Abstract

A numerical model of acoustic field induced by laser line source near the surface defect is established by finite element method (FEM), where a surface notch of rectangular shape has been introduced to represent the fatigue defect for the convenience of modeling. After calculating numerically the transient displacement distributions, which are generated by the laser irradiation, the ultrasonic wave modes on the surface and in the body of the plate material are presented in details. The longitudinal, transverse and surface acoustic waves (SAWs) excited by laser pulses near surface notch are compared under the situations that the notch depths are different. As the notch depth increases, the directivity of the bulk waves generation changes greatly. The amplitude of the reflected SAW rises observably at the same time, which is observed experimentally when the laser source is shifted near the surface notch in scanning laser line source (SLLS) measurement. Another effect induced by the surface notch is the time lag of the transmitted SAW pulse with respect to the original incident pulse. These phenomena can be explained from the results. The conclusions can be used to surface notch depth evaluation.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Kenderian, B. B. Djordjevie, and R. E. Green, "Point and line source laser generation of ultrasound for inspection of internal and surface flaws in rail and structural materials," Res. Nondestr. Eval. 13, 189-200 (2001).
  2. T. Tanaka and Y. Izawa, "Nondestructive detection of small defect by laser ultrasonics," SPIE 3887, 341-348 (2000).
    [CrossRef]
  3. T. Tanaka and Y. Izawa, "Nondestructive detection of dmall Internal defects in carbon steel by laser ultrasonics," Jpn. J. Appl. Phys. 40, 1477-1481 (2001).
    [CrossRef]
  4. J. A. Cooper, R. A. Crosbie, R. J. Dewhurst, A. Mckie, and S. B. Palmer, "Surface acoustic wave interactions with cracks and slots: a noncontacting study using lasers," IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control UFFC 33, 462-470 (1986).
    [CrossRef]
  5. Q. Shan and R. J. Dewhurst, "Surface-breaking fatigue crack detection using laser ultrasound," Appl. Phys. Lett. 62, 2649-2651 (1993).
    [CrossRef]
  6. A. K. Kromine, P. A. Fomitchov, S. Krishnaswamy, and J. D. Achenbach, "Scanning laser source technique for detection of surface-breaking and sub-surface cracks," Review of Progress in Quantitative Nondestructive Evaluation 19, 335-342 (2000).
  7. P. A. Fomitchov, A. K. Kromine, Y. Sohn, S. Krishnaswamy, and J. D. Achenbach, "Ultrasounic imaging of small surface-breaking defects using scanning laser source technique," Rev. Prog. In Quantitative Nondestructive Eval. 21A, 356-362(2002).
  8. A. K. Kromine, P. A. Fomitchov, S. Krishnaswamy, and J. D. Achenbach, "Detection of subsurface defects using laser based technique," Rev. Prog. in Quantitative Nondestructive Evaluation 20, 1612-1617 (2001).
  9. Y. Sohn, and S. Krishnaswamy, "Mass spring lattice modeling of the scanning laser source technique," Ultrasonics 39, 543-551 (2002).
    [CrossRef] [PubMed]
  10. I. Arias and J. D. Achenbach, "A model for the ultrasonic detection of surface-breaking cracks by the scanning laser source technique," Wave Motion 39, 61-75 (2004).
    [CrossRef]
  11. J. F. Guan, Z. H. Shen, J. Lu, X. W. Ni, J. Wang, and B. Xu, "Numerical simulation of the reflected acoustic wave components in the near field of surface defects," J. Phys. D: Appl. Phys. 39, 1237-1243 (2006).
    [CrossRef]
  12. J. F. Guan, Z. H. Shen, J. Lu, X. W. Ni, J. Wang, and B. Xu, "Finite element analysis of the scanning laser line source technique," Jpn. J. Appl. Phys. 45, 5046-5050 (2006).
    [CrossRef]
  13. B. Q. Xu, Z. H. Shen, X. W. Ni, J. Lu, and S. Y. Zhang, "Numerical simulation of laser-induced transient temperature field in film-substrate system by finite element method," International Journal of Heat and Mass Transfer 46, 4963-4968 (2003).
    [CrossRef]
  14. M. S. Murali and S.H. Yeo, "Process simulation and residual stress estimation of micro-electrodischarge machining using finite element method," Jpn. J. Appl. Phys. 44, 5254-5263 (2005).
    [CrossRef]
  15. B. Q. Xu, Z. H. Shen, X. W. Ni, J. Lu, and Y. W. Wang, "Finite element modeling of laser-generated ultrasound in coating-substrate system," J. Appl. Phys. 95, 2109-2115 (2004).
    [CrossRef]
  16. B. Q. Xu, Z. H. Shen, X. W. Ni, J. J. Wang, J. F. Guan, and J. Lu, "Determination of elastic properties of a film-substrate system by using the neural networks," Appl. Phys. Lett. 85, 6161-6163 (2004).
    [CrossRef]

2006 (2)

J. F. Guan, Z. H. Shen, J. Lu, X. W. Ni, J. Wang, and B. Xu, "Numerical simulation of the reflected acoustic wave components in the near field of surface defects," J. Phys. D: Appl. Phys. 39, 1237-1243 (2006).
[CrossRef]

J. F. Guan, Z. H. Shen, J. Lu, X. W. Ni, J. Wang, and B. Xu, "Finite element analysis of the scanning laser line source technique," Jpn. J. Appl. Phys. 45, 5046-5050 (2006).
[CrossRef]

2005 (1)

M. S. Murali and S.H. Yeo, "Process simulation and residual stress estimation of micro-electrodischarge machining using finite element method," Jpn. J. Appl. Phys. 44, 5254-5263 (2005).
[CrossRef]

2004 (3)

B. Q. Xu, Z. H. Shen, X. W. Ni, J. Lu, and Y. W. Wang, "Finite element modeling of laser-generated ultrasound in coating-substrate system," J. Appl. Phys. 95, 2109-2115 (2004).
[CrossRef]

B. Q. Xu, Z. H. Shen, X. W. Ni, J. J. Wang, J. F. Guan, and J. Lu, "Determination of elastic properties of a film-substrate system by using the neural networks," Appl. Phys. Lett. 85, 6161-6163 (2004).
[CrossRef]

I. Arias and J. D. Achenbach, "A model for the ultrasonic detection of surface-breaking cracks by the scanning laser source technique," Wave Motion 39, 61-75 (2004).
[CrossRef]

2003 (1)

B. Q. Xu, Z. H. Shen, X. W. Ni, J. Lu, and S. Y. Zhang, "Numerical simulation of laser-induced transient temperature field in film-substrate system by finite element method," International Journal of Heat and Mass Transfer 46, 4963-4968 (2003).
[CrossRef]

2002 (1)

Y. Sohn, and S. Krishnaswamy, "Mass spring lattice modeling of the scanning laser source technique," Ultrasonics 39, 543-551 (2002).
[CrossRef] [PubMed]

2001 (2)

S. Kenderian, B. B. Djordjevie, and R. E. Green, "Point and line source laser generation of ultrasound for inspection of internal and surface flaws in rail and structural materials," Res. Nondestr. Eval. 13, 189-200 (2001).

T. Tanaka and Y. Izawa, "Nondestructive detection of dmall Internal defects in carbon steel by laser ultrasonics," Jpn. J. Appl. Phys. 40, 1477-1481 (2001).
[CrossRef]

2000 (2)

T. Tanaka and Y. Izawa, "Nondestructive detection of small defect by laser ultrasonics," SPIE 3887, 341-348 (2000).
[CrossRef]

A. K. Kromine, P. A. Fomitchov, S. Krishnaswamy, and J. D. Achenbach, "Scanning laser source technique for detection of surface-breaking and sub-surface cracks," Review of Progress in Quantitative Nondestructive Evaluation 19, 335-342 (2000).

1993 (1)

Q. Shan and R. J. Dewhurst, "Surface-breaking fatigue crack detection using laser ultrasound," Appl. Phys. Lett. 62, 2649-2651 (1993).
[CrossRef]

1986 (1)

J. A. Cooper, R. A. Crosbie, R. J. Dewhurst, A. Mckie, and S. B. Palmer, "Surface acoustic wave interactions with cracks and slots: a noncontacting study using lasers," IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control UFFC 33, 462-470 (1986).
[CrossRef]

Achenbach, J. D.

I. Arias and J. D. Achenbach, "A model for the ultrasonic detection of surface-breaking cracks by the scanning laser source technique," Wave Motion 39, 61-75 (2004).
[CrossRef]

A. K. Kromine, P. A. Fomitchov, S. Krishnaswamy, and J. D. Achenbach, "Scanning laser source technique for detection of surface-breaking and sub-surface cracks," Review of Progress in Quantitative Nondestructive Evaluation 19, 335-342 (2000).

A. K. Kromine, P. A. Fomitchov, S. Krishnaswamy, and J. D. Achenbach, "Detection of subsurface defects using laser based technique," Rev. Prog. in Quantitative Nondestructive Evaluation 20, 1612-1617 (2001).

Arias, I.

I. Arias and J. D. Achenbach, "A model for the ultrasonic detection of surface-breaking cracks by the scanning laser source technique," Wave Motion 39, 61-75 (2004).
[CrossRef]

Cooper, J. A.

J. A. Cooper, R. A. Crosbie, R. J. Dewhurst, A. Mckie, and S. B. Palmer, "Surface acoustic wave interactions with cracks and slots: a noncontacting study using lasers," IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control UFFC 33, 462-470 (1986).
[CrossRef]

Crosbie, R. A.

J. A. Cooper, R. A. Crosbie, R. J. Dewhurst, A. Mckie, and S. B. Palmer, "Surface acoustic wave interactions with cracks and slots: a noncontacting study using lasers," IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control UFFC 33, 462-470 (1986).
[CrossRef]

Dewhurst, R. J.

Q. Shan and R. J. Dewhurst, "Surface-breaking fatigue crack detection using laser ultrasound," Appl. Phys. Lett. 62, 2649-2651 (1993).
[CrossRef]

J. A. Cooper, R. A. Crosbie, R. J. Dewhurst, A. Mckie, and S. B. Palmer, "Surface acoustic wave interactions with cracks and slots: a noncontacting study using lasers," IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control UFFC 33, 462-470 (1986).
[CrossRef]

Djordjevie, B. B.

S. Kenderian, B. B. Djordjevie, and R. E. Green, "Point and line source laser generation of ultrasound for inspection of internal and surface flaws in rail and structural materials," Res. Nondestr. Eval. 13, 189-200 (2001).

Fomitchov, P. A.

A. K. Kromine, P. A. Fomitchov, S. Krishnaswamy, and J. D. Achenbach, "Scanning laser source technique for detection of surface-breaking and sub-surface cracks," Review of Progress in Quantitative Nondestructive Evaluation 19, 335-342 (2000).

A. K. Kromine, P. A. Fomitchov, S. Krishnaswamy, and J. D. Achenbach, "Detection of subsurface defects using laser based technique," Rev. Prog. in Quantitative Nondestructive Evaluation 20, 1612-1617 (2001).

Green, R. E.

S. Kenderian, B. B. Djordjevie, and R. E. Green, "Point and line source laser generation of ultrasound for inspection of internal and surface flaws in rail and structural materials," Res. Nondestr. Eval. 13, 189-200 (2001).

Guan, J. F.

J. F. Guan, Z. H. Shen, J. Lu, X. W. Ni, J. Wang, and B. Xu, "Numerical simulation of the reflected acoustic wave components in the near field of surface defects," J. Phys. D: Appl. Phys. 39, 1237-1243 (2006).
[CrossRef]

J. F. Guan, Z. H. Shen, J. Lu, X. W. Ni, J. Wang, and B. Xu, "Finite element analysis of the scanning laser line source technique," Jpn. J. Appl. Phys. 45, 5046-5050 (2006).
[CrossRef]

B. Q. Xu, Z. H. Shen, X. W. Ni, J. J. Wang, J. F. Guan, and J. Lu, "Determination of elastic properties of a film-substrate system by using the neural networks," Appl. Phys. Lett. 85, 6161-6163 (2004).
[CrossRef]

Izawa, Y.

T. Tanaka and Y. Izawa, "Nondestructive detection of dmall Internal defects in carbon steel by laser ultrasonics," Jpn. J. Appl. Phys. 40, 1477-1481 (2001).
[CrossRef]

T. Tanaka and Y. Izawa, "Nondestructive detection of small defect by laser ultrasonics," SPIE 3887, 341-348 (2000).
[CrossRef]

Kenderian, S.

S. Kenderian, B. B. Djordjevie, and R. E. Green, "Point and line source laser generation of ultrasound for inspection of internal and surface flaws in rail and structural materials," Res. Nondestr. Eval. 13, 189-200 (2001).

Krishnaswamy, S.

Y. Sohn, and S. Krishnaswamy, "Mass spring lattice modeling of the scanning laser source technique," Ultrasonics 39, 543-551 (2002).
[CrossRef] [PubMed]

A. K. Kromine, P. A. Fomitchov, S. Krishnaswamy, and J. D. Achenbach, "Scanning laser source technique for detection of surface-breaking and sub-surface cracks," Review of Progress in Quantitative Nondestructive Evaluation 19, 335-342 (2000).

A. K. Kromine, P. A. Fomitchov, S. Krishnaswamy, and J. D. Achenbach, "Detection of subsurface defects using laser based technique," Rev. Prog. in Quantitative Nondestructive Evaluation 20, 1612-1617 (2001).

Kromine, A. K.

A. K. Kromine, P. A. Fomitchov, S. Krishnaswamy, and J. D. Achenbach, "Scanning laser source technique for detection of surface-breaking and sub-surface cracks," Review of Progress in Quantitative Nondestructive Evaluation 19, 335-342 (2000).

A. K. Kromine, P. A. Fomitchov, S. Krishnaswamy, and J. D. Achenbach, "Detection of subsurface defects using laser based technique," Rev. Prog. in Quantitative Nondestructive Evaluation 20, 1612-1617 (2001).

Lu, J.

J. F. Guan, Z. H. Shen, J. Lu, X. W. Ni, J. Wang, and B. Xu, "Numerical simulation of the reflected acoustic wave components in the near field of surface defects," J. Phys. D: Appl. Phys. 39, 1237-1243 (2006).
[CrossRef]

J. F. Guan, Z. H. Shen, J. Lu, X. W. Ni, J. Wang, and B. Xu, "Finite element analysis of the scanning laser line source technique," Jpn. J. Appl. Phys. 45, 5046-5050 (2006).
[CrossRef]

B. Q. Xu, Z. H. Shen, X. W. Ni, J. Lu, and Y. W. Wang, "Finite element modeling of laser-generated ultrasound in coating-substrate system," J. Appl. Phys. 95, 2109-2115 (2004).
[CrossRef]

B. Q. Xu, Z. H. Shen, X. W. Ni, J. J. Wang, J. F. Guan, and J. Lu, "Determination of elastic properties of a film-substrate system by using the neural networks," Appl. Phys. Lett. 85, 6161-6163 (2004).
[CrossRef]

B. Q. Xu, Z. H. Shen, X. W. Ni, J. Lu, and S. Y. Zhang, "Numerical simulation of laser-induced transient temperature field in film-substrate system by finite element method," International Journal of Heat and Mass Transfer 46, 4963-4968 (2003).
[CrossRef]

Mckie, A.

J. A. Cooper, R. A. Crosbie, R. J. Dewhurst, A. Mckie, and S. B. Palmer, "Surface acoustic wave interactions with cracks and slots: a noncontacting study using lasers," IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control UFFC 33, 462-470 (1986).
[CrossRef]

Murali, M. S.

M. S. Murali and S.H. Yeo, "Process simulation and residual stress estimation of micro-electrodischarge machining using finite element method," Jpn. J. Appl. Phys. 44, 5254-5263 (2005).
[CrossRef]

Ni, X. W.

J. F. Guan, Z. H. Shen, J. Lu, X. W. Ni, J. Wang, and B. Xu, "Finite element analysis of the scanning laser line source technique," Jpn. J. Appl. Phys. 45, 5046-5050 (2006).
[CrossRef]

J. F. Guan, Z. H. Shen, J. Lu, X. W. Ni, J. Wang, and B. Xu, "Numerical simulation of the reflected acoustic wave components in the near field of surface defects," J. Phys. D: Appl. Phys. 39, 1237-1243 (2006).
[CrossRef]

B. Q. Xu, Z. H. Shen, X. W. Ni, J. Lu, and Y. W. Wang, "Finite element modeling of laser-generated ultrasound in coating-substrate system," J. Appl. Phys. 95, 2109-2115 (2004).
[CrossRef]

B. Q. Xu, Z. H. Shen, X. W. Ni, J. J. Wang, J. F. Guan, and J. Lu, "Determination of elastic properties of a film-substrate system by using the neural networks," Appl. Phys. Lett. 85, 6161-6163 (2004).
[CrossRef]

B. Q. Xu, Z. H. Shen, X. W. Ni, J. Lu, and S. Y. Zhang, "Numerical simulation of laser-induced transient temperature field in film-substrate system by finite element method," International Journal of Heat and Mass Transfer 46, 4963-4968 (2003).
[CrossRef]

Palmer, S. B.

J. A. Cooper, R. A. Crosbie, R. J. Dewhurst, A. Mckie, and S. B. Palmer, "Surface acoustic wave interactions with cracks and slots: a noncontacting study using lasers," IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control UFFC 33, 462-470 (1986).
[CrossRef]

Shan, Q.

Q. Shan and R. J. Dewhurst, "Surface-breaking fatigue crack detection using laser ultrasound," Appl. Phys. Lett. 62, 2649-2651 (1993).
[CrossRef]

Shen, Z. H.

J. F. Guan, Z. H. Shen, J. Lu, X. W. Ni, J. Wang, and B. Xu, "Finite element analysis of the scanning laser line source technique," Jpn. J. Appl. Phys. 45, 5046-5050 (2006).
[CrossRef]

J. F. Guan, Z. H. Shen, J. Lu, X. W. Ni, J. Wang, and B. Xu, "Numerical simulation of the reflected acoustic wave components in the near field of surface defects," J. Phys. D: Appl. Phys. 39, 1237-1243 (2006).
[CrossRef]

B. Q. Xu, Z. H. Shen, X. W. Ni, J. Lu, and Y. W. Wang, "Finite element modeling of laser-generated ultrasound in coating-substrate system," J. Appl. Phys. 95, 2109-2115 (2004).
[CrossRef]

B. Q. Xu, Z. H. Shen, X. W. Ni, J. J. Wang, J. F. Guan, and J. Lu, "Determination of elastic properties of a film-substrate system by using the neural networks," Appl. Phys. Lett. 85, 6161-6163 (2004).
[CrossRef]

B. Q. Xu, Z. H. Shen, X. W. Ni, J. Lu, and S. Y. Zhang, "Numerical simulation of laser-induced transient temperature field in film-substrate system by finite element method," International Journal of Heat and Mass Transfer 46, 4963-4968 (2003).
[CrossRef]

Sohn, Y.

Y. Sohn, and S. Krishnaswamy, "Mass spring lattice modeling of the scanning laser source technique," Ultrasonics 39, 543-551 (2002).
[CrossRef] [PubMed]

Tanaka, T.

T. Tanaka and Y. Izawa, "Nondestructive detection of dmall Internal defects in carbon steel by laser ultrasonics," Jpn. J. Appl. Phys. 40, 1477-1481 (2001).
[CrossRef]

T. Tanaka and Y. Izawa, "Nondestructive detection of small defect by laser ultrasonics," SPIE 3887, 341-348 (2000).
[CrossRef]

Wang, J.

J. F. Guan, Z. H. Shen, J. Lu, X. W. Ni, J. Wang, and B. Xu, "Numerical simulation of the reflected acoustic wave components in the near field of surface defects," J. Phys. D: Appl. Phys. 39, 1237-1243 (2006).
[CrossRef]

J. F. Guan, Z. H. Shen, J. Lu, X. W. Ni, J. Wang, and B. Xu, "Finite element analysis of the scanning laser line source technique," Jpn. J. Appl. Phys. 45, 5046-5050 (2006).
[CrossRef]

Wang, J. J.

B. Q. Xu, Z. H. Shen, X. W. Ni, J. J. Wang, J. F. Guan, and J. Lu, "Determination of elastic properties of a film-substrate system by using the neural networks," Appl. Phys. Lett. 85, 6161-6163 (2004).
[CrossRef]

Wang, Y. W.

B. Q. Xu, Z. H. Shen, X. W. Ni, J. Lu, and Y. W. Wang, "Finite element modeling of laser-generated ultrasound in coating-substrate system," J. Appl. Phys. 95, 2109-2115 (2004).
[CrossRef]

Xu, B.

J. F. Guan, Z. H. Shen, J. Lu, X. W. Ni, J. Wang, and B. Xu, "Finite element analysis of the scanning laser line source technique," Jpn. J. Appl. Phys. 45, 5046-5050 (2006).
[CrossRef]

J. F. Guan, Z. H. Shen, J. Lu, X. W. Ni, J. Wang, and B. Xu, "Numerical simulation of the reflected acoustic wave components in the near field of surface defects," J. Phys. D: Appl. Phys. 39, 1237-1243 (2006).
[CrossRef]

Xu, B. Q.

B. Q. Xu, Z. H. Shen, X. W. Ni, J. Lu, and Y. W. Wang, "Finite element modeling of laser-generated ultrasound in coating-substrate system," J. Appl. Phys. 95, 2109-2115 (2004).
[CrossRef]

B. Q. Xu, Z. H. Shen, X. W. Ni, J. J. Wang, J. F. Guan, and J. Lu, "Determination of elastic properties of a film-substrate system by using the neural networks," Appl. Phys. Lett. 85, 6161-6163 (2004).
[CrossRef]

B. Q. Xu, Z. H. Shen, X. W. Ni, J. Lu, and S. Y. Zhang, "Numerical simulation of laser-induced transient temperature field in film-substrate system by finite element method," International Journal of Heat and Mass Transfer 46, 4963-4968 (2003).
[CrossRef]

Yeo, S.H.

M. S. Murali and S.H. Yeo, "Process simulation and residual stress estimation of micro-electrodischarge machining using finite element method," Jpn. J. Appl. Phys. 44, 5254-5263 (2005).
[CrossRef]

Zhang, S. Y.

B. Q. Xu, Z. H. Shen, X. W. Ni, J. Lu, and S. Y. Zhang, "Numerical simulation of laser-induced transient temperature field in film-substrate system by finite element method," International Journal of Heat and Mass Transfer 46, 4963-4968 (2003).
[CrossRef]

Appl. Phys. Lett. (2)

Q. Shan and R. J. Dewhurst, "Surface-breaking fatigue crack detection using laser ultrasound," Appl. Phys. Lett. 62, 2649-2651 (1993).
[CrossRef]

B. Q. Xu, Z. H. Shen, X. W. Ni, J. J. Wang, J. F. Guan, and J. Lu, "Determination of elastic properties of a film-substrate system by using the neural networks," Appl. Phys. Lett. 85, 6161-6163 (2004).
[CrossRef]

IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control UFFC (1)

J. A. Cooper, R. A. Crosbie, R. J. Dewhurst, A. Mckie, and S. B. Palmer, "Surface acoustic wave interactions with cracks and slots: a noncontacting study using lasers," IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control UFFC 33, 462-470 (1986).
[CrossRef]

International Journal of Heat and Mass Transfer (1)

B. Q. Xu, Z. H. Shen, X. W. Ni, J. Lu, and S. Y. Zhang, "Numerical simulation of laser-induced transient temperature field in film-substrate system by finite element method," International Journal of Heat and Mass Transfer 46, 4963-4968 (2003).
[CrossRef]

J. Appl. Phys. (1)

B. Q. Xu, Z. H. Shen, X. W. Ni, J. Lu, and Y. W. Wang, "Finite element modeling of laser-generated ultrasound in coating-substrate system," J. Appl. Phys. 95, 2109-2115 (2004).
[CrossRef]

J. Phys. D: Appl. Phys. (1)

J. F. Guan, Z. H. Shen, J. Lu, X. W. Ni, J. Wang, and B. Xu, "Numerical simulation of the reflected acoustic wave components in the near field of surface defects," J. Phys. D: Appl. Phys. 39, 1237-1243 (2006).
[CrossRef]

Jpn. J. Appl. Phys. (3)

J. F. Guan, Z. H. Shen, J. Lu, X. W. Ni, J. Wang, and B. Xu, "Finite element analysis of the scanning laser line source technique," Jpn. J. Appl. Phys. 45, 5046-5050 (2006).
[CrossRef]

M. S. Murali and S.H. Yeo, "Process simulation and residual stress estimation of micro-electrodischarge machining using finite element method," Jpn. J. Appl. Phys. 44, 5254-5263 (2005).
[CrossRef]

T. Tanaka and Y. Izawa, "Nondestructive detection of dmall Internal defects in carbon steel by laser ultrasonics," Jpn. J. Appl. Phys. 40, 1477-1481 (2001).
[CrossRef]

Res. Nondestr. Eval. (1)

S. Kenderian, B. B. Djordjevie, and R. E. Green, "Point and line source laser generation of ultrasound for inspection of internal and surface flaws in rail and structural materials," Res. Nondestr. Eval. 13, 189-200 (2001).

Review of Progress in Quantitative Nondestructive Evaluation (1)

A. K. Kromine, P. A. Fomitchov, S. Krishnaswamy, and J. D. Achenbach, "Scanning laser source technique for detection of surface-breaking and sub-surface cracks," Review of Progress in Quantitative Nondestructive Evaluation 19, 335-342 (2000).

SPIE (1)

T. Tanaka and Y. Izawa, "Nondestructive detection of small defect by laser ultrasonics," SPIE 3887, 341-348 (2000).
[CrossRef]

Ultrasonics (1)

Y. Sohn, and S. Krishnaswamy, "Mass spring lattice modeling of the scanning laser source technique," Ultrasonics 39, 543-551 (2002).
[CrossRef] [PubMed]

Wave Motion (1)

I. Arias and J. D. Achenbach, "A model for the ultrasonic detection of surface-breaking cracks by the scanning laser source technique," Wave Motion 39, 61-75 (2004).
[CrossRef]

Other (2)

P. A. Fomitchov, A. K. Kromine, Y. Sohn, S. Krishnaswamy, and J. D. Achenbach, "Ultrasounic imaging of small surface-breaking defects using scanning laser source technique," Rev. Prog. In Quantitative Nondestructive Eval. 21A, 356-362(2002).

A. K. Kromine, P. A. Fomitchov, S. Krishnaswamy, and J. D. Achenbach, "Detection of subsurface defects using laser based technique," Rev. Prog. in Quantitative Nondestructive Evaluation 20, 1612-1617 (2001).

Supplementary Material (6)

» Media 1: MOV (1015 KB)     
» Media 2: MOV (1071 KB)     
» Media 3: MOV (1061 KB)     
» Media 4: MOV (958 KB)     
» Media 5: MOV (918 KB)     
» Media 6: MOV (900 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Schematic diagram for laser irradiating sample near the surface notch

Fig. 2.
Fig. 2.

Cross section of the sample

Fig. 3.
Fig. 3.

Numeral simulated acoustic field in plate at t=0.486μs

Fig. 4.
Fig. 4.

Acoustic fields induced by laser pulse near surface notches with various depths d (a) Without surface notch [Media 1] (c) d=80μm [Media 3] (b) d=160μm [Media 2] (d) d=400μm [Media 4] [Media 5] [Media 6]

Fig. 5.
Fig. 5.

Reflected acoustic waves with various depths

Fig. 6.
Fig. 6.

Transmitted acoustic waves with various depths

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

k 2 T x y t ρ c V t T x y t = 0
μ 2 u x y t + ( λ + μ ) ( u x y t ) = ρ 2 t 2 u x y t + β T x y t
k T x y t y | I = I 0 A ( T ) f ( x ) g ( t )
T x y t | II = T 0
f ( x ) = exp ( x 2 x 0 2 )
g ( t ) = t 2 t 0 2 exp ( t t 0 )
n [ σ ( 3 λ + 2 μ ) α T T x y t I ] = 0
T x y 0 = 300 K
u x y t = u x y t t | t = 0 = 0 .
[ K ] { T } + [ C ] { T ˙ } = { q }
[ M ] { U ¨ } + [ S ] { U } = { F ext } ,
{ ε th } = α ( { T } { T ref } )

Metrics