Abstract

We integrate the optical elements required to generate optical orbital angular momentum into a microdevice. This allows the rotation of either naturally occuring microparticles or specially fabricated optical rotors. We use a two photon photopolymerization process to create microscopic diffractive optical elements, customized to a wavelength of choice, which are integrated with micromachines in microfluidic devices. This enables the application of high optical torques with off-the-shelf optical tweezers systems.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Aharoni, A. D. Griffiths, and D. S. Tawfik, "High-throughput screens and selections of enzyme-encoding genes," Curr. Opin. Chem. Biol. 9, 210-216 (2005).
    [CrossRef] [PubMed]
  2. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, "Observation of a single-beam gradient force optical trap for dielectric particles," Opt. Lett. 11, 288-290 (1986).
    [CrossRef] [PubMed]
  3. S. Kulin, R. Kishore, K. Helmerson, and L. Locascio, "Optical manipulation and fusion of liposomes as microreactors," Langmuir 19, 8206-8210 (2003).
    [CrossRef]
  4. M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, "Optical alignment and spinning of laser-trapped microscopic particles," Nature 394, 348-350 (1998).
    [CrossRef]
  5. H. Ukita and M. Kanehira, "A shuttlecock optical rotator—its design, fabrication and evaluation for a microfluidic mixer," IEEE J. Sel. Topics Quantum Electron. 8, 111-117 (2002).
    [CrossRef]
  6. J. Leach, H. Mushfique, R. di Leonardo, M. Padgett, and J. Cooper, "An optically driven pump for microfluidics," Lab Chip 6, 735-739 (2006).
    [CrossRef] [PubMed]
  7. T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, "Optical measurement of microscopic torques," J. Mod. Opt. 48, 405-413 (2001).
  8. A. I. Bishop, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, "Optical microrheology using rotating laser-trapped particles," Phys. Rev. Lett. 92, 198104 (2004).
    [CrossRef] [PubMed]
  9. S. J. Parkin, G. Knoner, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, "Measurement of the total optical angular momentum transfer in optical tweezers," Opt. Express 14, 6963-6970 (2006).
    [CrossRef] [PubMed]
  10. L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, "Orbital angular momentum and the transformation of Laguerre-Gaussian laser modes," Phys. Rev. A 45, 8185-8189 (1992).
    [CrossRef] [PubMed]
  11. M. Padgett, J. Arlt, N. Simpson, and L. Allen, "An experiment to observe the intensity and phase structure of Laguerre-Gaussian laser modes," Am. J. Phys. 64, 77-82 (1996).
    [CrossRef]
  12. G. Knoner, S. Parkin, N. R. Heckenberg, and H. Rubinsztein-Dunlop, "Characterization of optically driven fluid stress fields with optical tweezers," Phys. Rev. E 72, 031507 (2005).
    [CrossRef]
  13. L. Oroszi, P. Galajda, H. Kirei, S. Bottka, and P. Ormos, "Direct measurement of torque in an optical trap and its application to double-strand DNA," Phys. Rev. Lett. 97, 058301 (2006).
    [CrossRef] [PubMed]
  14. S. L. Neale, M. P. MacDonald, K. Dholakia, and T. F. Krauss, "All-optical control of microfluidic components using form birefringence," Nature Mat. 4, 530-533 (2005).
    [CrossRef]
  15. N. R. Heckenberg, R. McDuff, C. P. Smith, and A. G. White, "Generation of optical phase singularities by computer-generated holograms," Opt. Lett. 17, 221-223 (1992).
    [CrossRef]
  16. S. Bayoudh, M. Mehta, H. Rubinsztein-Dunlop, N. R. Heckenberg, and C. Critchley, "Micromanipulation of chloroplasts using optical tweezers," J. Microsc. 203, 214-222 (2001).
    [CrossRef] [PubMed]
  17. S. Maruo and H. Inoue, "Optically driven micropump produced by three-dimensional two-photon microfabrication," Appl. Phys. Lett. 89, 144101 (2006).
    [CrossRef]
  18. J. Courtial and M. J. Padgett, "Limit to the orbital angular momentum per unit energy in a light beam that can be focussed onto a small particle," Opt. Commun. 173, 269-274 (2000).
    [CrossRef]
  19. T. A. Nieminen, S. J. Parkin, N. R. Heckenberg, and H. Rubinsztein-Dunlop, "Optical torque and symmetry," Proc. SPIE 5514, 254-263 (2004).
    [CrossRef]

2006 (4)

J. Leach, H. Mushfique, R. di Leonardo, M. Padgett, and J. Cooper, "An optically driven pump for microfluidics," Lab Chip 6, 735-739 (2006).
[CrossRef] [PubMed]

S. J. Parkin, G. Knoner, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, "Measurement of the total optical angular momentum transfer in optical tweezers," Opt. Express 14, 6963-6970 (2006).
[CrossRef] [PubMed]

L. Oroszi, P. Galajda, H. Kirei, S. Bottka, and P. Ormos, "Direct measurement of torque in an optical trap and its application to double-strand DNA," Phys. Rev. Lett. 97, 058301 (2006).
[CrossRef] [PubMed]

S. Maruo and H. Inoue, "Optically driven micropump produced by three-dimensional two-photon microfabrication," Appl. Phys. Lett. 89, 144101 (2006).
[CrossRef]

2005 (3)

S. L. Neale, M. P. MacDonald, K. Dholakia, and T. F. Krauss, "All-optical control of microfluidic components using form birefringence," Nature Mat. 4, 530-533 (2005).
[CrossRef]

G. Knoner, S. Parkin, N. R. Heckenberg, and H. Rubinsztein-Dunlop, "Characterization of optically driven fluid stress fields with optical tweezers," Phys. Rev. E 72, 031507 (2005).
[CrossRef]

A. Aharoni, A. D. Griffiths, and D. S. Tawfik, "High-throughput screens and selections of enzyme-encoding genes," Curr. Opin. Chem. Biol. 9, 210-216 (2005).
[CrossRef] [PubMed]

2004 (2)

A. I. Bishop, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, "Optical microrheology using rotating laser-trapped particles," Phys. Rev. Lett. 92, 198104 (2004).
[CrossRef] [PubMed]

T. A. Nieminen, S. J. Parkin, N. R. Heckenberg, and H. Rubinsztein-Dunlop, "Optical torque and symmetry," Proc. SPIE 5514, 254-263 (2004).
[CrossRef]

2003 (1)

S. Kulin, R. Kishore, K. Helmerson, and L. Locascio, "Optical manipulation and fusion of liposomes as microreactors," Langmuir 19, 8206-8210 (2003).
[CrossRef]

2002 (1)

H. Ukita and M. Kanehira, "A shuttlecock optical rotator—its design, fabrication and evaluation for a microfluidic mixer," IEEE J. Sel. Topics Quantum Electron. 8, 111-117 (2002).
[CrossRef]

2001 (2)

T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, "Optical measurement of microscopic torques," J. Mod. Opt. 48, 405-413 (2001).

S. Bayoudh, M. Mehta, H. Rubinsztein-Dunlop, N. R. Heckenberg, and C. Critchley, "Micromanipulation of chloroplasts using optical tweezers," J. Microsc. 203, 214-222 (2001).
[CrossRef] [PubMed]

2000 (1)

J. Courtial and M. J. Padgett, "Limit to the orbital angular momentum per unit energy in a light beam that can be focussed onto a small particle," Opt. Commun. 173, 269-274 (2000).
[CrossRef]

1998 (1)

M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, "Optical alignment and spinning of laser-trapped microscopic particles," Nature 394, 348-350 (1998).
[CrossRef]

1996 (1)

M. Padgett, J. Arlt, N. Simpson, and L. Allen, "An experiment to observe the intensity and phase structure of Laguerre-Gaussian laser modes," Am. J. Phys. 64, 77-82 (1996).
[CrossRef]

1992 (2)

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, "Orbital angular momentum and the transformation of Laguerre-Gaussian laser modes," Phys. Rev. A 45, 8185-8189 (1992).
[CrossRef] [PubMed]

N. R. Heckenberg, R. McDuff, C. P. Smith, and A. G. White, "Generation of optical phase singularities by computer-generated holograms," Opt. Lett. 17, 221-223 (1992).
[CrossRef]

1986 (1)

Aharoni, A.

A. Aharoni, A. D. Griffiths, and D. S. Tawfik, "High-throughput screens and selections of enzyme-encoding genes," Curr. Opin. Chem. Biol. 9, 210-216 (2005).
[CrossRef] [PubMed]

Allen, L.

M. Padgett, J. Arlt, N. Simpson, and L. Allen, "An experiment to observe the intensity and phase structure of Laguerre-Gaussian laser modes," Am. J. Phys. 64, 77-82 (1996).
[CrossRef]

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, "Orbital angular momentum and the transformation of Laguerre-Gaussian laser modes," Phys. Rev. A 45, 8185-8189 (1992).
[CrossRef] [PubMed]

Arlt, J.

M. Padgett, J. Arlt, N. Simpson, and L. Allen, "An experiment to observe the intensity and phase structure of Laguerre-Gaussian laser modes," Am. J. Phys. 64, 77-82 (1996).
[CrossRef]

Ashkin, A.

Bayoudh, S.

S. Bayoudh, M. Mehta, H. Rubinsztein-Dunlop, N. R. Heckenberg, and C. Critchley, "Micromanipulation of chloroplasts using optical tweezers," J. Microsc. 203, 214-222 (2001).
[CrossRef] [PubMed]

Beijersbergen, M. W.

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, "Orbital angular momentum and the transformation of Laguerre-Gaussian laser modes," Phys. Rev. A 45, 8185-8189 (1992).
[CrossRef] [PubMed]

Bishop, A. I.

A. I. Bishop, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, "Optical microrheology using rotating laser-trapped particles," Phys. Rev. Lett. 92, 198104 (2004).
[CrossRef] [PubMed]

Bjorkholm, J. E.

Bottka, S.

L. Oroszi, P. Galajda, H. Kirei, S. Bottka, and P. Ormos, "Direct measurement of torque in an optical trap and its application to double-strand DNA," Phys. Rev. Lett. 97, 058301 (2006).
[CrossRef] [PubMed]

Chu, S.

Cooper, J.

J. Leach, H. Mushfique, R. di Leonardo, M. Padgett, and J. Cooper, "An optically driven pump for microfluidics," Lab Chip 6, 735-739 (2006).
[CrossRef] [PubMed]

Courtial, J.

J. Courtial and M. J. Padgett, "Limit to the orbital angular momentum per unit energy in a light beam that can be focussed onto a small particle," Opt. Commun. 173, 269-274 (2000).
[CrossRef]

Critchley, C.

S. Bayoudh, M. Mehta, H. Rubinsztein-Dunlop, N. R. Heckenberg, and C. Critchley, "Micromanipulation of chloroplasts using optical tweezers," J. Microsc. 203, 214-222 (2001).
[CrossRef] [PubMed]

Dholakia, K.

S. L. Neale, M. P. MacDonald, K. Dholakia, and T. F. Krauss, "All-optical control of microfluidic components using form birefringence," Nature Mat. 4, 530-533 (2005).
[CrossRef]

di Leonardo, R.

J. Leach, H. Mushfique, R. di Leonardo, M. Padgett, and J. Cooper, "An optically driven pump for microfluidics," Lab Chip 6, 735-739 (2006).
[CrossRef] [PubMed]

Dziedzic, J. M.

Friese, M. E. J.

M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, "Optical alignment and spinning of laser-trapped microscopic particles," Nature 394, 348-350 (1998).
[CrossRef]

Galajda, P.

L. Oroszi, P. Galajda, H. Kirei, S. Bottka, and P. Ormos, "Direct measurement of torque in an optical trap and its application to double-strand DNA," Phys. Rev. Lett. 97, 058301 (2006).
[CrossRef] [PubMed]

Griffiths, A. D.

A. Aharoni, A. D. Griffiths, and D. S. Tawfik, "High-throughput screens and selections of enzyme-encoding genes," Curr. Opin. Chem. Biol. 9, 210-216 (2005).
[CrossRef] [PubMed]

Heckenberg, N. R.

A. I. Bishop, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, "Optical microrheology using rotating laser-trapped particles," Phys. Rev. Lett. 92, 198104 (2004).
[CrossRef] [PubMed]

T. A. Nieminen, S. J. Parkin, N. R. Heckenberg, and H. Rubinsztein-Dunlop, "Optical torque and symmetry," Proc. SPIE 5514, 254-263 (2004).
[CrossRef]

S. Bayoudh, M. Mehta, H. Rubinsztein-Dunlop, N. R. Heckenberg, and C. Critchley, "Micromanipulation of chloroplasts using optical tweezers," J. Microsc. 203, 214-222 (2001).
[CrossRef] [PubMed]

T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, "Optical measurement of microscopic torques," J. Mod. Opt. 48, 405-413 (2001).

M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, "Optical alignment and spinning of laser-trapped microscopic particles," Nature 394, 348-350 (1998).
[CrossRef]

N. R. Heckenberg, R. McDuff, C. P. Smith, and A. G. White, "Generation of optical phase singularities by computer-generated holograms," Opt. Lett. 17, 221-223 (1992).
[CrossRef]

Helmerson, K.

S. Kulin, R. Kishore, K. Helmerson, and L. Locascio, "Optical manipulation and fusion of liposomes as microreactors," Langmuir 19, 8206-8210 (2003).
[CrossRef]

Inoue, H.

S. Maruo and H. Inoue, "Optically driven micropump produced by three-dimensional two-photon microfabrication," Appl. Phys. Lett. 89, 144101 (2006).
[CrossRef]

Kanehira, M.

H. Ukita and M. Kanehira, "A shuttlecock optical rotator—its design, fabrication and evaluation for a microfluidic mixer," IEEE J. Sel. Topics Quantum Electron. 8, 111-117 (2002).
[CrossRef]

Kirei, H.

L. Oroszi, P. Galajda, H. Kirei, S. Bottka, and P. Ormos, "Direct measurement of torque in an optical trap and its application to double-strand DNA," Phys. Rev. Lett. 97, 058301 (2006).
[CrossRef] [PubMed]

Kishore, R.

S. Kulin, R. Kishore, K. Helmerson, and L. Locascio, "Optical manipulation and fusion of liposomes as microreactors," Langmuir 19, 8206-8210 (2003).
[CrossRef]

Krauss, T. F.

S. L. Neale, M. P. MacDonald, K. Dholakia, and T. F. Krauss, "All-optical control of microfluidic components using form birefringence," Nature Mat. 4, 530-533 (2005).
[CrossRef]

Kulin, S.

S. Kulin, R. Kishore, K. Helmerson, and L. Locascio, "Optical manipulation and fusion of liposomes as microreactors," Langmuir 19, 8206-8210 (2003).
[CrossRef]

Leach, J.

J. Leach, H. Mushfique, R. di Leonardo, M. Padgett, and J. Cooper, "An optically driven pump for microfluidics," Lab Chip 6, 735-739 (2006).
[CrossRef] [PubMed]

Locascio, L.

S. Kulin, R. Kishore, K. Helmerson, and L. Locascio, "Optical manipulation and fusion of liposomes as microreactors," Langmuir 19, 8206-8210 (2003).
[CrossRef]

MacDonald, M. P.

S. L. Neale, M. P. MacDonald, K. Dholakia, and T. F. Krauss, "All-optical control of microfluidic components using form birefringence," Nature Mat. 4, 530-533 (2005).
[CrossRef]

Maruo, S.

S. Maruo and H. Inoue, "Optically driven micropump produced by three-dimensional two-photon microfabrication," Appl. Phys. Lett. 89, 144101 (2006).
[CrossRef]

McDuff, R.

Mehta, M.

S. Bayoudh, M. Mehta, H. Rubinsztein-Dunlop, N. R. Heckenberg, and C. Critchley, "Micromanipulation of chloroplasts using optical tweezers," J. Microsc. 203, 214-222 (2001).
[CrossRef] [PubMed]

Mushfique, H.

J. Leach, H. Mushfique, R. di Leonardo, M. Padgett, and J. Cooper, "An optically driven pump for microfluidics," Lab Chip 6, 735-739 (2006).
[CrossRef] [PubMed]

Neale, S. L.

S. L. Neale, M. P. MacDonald, K. Dholakia, and T. F. Krauss, "All-optical control of microfluidic components using form birefringence," Nature Mat. 4, 530-533 (2005).
[CrossRef]

Nieminen, T. A.

T. A. Nieminen, S. J. Parkin, N. R. Heckenberg, and H. Rubinsztein-Dunlop, "Optical torque and symmetry," Proc. SPIE 5514, 254-263 (2004).
[CrossRef]

A. I. Bishop, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, "Optical microrheology using rotating laser-trapped particles," Phys. Rev. Lett. 92, 198104 (2004).
[CrossRef] [PubMed]

T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, "Optical measurement of microscopic torques," J. Mod. Opt. 48, 405-413 (2001).

M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, "Optical alignment and spinning of laser-trapped microscopic particles," Nature 394, 348-350 (1998).
[CrossRef]

Ormos, P.

L. Oroszi, P. Galajda, H. Kirei, S. Bottka, and P. Ormos, "Direct measurement of torque in an optical trap and its application to double-strand DNA," Phys. Rev. Lett. 97, 058301 (2006).
[CrossRef] [PubMed]

Oroszi, L.

L. Oroszi, P. Galajda, H. Kirei, S. Bottka, and P. Ormos, "Direct measurement of torque in an optical trap and its application to double-strand DNA," Phys. Rev. Lett. 97, 058301 (2006).
[CrossRef] [PubMed]

Padgett, M.

J. Leach, H. Mushfique, R. di Leonardo, M. Padgett, and J. Cooper, "An optically driven pump for microfluidics," Lab Chip 6, 735-739 (2006).
[CrossRef] [PubMed]

M. Padgett, J. Arlt, N. Simpson, and L. Allen, "An experiment to observe the intensity and phase structure of Laguerre-Gaussian laser modes," Am. J. Phys. 64, 77-82 (1996).
[CrossRef]

Padgett, M. J.

J. Courtial and M. J. Padgett, "Limit to the orbital angular momentum per unit energy in a light beam that can be focussed onto a small particle," Opt. Commun. 173, 269-274 (2000).
[CrossRef]

Parkin, S. J.

Rubinsztein-Dunlop, H.

T. A. Nieminen, S. J. Parkin, N. R. Heckenberg, and H. Rubinsztein-Dunlop, "Optical torque and symmetry," Proc. SPIE 5514, 254-263 (2004).
[CrossRef]

A. I. Bishop, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, "Optical microrheology using rotating laser-trapped particles," Phys. Rev. Lett. 92, 198104 (2004).
[CrossRef] [PubMed]

T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, "Optical measurement of microscopic torques," J. Mod. Opt. 48, 405-413 (2001).

S. Bayoudh, M. Mehta, H. Rubinsztein-Dunlop, N. R. Heckenberg, and C. Critchley, "Micromanipulation of chloroplasts using optical tweezers," J. Microsc. 203, 214-222 (2001).
[CrossRef] [PubMed]

M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, "Optical alignment and spinning of laser-trapped microscopic particles," Nature 394, 348-350 (1998).
[CrossRef]

Simpson, N.

M. Padgett, J. Arlt, N. Simpson, and L. Allen, "An experiment to observe the intensity and phase structure of Laguerre-Gaussian laser modes," Am. J. Phys. 64, 77-82 (1996).
[CrossRef]

Smith, C. P.

Spreeuw, R. J. C.

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, "Orbital angular momentum and the transformation of Laguerre-Gaussian laser modes," Phys. Rev. A 45, 8185-8189 (1992).
[CrossRef] [PubMed]

Tawfik, D. S.

A. Aharoni, A. D. Griffiths, and D. S. Tawfik, "High-throughput screens and selections of enzyme-encoding genes," Curr. Opin. Chem. Biol. 9, 210-216 (2005).
[CrossRef] [PubMed]

Ukita, H.

H. Ukita and M. Kanehira, "A shuttlecock optical rotator—its design, fabrication and evaluation for a microfluidic mixer," IEEE J. Sel. Topics Quantum Electron. 8, 111-117 (2002).
[CrossRef]

White, A. G.

Woerdman, J. P.

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, "Orbital angular momentum and the transformation of Laguerre-Gaussian laser modes," Phys. Rev. A 45, 8185-8189 (1992).
[CrossRef] [PubMed]

Am. J. Phys. (1)

M. Padgett, J. Arlt, N. Simpson, and L. Allen, "An experiment to observe the intensity and phase structure of Laguerre-Gaussian laser modes," Am. J. Phys. 64, 77-82 (1996).
[CrossRef]

Appl. Phys. Lett. (1)

S. Maruo and H. Inoue, "Optically driven micropump produced by three-dimensional two-photon microfabrication," Appl. Phys. Lett. 89, 144101 (2006).
[CrossRef]

Curr. Opin. Chem. Biol. (1)

A. Aharoni, A. D. Griffiths, and D. S. Tawfik, "High-throughput screens and selections of enzyme-encoding genes," Curr. Opin. Chem. Biol. 9, 210-216 (2005).
[CrossRef] [PubMed]

IEEE J. Sel. Topics Quantum Electron. (1)

H. Ukita and M. Kanehira, "A shuttlecock optical rotator—its design, fabrication and evaluation for a microfluidic mixer," IEEE J. Sel. Topics Quantum Electron. 8, 111-117 (2002).
[CrossRef]

J. Microsc. (1)

S. Bayoudh, M. Mehta, H. Rubinsztein-Dunlop, N. R. Heckenberg, and C. Critchley, "Micromanipulation of chloroplasts using optical tweezers," J. Microsc. 203, 214-222 (2001).
[CrossRef] [PubMed]

J. Mod. Opt. (1)

T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, "Optical measurement of microscopic torques," J. Mod. Opt. 48, 405-413 (2001).

Lab Chip (1)

J. Leach, H. Mushfique, R. di Leonardo, M. Padgett, and J. Cooper, "An optically driven pump for microfluidics," Lab Chip 6, 735-739 (2006).
[CrossRef] [PubMed]

Langmuir (1)

S. Kulin, R. Kishore, K. Helmerson, and L. Locascio, "Optical manipulation and fusion of liposomes as microreactors," Langmuir 19, 8206-8210 (2003).
[CrossRef]

Nature (1)

M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, "Optical alignment and spinning of laser-trapped microscopic particles," Nature 394, 348-350 (1998).
[CrossRef]

Nature Mat. (1)

S. L. Neale, M. P. MacDonald, K. Dholakia, and T. F. Krauss, "All-optical control of microfluidic components using form birefringence," Nature Mat. 4, 530-533 (2005).
[CrossRef]

Opt. Commun. (1)

J. Courtial and M. J. Padgett, "Limit to the orbital angular momentum per unit energy in a light beam that can be focussed onto a small particle," Opt. Commun. 173, 269-274 (2000).
[CrossRef]

Opt. Express (1)

Opt. Lett. (2)

Phys. Rev. A (1)

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, "Orbital angular momentum and the transformation of Laguerre-Gaussian laser modes," Phys. Rev. A 45, 8185-8189 (1992).
[CrossRef] [PubMed]

Phys. Rev. E (1)

G. Knoner, S. Parkin, N. R. Heckenberg, and H. Rubinsztein-Dunlop, "Characterization of optically driven fluid stress fields with optical tweezers," Phys. Rev. E 72, 031507 (2005).
[CrossRef]

Phys. Rev. Lett. (2)

L. Oroszi, P. Galajda, H. Kirei, S. Bottka, and P. Ormos, "Direct measurement of torque in an optical trap and its application to double-strand DNA," Phys. Rev. Lett. 97, 058301 (2006).
[CrossRef] [PubMed]

A. I. Bishop, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, "Optical microrheology using rotating laser-trapped particles," Phys. Rev. Lett. 92, 198104 (2004).
[CrossRef] [PubMed]

Proc. SPIE (1)

T. A. Nieminen, S. J. Parkin, N. R. Heckenberg, and H. Rubinsztein-Dunlop, "Optical torque and symmetry," Proc. SPIE 5514, 254-263 (2004).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Microscopic diffractive optical element produced with two-photon photopolymerization. (a) A three dimensional model of an MDOE designed to produce orbital angular momentum carrying LG08 mode components when illuminated with a Gaussian laser beam. The model is the input to the automated optical system that performs the two-photon polymerization. (b) Photopolymerized MDOE immersed in water and imaged using bright-field microscopy. The diameter of the MDOE is 9μm. The phase ramps that induce the helical wave fronts of the LG08 mode are clearly visible.

Fig. 2.
Fig. 2.

Rotation of a microsphere structure in a beam passing through the MDOE. (a) The microsphere structure, consisting of three 2.09 μm diameter polystyrene spheres, is stationary when trapped in a linearly polarized Gaussian beam that carries no angular momentum. (b) The microsphere structure immediately starts to rotate when the MDOE is moved into the beam path. The MDOE imprints orbital angular momentum on the beam that is subsequently transferred to the microsphere structure. The position of the MDOE is marked by the black circle. (c) Rotation signal of the microsphere structure rotating at 3.3 Hz. One rotation period (marked in green) corresponds to three spikes that are very similar due to the equal size of the microspheres. Full movie (656 KB) from which (a) and (b) are taken is available in the supplementary material.

Fig. 3.
Fig. 3.

Finite element simulation of the fluid flow generated by the rotating microsphere structure. (a) Three dimensional representation of the finite element grid. The domain of the final simulation was larger (60μm diameter) to prevent any wall effects and the mesh structure was much finer. Simulation of the drag torque on a single sphere agreed to within 0.1% with the analytical result. (b) Equal speed contours of the fluid flow near the microsphere structure rotating at 3.3 Hz. The hydrodynamic stress tensor on the microsphere surface was calculated from the fluid velocities and the viscous drag force per unit area was found.

Fig. 4.
Fig. 4.

Rotation of a 3D trapped microfabricated rotor in the beam created by the MDOE. (a) Bright-field microscopy image of the trapped microrotor and the MDOE. The rotor (diameter 5.6μm) is trapped above the focal plane and is stationary whereas the MDOE is located below the focal plane. The diffraction broadening of the image is stronger since the condenser was removed to gain access for detaching the microrotor from the substrate. Full movie (601 KB) is available in the supplementary material. (b) Rotation signal of the microrotor after the MDOE was moved into the beam path. Again, rotation is driven by the orbital angular momentum that the MDOE transfers to the trapping beam. (c) Schematic representation of the microrotor trapped in a microchannel and rotating above the MDOE. MDOEs can easily be integrated into microfluidic devices where they could be used to actuate fluids for pumping and mixing or to apply optical torques for biophysical studies.

Fig. 5.
Fig. 5.

The geometry of the microfluidic device into which we incorporated the MDOE is shown. The depth of the channel was approximately 0.1 mm. Other dimensions are given in the figure. The MDOE was positioned at the bottom of the channel.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

P i = η k ( v i x k + v k x i ) surf n k
Δ σ = τ opt ω P

Metrics