Abstract

We demonstrate broadband optical amplification at 1.3 μm in silicate glass-ceramics containing β-Ga2O3:Ni2+ nanocrystals with 980 nm excitation for the first time. The optical gain efficiency is calculated to be about 0.283 cm-1 when the excitation power is 1.12 W. The optical gain shows similar wavelength dependence to luminescence properties.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. R. Pinckney and G. H. Beall, "Transition element-doped crystals in glass," Proc. SPIE 4452, 93-99 (2001).
    [CrossRef]
  2. S. Kück, "Laser-related spectroscopy of ion-doped crystals for tunable solid-state lasers," Appl. Phys. B 72, 515-562 (2001).
    [CrossRef]
  3. T. Suzuki, K Horibuchi, and Y. Ohishi, "Structural and optical properties of ZnO-Al2O3-SiO2 system glass-ceramic containing Ni2+-doped nanocrystals," J. Non-Crys.Solids 351, 2304-2309 (2005).
    [CrossRef]
  4. T. Suzuki, G. S. Murugan, and Y. Ohishi, "Optical properties of transparent Li2O-Ga2O3-SiO2 glass-ceramics embedding Ni-doped nanocrystals," Appl. Phys. Lett. 86, 131903 (2005).
    [CrossRef]
  5. Y. Wang and J. Ohwaki, "New transparent vitroceramics codoped with Er3+ and Yb3+ for efficient frequency upconversion," Appl. Phys. Lett. 63, 3268-3270 (1993).
    [CrossRef]
  6. S. F. Zhou et al., J. Phys. Chem. C, accepted.
  7. L. Galoisy and G. Calas, "Structural environment of nickel in silicate glass/melt systems: Part 1. Spectroscopic determination of coordination states," Geochim. Cosmochim. Acta 57, 3613-3626 (1993).
    [CrossRef]
  8. N. Jiang et al., submitted toAppl. Phys. Lett.
    [PubMed]
  9. M. V. Iverson, J. C. Windscheif, and W. A. Sibley, "Optical parameters for the MgO:Ni2+ laser system," Appl. Phys. Lett. 36, 183-184 (1980).
    [CrossRef]
  10. Y. Suzuki, W. A. Sibley, O. H. El Bayoumi, T. M. Roberts, and B. Bendow, "Optical properties of transition-metal ions in zirconium-based metal fluoride glasses and MgF2 crystals," Phys. Rev. B 35, 4472-4482 (1987).
    [CrossRef]
  11. C. Anino, J. Théry, and D. Vivien, "Cr4+ doped Li2MgSiO4, a new potential tunable laser material with room temperature fluorescence lifetime>100 μs," Proc. SPIE 3176, 38-41 (1996).
    [CrossRef]
  12. H. Shigemura, M. Shojiya, R. Kanno, Y. Kawamoto, K. Kadono, and M. Takahashi, "Optical property and local environment of Ni2+ in fluoride glasses," J. Phys. Chem. B 102, 1920-1925 (1998).
    [CrossRef]
  13. S. F. Zhou et al., to be submitted
  14. N. F. Mott and R. W. Gurney, Electronic Processes in Ionic Crystals; (Oxford, 1948).
  15. M. Hughes, H. Rutt, D. Hewak, and R. J. Curry, "Spectroscopy of vanadium (III) doped gallium lanthanum sulphide chalcogenide glass," Appl. Phys. Lett. 90, 031108 (2007).
    [CrossRef]
  16. B. N. Samson, L. R. Pinckney, J. Wang, G. H. Beall, and N. F. Borrelli, "Nickel-doped nanocrystalline glass-ceramic fiber," Opt. Lett. 27, 1309-1311 (2002).
    [CrossRef]
  17. Y. Miyajima, T. Sugawa, and Y. Fukasaku, "38.2 dB amplification at 1.31 μm and possibility of 0.98 μm pumping in Pr3+-doped fluoride fibre," Electron. Lett. 27, 1706-1707 (1991).
    [CrossRef]
  18. T. J. Whitley, "A review of recent system demonstrations incorporating 1.3 μm praseodymium-doped fluoride fiber amplifiers," J. Lightwave Technol. 13,744-760 (1995).
    [CrossRef]

2007

M. Hughes, H. Rutt, D. Hewak, and R. J. Curry, "Spectroscopy of vanadium (III) doped gallium lanthanum sulphide chalcogenide glass," Appl. Phys. Lett. 90, 031108 (2007).
[CrossRef]

2005

T. Suzuki, K Horibuchi, and Y. Ohishi, "Structural and optical properties of ZnO-Al2O3-SiO2 system glass-ceramic containing Ni2+-doped nanocrystals," J. Non-Crys.Solids 351, 2304-2309 (2005).
[CrossRef]

T. Suzuki, G. S. Murugan, and Y. Ohishi, "Optical properties of transparent Li2O-Ga2O3-SiO2 glass-ceramics embedding Ni-doped nanocrystals," Appl. Phys. Lett. 86, 131903 (2005).
[CrossRef]

2002

2001

L. R. Pinckney and G. H. Beall, "Transition element-doped crystals in glass," Proc. SPIE 4452, 93-99 (2001).
[CrossRef]

S. Kück, "Laser-related spectroscopy of ion-doped crystals for tunable solid-state lasers," Appl. Phys. B 72, 515-562 (2001).
[CrossRef]

1998

H. Shigemura, M. Shojiya, R. Kanno, Y. Kawamoto, K. Kadono, and M. Takahashi, "Optical property and local environment of Ni2+ in fluoride glasses," J. Phys. Chem. B 102, 1920-1925 (1998).
[CrossRef]

1996

C. Anino, J. Théry, and D. Vivien, "Cr4+ doped Li2MgSiO4, a new potential tunable laser material with room temperature fluorescence lifetime>100 μs," Proc. SPIE 3176, 38-41 (1996).
[CrossRef]

1995

T. J. Whitley, "A review of recent system demonstrations incorporating 1.3 μm praseodymium-doped fluoride fiber amplifiers," J. Lightwave Technol. 13,744-760 (1995).
[CrossRef]

1993

Y. Wang and J. Ohwaki, "New transparent vitroceramics codoped with Er3+ and Yb3+ for efficient frequency upconversion," Appl. Phys. Lett. 63, 3268-3270 (1993).
[CrossRef]

L. Galoisy and G. Calas, "Structural environment of nickel in silicate glass/melt systems: Part 1. Spectroscopic determination of coordination states," Geochim. Cosmochim. Acta 57, 3613-3626 (1993).
[CrossRef]

1991

Y. Miyajima, T. Sugawa, and Y. Fukasaku, "38.2 dB amplification at 1.31 μm and possibility of 0.98 μm pumping in Pr3+-doped fluoride fibre," Electron. Lett. 27, 1706-1707 (1991).
[CrossRef]

1987

Y. Suzuki, W. A. Sibley, O. H. El Bayoumi, T. M. Roberts, and B. Bendow, "Optical properties of transition-metal ions in zirconium-based metal fluoride glasses and MgF2 crystals," Phys. Rev. B 35, 4472-4482 (1987).
[CrossRef]

1980

M. V. Iverson, J. C. Windscheif, and W. A. Sibley, "Optical parameters for the MgO:Ni2+ laser system," Appl. Phys. Lett. 36, 183-184 (1980).
[CrossRef]

Anino, C.

C. Anino, J. Théry, and D. Vivien, "Cr4+ doped Li2MgSiO4, a new potential tunable laser material with room temperature fluorescence lifetime>100 μs," Proc. SPIE 3176, 38-41 (1996).
[CrossRef]

Beall, G. H.

Bendow, B.

Y. Suzuki, W. A. Sibley, O. H. El Bayoumi, T. M. Roberts, and B. Bendow, "Optical properties of transition-metal ions in zirconium-based metal fluoride glasses and MgF2 crystals," Phys. Rev. B 35, 4472-4482 (1987).
[CrossRef]

Borrelli, N. F.

Calas, G.

L. Galoisy and G. Calas, "Structural environment of nickel in silicate glass/melt systems: Part 1. Spectroscopic determination of coordination states," Geochim. Cosmochim. Acta 57, 3613-3626 (1993).
[CrossRef]

Curry, R. J.

M. Hughes, H. Rutt, D. Hewak, and R. J. Curry, "Spectroscopy of vanadium (III) doped gallium lanthanum sulphide chalcogenide glass," Appl. Phys. Lett. 90, 031108 (2007).
[CrossRef]

El Bayoumi, O. H.

Y. Suzuki, W. A. Sibley, O. H. El Bayoumi, T. M. Roberts, and B. Bendow, "Optical properties of transition-metal ions in zirconium-based metal fluoride glasses and MgF2 crystals," Phys. Rev. B 35, 4472-4482 (1987).
[CrossRef]

Fukasaku, Y.

Y. Miyajima, T. Sugawa, and Y. Fukasaku, "38.2 dB amplification at 1.31 μm and possibility of 0.98 μm pumping in Pr3+-doped fluoride fibre," Electron. Lett. 27, 1706-1707 (1991).
[CrossRef]

Galoisy, L.

L. Galoisy and G. Calas, "Structural environment of nickel in silicate glass/melt systems: Part 1. Spectroscopic determination of coordination states," Geochim. Cosmochim. Acta 57, 3613-3626 (1993).
[CrossRef]

Hewak, D.

M. Hughes, H. Rutt, D. Hewak, and R. J. Curry, "Spectroscopy of vanadium (III) doped gallium lanthanum sulphide chalcogenide glass," Appl. Phys. Lett. 90, 031108 (2007).
[CrossRef]

Horibuchi, K

T. Suzuki, K Horibuchi, and Y. Ohishi, "Structural and optical properties of ZnO-Al2O3-SiO2 system glass-ceramic containing Ni2+-doped nanocrystals," J. Non-Crys.Solids 351, 2304-2309 (2005).
[CrossRef]

Hughes, M.

M. Hughes, H. Rutt, D. Hewak, and R. J. Curry, "Spectroscopy of vanadium (III) doped gallium lanthanum sulphide chalcogenide glass," Appl. Phys. Lett. 90, 031108 (2007).
[CrossRef]

Iverson, M. V.

M. V. Iverson, J. C. Windscheif, and W. A. Sibley, "Optical parameters for the MgO:Ni2+ laser system," Appl. Phys. Lett. 36, 183-184 (1980).
[CrossRef]

Jiang, N.

N. Jiang et al., submitted toAppl. Phys. Lett.
[PubMed]

Kadono, K.

H. Shigemura, M. Shojiya, R. Kanno, Y. Kawamoto, K. Kadono, and M. Takahashi, "Optical property and local environment of Ni2+ in fluoride glasses," J. Phys. Chem. B 102, 1920-1925 (1998).
[CrossRef]

Kanno, R.

H. Shigemura, M. Shojiya, R. Kanno, Y. Kawamoto, K. Kadono, and M. Takahashi, "Optical property and local environment of Ni2+ in fluoride glasses," J. Phys. Chem. B 102, 1920-1925 (1998).
[CrossRef]

Kawamoto, Y.

H. Shigemura, M. Shojiya, R. Kanno, Y. Kawamoto, K. Kadono, and M. Takahashi, "Optical property and local environment of Ni2+ in fluoride glasses," J. Phys. Chem. B 102, 1920-1925 (1998).
[CrossRef]

Kück, S.

S. Kück, "Laser-related spectroscopy of ion-doped crystals for tunable solid-state lasers," Appl. Phys. B 72, 515-562 (2001).
[CrossRef]

Miyajima, Y.

Y. Miyajima, T. Sugawa, and Y. Fukasaku, "38.2 dB amplification at 1.31 μm and possibility of 0.98 μm pumping in Pr3+-doped fluoride fibre," Electron. Lett. 27, 1706-1707 (1991).
[CrossRef]

Murugan, G. S.

T. Suzuki, G. S. Murugan, and Y. Ohishi, "Optical properties of transparent Li2O-Ga2O3-SiO2 glass-ceramics embedding Ni-doped nanocrystals," Appl. Phys. Lett. 86, 131903 (2005).
[CrossRef]

Ohishi, Y.

T. Suzuki, G. S. Murugan, and Y. Ohishi, "Optical properties of transparent Li2O-Ga2O3-SiO2 glass-ceramics embedding Ni-doped nanocrystals," Appl. Phys. Lett. 86, 131903 (2005).
[CrossRef]

T. Suzuki, K Horibuchi, and Y. Ohishi, "Structural and optical properties of ZnO-Al2O3-SiO2 system glass-ceramic containing Ni2+-doped nanocrystals," J. Non-Crys.Solids 351, 2304-2309 (2005).
[CrossRef]

Ohwaki, J.

Y. Wang and J. Ohwaki, "New transparent vitroceramics codoped with Er3+ and Yb3+ for efficient frequency upconversion," Appl. Phys. Lett. 63, 3268-3270 (1993).
[CrossRef]

Pinckney, L. R.

Roberts, T. M.

Y. Suzuki, W. A. Sibley, O. H. El Bayoumi, T. M. Roberts, and B. Bendow, "Optical properties of transition-metal ions in zirconium-based metal fluoride glasses and MgF2 crystals," Phys. Rev. B 35, 4472-4482 (1987).
[CrossRef]

Rutt, H.

M. Hughes, H. Rutt, D. Hewak, and R. J. Curry, "Spectroscopy of vanadium (III) doped gallium lanthanum sulphide chalcogenide glass," Appl. Phys. Lett. 90, 031108 (2007).
[CrossRef]

Samson, B. N.

Shigemura, H.

H. Shigemura, M. Shojiya, R. Kanno, Y. Kawamoto, K. Kadono, and M. Takahashi, "Optical property and local environment of Ni2+ in fluoride glasses," J. Phys. Chem. B 102, 1920-1925 (1998).
[CrossRef]

Shojiya, M.

H. Shigemura, M. Shojiya, R. Kanno, Y. Kawamoto, K. Kadono, and M. Takahashi, "Optical property and local environment of Ni2+ in fluoride glasses," J. Phys. Chem. B 102, 1920-1925 (1998).
[CrossRef]

Sibley, W. A.

Y. Suzuki, W. A. Sibley, O. H. El Bayoumi, T. M. Roberts, and B. Bendow, "Optical properties of transition-metal ions in zirconium-based metal fluoride glasses and MgF2 crystals," Phys. Rev. B 35, 4472-4482 (1987).
[CrossRef]

M. V. Iverson, J. C. Windscheif, and W. A. Sibley, "Optical parameters for the MgO:Ni2+ laser system," Appl. Phys. Lett. 36, 183-184 (1980).
[CrossRef]

Sugawa, T.

Y. Miyajima, T. Sugawa, and Y. Fukasaku, "38.2 dB amplification at 1.31 μm and possibility of 0.98 μm pumping in Pr3+-doped fluoride fibre," Electron. Lett. 27, 1706-1707 (1991).
[CrossRef]

Suzuki, T.

T. Suzuki, K Horibuchi, and Y. Ohishi, "Structural and optical properties of ZnO-Al2O3-SiO2 system glass-ceramic containing Ni2+-doped nanocrystals," J. Non-Crys.Solids 351, 2304-2309 (2005).
[CrossRef]

T. Suzuki, G. S. Murugan, and Y. Ohishi, "Optical properties of transparent Li2O-Ga2O3-SiO2 glass-ceramics embedding Ni-doped nanocrystals," Appl. Phys. Lett. 86, 131903 (2005).
[CrossRef]

Suzuki, Y.

Y. Suzuki, W. A. Sibley, O. H. El Bayoumi, T. M. Roberts, and B. Bendow, "Optical properties of transition-metal ions in zirconium-based metal fluoride glasses and MgF2 crystals," Phys. Rev. B 35, 4472-4482 (1987).
[CrossRef]

Takahashi, M.

H. Shigemura, M. Shojiya, R. Kanno, Y. Kawamoto, K. Kadono, and M. Takahashi, "Optical property and local environment of Ni2+ in fluoride glasses," J. Phys. Chem. B 102, 1920-1925 (1998).
[CrossRef]

Théry, J.

C. Anino, J. Théry, and D. Vivien, "Cr4+ doped Li2MgSiO4, a new potential tunable laser material with room temperature fluorescence lifetime>100 μs," Proc. SPIE 3176, 38-41 (1996).
[CrossRef]

Vivien, D.

C. Anino, J. Théry, and D. Vivien, "Cr4+ doped Li2MgSiO4, a new potential tunable laser material with room temperature fluorescence lifetime>100 μs," Proc. SPIE 3176, 38-41 (1996).
[CrossRef]

Wang, J.

Wang, Y.

Y. Wang and J. Ohwaki, "New transparent vitroceramics codoped with Er3+ and Yb3+ for efficient frequency upconversion," Appl. Phys. Lett. 63, 3268-3270 (1993).
[CrossRef]

Whitley, T. J.

T. J. Whitley, "A review of recent system demonstrations incorporating 1.3 μm praseodymium-doped fluoride fiber amplifiers," J. Lightwave Technol. 13,744-760 (1995).
[CrossRef]

Windscheif, J. C.

M. V. Iverson, J. C. Windscheif, and W. A. Sibley, "Optical parameters for the MgO:Ni2+ laser system," Appl. Phys. Lett. 36, 183-184 (1980).
[CrossRef]

Zhou, S. F.

S. F. Zhou et al., J. Phys. Chem. C, accepted.

Appl. Phys. B

S. Kück, "Laser-related spectroscopy of ion-doped crystals for tunable solid-state lasers," Appl. Phys. B 72, 515-562 (2001).
[CrossRef]

Appl. Phys. Lett.

T. Suzuki, G. S. Murugan, and Y. Ohishi, "Optical properties of transparent Li2O-Ga2O3-SiO2 glass-ceramics embedding Ni-doped nanocrystals," Appl. Phys. Lett. 86, 131903 (2005).
[CrossRef]

Y. Wang and J. Ohwaki, "New transparent vitroceramics codoped with Er3+ and Yb3+ for efficient frequency upconversion," Appl. Phys. Lett. 63, 3268-3270 (1993).
[CrossRef]

N. Jiang et al., submitted toAppl. Phys. Lett.
[PubMed]

M. V. Iverson, J. C. Windscheif, and W. A. Sibley, "Optical parameters for the MgO:Ni2+ laser system," Appl. Phys. Lett. 36, 183-184 (1980).
[CrossRef]

M. Hughes, H. Rutt, D. Hewak, and R. J. Curry, "Spectroscopy of vanadium (III) doped gallium lanthanum sulphide chalcogenide glass," Appl. Phys. Lett. 90, 031108 (2007).
[CrossRef]

Electron. Lett.

Y. Miyajima, T. Sugawa, and Y. Fukasaku, "38.2 dB amplification at 1.31 μm and possibility of 0.98 μm pumping in Pr3+-doped fluoride fibre," Electron. Lett. 27, 1706-1707 (1991).
[CrossRef]

Geochim. Cosmochim. Acta

L. Galoisy and G. Calas, "Structural environment of nickel in silicate glass/melt systems: Part 1. Spectroscopic determination of coordination states," Geochim. Cosmochim. Acta 57, 3613-3626 (1993).
[CrossRef]

J. Lightw. Technol.

T. J. Whitley, "A review of recent system demonstrations incorporating 1.3 μm praseodymium-doped fluoride fiber amplifiers," J. Lightwave Technol. 13,744-760 (1995).
[CrossRef]

J. Phys. Chem. B

H. Shigemura, M. Shojiya, R. Kanno, Y. Kawamoto, K. Kadono, and M. Takahashi, "Optical property and local environment of Ni2+ in fluoride glasses," J. Phys. Chem. B 102, 1920-1925 (1998).
[CrossRef]

Opt. Lett.

Phys. Rev. B

Y. Suzuki, W. A. Sibley, O. H. El Bayoumi, T. M. Roberts, and B. Bendow, "Optical properties of transition-metal ions in zirconium-based metal fluoride glasses and MgF2 crystals," Phys. Rev. B 35, 4472-4482 (1987).
[CrossRef]

Proc. SPIE

C. Anino, J. Théry, and D. Vivien, "Cr4+ doped Li2MgSiO4, a new potential tunable laser material with room temperature fluorescence lifetime>100 μs," Proc. SPIE 3176, 38-41 (1996).
[CrossRef]

L. R. Pinckney and G. H. Beall, "Transition element-doped crystals in glass," Proc. SPIE 4452, 93-99 (2001).
[CrossRef]

Solids

T. Suzuki, K Horibuchi, and Y. Ohishi, "Structural and optical properties of ZnO-Al2O3-SiO2 system glass-ceramic containing Ni2+-doped nanocrystals," J. Non-Crys.Solids 351, 2304-2309 (2005).
[CrossRef]

Other

S. F. Zhou et al., J. Phys. Chem. C, accepted.

S. F. Zhou et al., to be submitted

N. F. Mott and R. W. Gurney, Electronic Processes in Ionic Crystals; (Oxford, 1948).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Transmittance spectra of Ni-doped GC containing β-Ga2O3 nanocrystals. The inset shows the absorption spectra of Ni-doped (a) as-made glass and (b) GC. Sample thickness: 2 mm.

Fig. 2.
Fig. 2.

The schematic diagram. (a) 1300 nm tunable laser diode as seed beam, (b) 980 nm laser diode as excitation resource, (c) chopper, (d) lens with 100 mm focal length, (e) lens with 50 mm focal length, (f) sample, (g) filter, (h) lens with 25 mm focal length, (i) InGaAs PIN detector and (j) digital oscilloscope. M1 and M2 are mirrors.

Fig. 3.
Fig. 3.

Optical gain properties at 1300 nm. The inset shows an oscilloscope image of the amplification phenomenon.

Fig. 4.
Fig. 4.

Optical gain as a function of different seed beam wavelength from 1272 to 1348 nm (the excitation power is 1.12 W). Points and curve represents experimental measurements and fluorescence spectrum at 980 nm excitation (the inset gives the whole fluorescence spectrum).

Tables (1)

Tables Icon

Table 1. Comparison of optical properties and crystal field parameters for Ni2+ in β-Ga2O3 GC and ever reported GC materials.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

g = 1 l ln ( I I o )
β G a 2 O 3 GC > LGS GC [ 4 ] > ZAS GC [ 3 ] > MGTS GC [ 13 ]
W nrad ~ W 0 exp ( Δ kT )

Metrics