wenckebach, and P. C. M. Planken, "Full mathematical description of electro-optic detection in optically isotropic crystals," J. Opt. Soc. Am. B 21, 622-631 (2004).
[CrossRef]

N. C. J. van der Valk and P. C. M. Planken, "Electro-optic detection of subwavelength terahertz spot sizes in the near field of a metal tip," Appl. Phys. Lett. 81, 1558-1560 (2002).
[CrossRef]

van Exter, M.

van Labeke, D.

Ward, C. A.

Wei, Q.-H.

Z.-W. Liu, Q.-H. Wei, and X. Zhang, "Surface plasmon interference nanolithography," Nano Lett. 5, 957-961 (2005).
[CrossRef] [PubMed]

Weling, A. S.

A. Nahata, A. S. Weling, and T. F. Heinz, "A wide band coherent terahertz spectroscopy system using optical rectification and electro-optic sampling," Appl. Phys. Lett. 69, 2321-2323 (1996).
[CrossRef]

Wenckebach, T.

Whitaker, J. F.

K. Yang, L. P. B. Katehi, and J. F. Whitaker, "Electro-optic field mapping system utilizing external gallium arsenide probes," Appl. Phys. Lett. 77, 486-488 (2000).
[CrossRef]

Wickramasinghe, H. K.

F. Zenhausern, M. P. O’Boyle, and H. K. Wickramasinghe, "Apertureless near-field optical microscope," Appl. Phys. Lett. 65, 1623-1625 (1994).
[CrossRef]

Woo, D. H.

K. G. Lee, H. W. Kihm, J. E. Kihm, W. J. Choi, H. Kim, C. Ropers, D. J. Park, Y. C. Yoon, S. B. Choi, D. H. Woo, J. Kim, B. Lee, Q. H. Park, C. Lienau, and D. S. Kim, "Vector field microscopic imaging of light," Nature Photonics 1, 53-56 (2007).
[CrossRef]

Yang, K.

K. Yang, L. P. B. Katehi, and J. F. Whitaker, "Electro-optic field mapping system utilizing external gallium arsenide probes," Appl. Phys. Lett. 77, 486-488 (2000).
[CrossRef]

Yoon, Y. C.

K. G. Lee, H. W. Kihm, J. E. Kihm, W. J. Choi, H. Kim, C. Ropers, D. J. Park, Y. C. Yoon, S. B. Choi, D. H. Woo, J. Kim, B. Lee, Q. H. Park, C. Lienau, and D. S. Kim, "Vector field microscopic imaging of light," Nature Photonics 1, 53-56 (2007).
[CrossRef]

Zayats, A. V.

A. V. Zayats and I. I. Smolyaninov, "Near-field photonics: surfaceplasmon polaritons and localized surfaceplasmons," J. Opt. Soc. Am. A 5, S16-S50 (2003).
[CrossRef]

Zenhausern, F.

F. Zenhausern, M. P. O’Boyle, and H. K. Wickramasinghe, "Apertureless near-field optical microscope," Appl. Phys. Lett. 65, 1623-1625 (1994).
[CrossRef]

Zhang, X.

Z.-W. Liu, Q.-H. Wei, and X. Zhang, "Surface plasmon interference nanolithography," Nano Lett. 5, 957-961 (2005).
[CrossRef] [PubMed]

Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, "Focusing surface plasmons with a plasmonic lens," Nano Lett. 5, 1726-1729 (2005).
[CrossRef] [PubMed]

Zhang, X.-C.

Appl. Opt.

Appl. Phys. Lett.

T.-I. Jeon and D. Grischkowsky, "THz Zenneck surface wave (THz surface plasmon) propagation on a metal sheet," Appl. Phys. Lett. 88, 061113 (2006).
[CrossRef]

F. Zenhausern, M. P. O’Boyle, and H. K. Wickramasinghe, "Apertureless near-field optical microscope," Appl. Phys. Lett. 65, 1623-1625 (1994).
[CrossRef]

N. C. J. van der Valk and P. C. M. Planken, "Electro-optic detection of subwavelength terahertz spot sizes in the near field of a metal tip," Appl. Phys. Lett. 81, 1558-1560 (2002).
[CrossRef]

K. Yang, L. P. B. Katehi, and J. F. Whitaker, "Electro-optic field mapping system utilizing external gallium arsenide probes," Appl. Phys. Lett. 77, 486-488 (2000).
[CrossRef]

A. Nahata, A. S. Weling, and T. F. Heinz, "A wide band coherent terahertz spectroscopy system using optical rectification and electro-optic sampling," Appl. Phys. Lett. 69, 2321-2323 (1996).
[CrossRef]

IEEE J. Quantum Electron.

B. H. Kolner and D. M. Bloom, "Electroopic sampling in GaAs integrated circuits," IEEE J. Quantum Electron. QE-22, 79-93 (1986).
[CrossRef]

J. Opt. Soc. Am. A

A. V. Zayats and I. I. Smolyaninov, "Near-field photonics: surfaceplasmon polaritons and localized surfaceplasmons," J. Opt. Soc. Am. A 5, S16-S50 (2003).
[CrossRef]

D. van Labeke and D. J. Barchiesi, "Probes for scanning tunneling optical microscopy: a theoretical comparison," J. Opt. Soc. Am. A 10, 2193-2201 (1993).
[CrossRef]

J. Opt. Soc. Am. B

MRS Bull.

H. A. Atwater, S. Maier, A. Polman, J. A. Dionne, and L. Sweatlock, "The new "p-n junction": plasmonics enables photonic access to the nanoworld," MRS Bull. 30, 385-389 (2005).
[CrossRef]

Nano Lett.

Z.-W. Liu, Q.-H. Wei, and X. Zhang, "Surface plasmon interference nanolithography," Nano Lett. 5, 957-961 (2005).
[CrossRef] [PubMed]

Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, "Focusing surface plasmons with a plasmonic lens," Nano Lett. 5, 1726-1729 (2005).
[CrossRef] [PubMed]

Nature Photonics

K. G. Lee, H. W. Kihm, J. E. Kihm, W. J. Choi, H. Kim, C. Ropers, D. J. Park, Y. C. Yoon, S. B. Choi, D. H. Woo, J. Kim, B. Lee, Q. H. Park, C. Lienau, and D. S. Kim, "Vector field microscopic imaging of light," Nature Photonics 1, 53-56 (2007).
[CrossRef]

Opt. Express

Opt. Lett.

Sens. Actuators B: Chemical

D. Shankaran, K. Gobi, and N. Miura, "Recent advancements in surface plasmon resonance immunosensors for detection of small molecules of biomedical, food and environmental interest," Sens. Actuators B: Chemical 121, 158-177 (2007).
[CrossRef]

Other

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings, in Springer Tracts in Modern Physics, (Springer-Verlag, Berlin, 1988). Vol. 3.

A. Yariv, Quantum Electronics (Wiley, New York, 1988).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Schematic diagram of the experimental setup for measuring the vector properties of THz surface plasmons (a) the ZnTe detection crystal is either a (100) or a (110) crystal, λ/4 corresponds to a quarter-wave plate, WP corresponds to a Wollaston prism, and differential detection is used for improved sensitivity. (b) the probe beam propagation direction and position of the ZnTe detection crystal is shown relative to the xyz-coordinate system.

Fig. 2.
Fig. 2.

Geometry of (a) the (100) ZnTe detection crystal and (b) (110) ZnTe detection crystal in the x′y′z′ coordinate system. The vectors s′ and k′THz are the propagation directions of the optical probe beam and the TSP, respectively, where δ is the polarization angle of the probe beam in xyz coordinate frame. The xyz coordinates are also shown with respect to x′y′z′ coordinates.

Fig. 3.
Fig. 3.

(a). Measured time-domain waveforms for the incident THz pulse (black waveform) and the Ez component of the TSP measured at the center of the bullseye structure (red waveform). The waveforms, offset vertically for clarity, were measured under different experimental configurations. (b) The corresponding amplitude spectra using the same color scheme.

Fig. 4.
Fig. 4.

Magnitudes of the individual vector field components of the TSP as a function of the distance from the metal surface - Ez (red triangles), Ex (blue diamonds), and Ey (black circles). The corresponding colored curves represent the best exponential fit to the data. All data were measured at the center of the bullseye structure.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

1 n 2 x ´ 2 + 1 n 2 y ´ 2 + 1 n 2 z ´ 2 + 2 r 41 E x ' y ´ z ´ + 2 r 41 E y ' x ´ z ´ + 2 r 41 E z ' x ´ y ´ = 1
ΔI I o = ωn 3 r 41 L c [ sin ( 2 δ ) E x ´ E y ´ E z ´ . S y ´ S z ´ S y ´ S z ´ S z ´ 2 + S x ´ 2 2 S z ´ 2 + S x ´ 2 S x ´ S y ´ + cos ( 2 δ ) E x ´ E y ´ E z ´ . S x ´ S y ´ S z ´ 2 S x ´ 2 S z ´ 2 + S x ´ 2 S z ´ ]
ΔI I o = ωn 3 r 41 L c cos ( 2 δ ) E x .
ΔI I o = ωn 3 r 41 L c [ E z sin ( 2 δ ) + 2 E y cos ( 2 δ ) ] .
E = E o exp [ i ( k x x + k z z ωt ) ]

Metrics