P. Kinsler, S. B. P. Radnor, J. Tyrrell, and G. H. C. New, “Optical carrier wave shocking and the effect of dispersion,” Phys. Rev. E, submitted (2007).

[CrossRef]

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).

[CrossRef]

M. Kolesik, E. M. Wright, A. Becker, and J. V. Moloney, “Simulation of third-harmonic and supercontinuum generation for femtosecond pulses in air,” Appl. Phys. B 85, 531–538 (2006).

[CrossRef]

Y. Mizuta, M. Nagasawa, M. Ohtani, and M. Yamashita, “Nonlinear propagation analysis of few-optical-cycle pulses for subfemtosecond pulse compression and carrier envelope phase effect,” Phys. Rev. A 72, 063802 (2005).

[CrossRef]

A. Ferrando, M. Zacares, P. F. de Cordoba, D. Binosi, and A. Montero, “Forward-backward equations for nonlinear propagation in axially invariant optical systems,” Phys. Rev. E 71, 016601 (2005).

[CrossRef]

P. Kinsler, S. B. P. Radnor, and G. H. C. New, “Theory of directional pulse propagation,” Phys. Rev. A 72, 063807 (2005).

[CrossRef]

B. Kibler, J. M. Dudley, and S. Coen, “Supercontinuum generation and nonlinear pulse propagation in photonic crystal fiber: influence of the frequency-dependent effective mode area,” Appl. Phys. B 81, 337–342 (2005).

[CrossRef]

M. A. Foster, A. L. Gaeta, Q. Cao, and R. Trebino, “Soliton-effect compression of supercontinuum to few-cycle durations in photonic nanowires,” Opt. Express 13, 6848–6855 (2005).

[CrossRef]
[PubMed]

P. Kinsler and G.H.C. New, “ Wideband pulse propagation: single-field and multi-field approaches to Raman interactions,”Phys.Rev. A 72, 033804 (2005).

[CrossRef]

M. A. Foster, J.M. Dudley, B. Kibler, Q. Cao, D. Lee, R. Trebino, and A. L. Gaeta, “Nonlinear pulse propagation and supercontinuum generation in photonic nanowires: experiment and simulation,” Appl. Phys. B 81, 363–367 (2005).

[CrossRef]

J. C. A. Tyrrell, P. Kinsler, and G. H. C. New, “Pseudospectral spatial-domain: a new method for nonlinear pulse propagation in the few-cycle regime with arbitrary dispersion,” J. Mod. Opt. 52, 973–986 (2005).

[CrossRef]

M. Kolesik and J. V. Moloney, “Nonlinear optical pulse propagation simulation: From Maxwell’s to unidirectional equations,” Phys. Rev. E 70, 036604 (2004).

[CrossRef]

A. V. Husakou and J. Herrmann, “Supercontinuum generation, four-wave mixing, and fission of higher-order solitons in photonic-crystal fibers,” J. Opt. Soc. Am. B 19, 2171–2182 (2002).

[CrossRef]

M. Kolesik, J. V. Moloney, and M. Mlejnek, “Unidirectional optical pulse propagation equation,” Phys. Rev. Lett. 89, 283902 (2002).

[CrossRef]

N. Karasawa, “Computer simulations of nonlinear propagation of an optical pulse using a finite-difference in the frequency-domain method,” IEEE J. Quantum Electron. 38, 626–629 (2002).

[CrossRef]

A. V. Husakou and J. Herrmann, “Supercontinuum generation of higher-order solitons by fission in photonic crystal fibers,” Phys. Rev. Lett. 87, 203901 (2001).

[CrossRef]
[PubMed]

N. Karasawa, S. Nakamura, N. Nakagawa, M. Shibata, R. Morita, H. Shigekawa, and M. Yamashita, “Comparison between theory and experiment of nonlinear propagation for a-few-cycle and ultrabroadband optical pulses in a fused-silica fiber,” IEEE J. Quantum Electron. 37, 398–404 (2001).

[CrossRef]

V. P. Kalosha and J. Herrmann, “Self-phase modulation and compression of few-optical-cycle pulses,” Phys. Rev. A 62, 011804(R) (2000).

[CrossRef]

L. Gilles, J. V. Moloney, and L. Vazquez, “Electromagnetic shocks on the optical cycle of ultrashort pulses in triple-resonance lorentz dielectric media with subfemtosecond nonlinear electronic debye relaxation,” Phys. Rev. E 60, 1051–1059 (1999).

[CrossRef]

T. Brabec and F. Krausz, “Nonlinear optical pulse propagation in the single-cycle regime,” Phys. Rev. Lett. 78, 3282–3285 (1997).

[CrossRef]

R. G. Flesch, A. Pushkarev, and J. V. Moloney, “Carrier wave shocking of femtosecond optical pulses,” Phys. Rev. Lett. 76, 2488–2491 (1996).

[CrossRef]
[PubMed]

K. J. Blow and D. Wood, “Theoretical description of transient stimulated Raman scattering in optical fibers,” IEEE J. Quantum Electron. 25, 2665–2673 (1989).

[CrossRef]

G. Rosen, “Electromagnetic shocks and the self-annihilation of intense linearly polarized radiation in an ideal dielectric material,” Phys. Rev. A 139, A539–A543 (1965).

G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic Press, San Diego, 2006).

M. Kolesik, E. M. Wright, A. Becker, and J. V. Moloney, “Simulation of third-harmonic and supercontinuum generation for femtosecond pulses in air,” Appl. Phys. B 85, 531–538 (2006).

[CrossRef]

A. Ferrando, M. Zacares, P. F. de Cordoba, D. Binosi, and A. Montero, “Forward-backward equations for nonlinear propagation in axially invariant optical systems,” Phys. Rev. E 71, 016601 (2005).

[CrossRef]

K. J. Blow and D. Wood, “Theoretical description of transient stimulated Raman scattering in optical fibers,” IEEE J. Quantum Electron. 25, 2665–2673 (1989).

[CrossRef]

T. Brabec and F. Krausz, “Nonlinear optical pulse propagation in the single-cycle regime,” Phys. Rev. Lett. 78, 3282–3285 (1997).

[CrossRef]

M. A. Foster, A. L. Gaeta, Q. Cao, and R. Trebino, “Soliton-effect compression of supercontinuum to few-cycle durations in photonic nanowires,” Opt. Express 13, 6848–6855 (2005).

[CrossRef]
[PubMed]

M. A. Foster, J.M. Dudley, B. Kibler, Q. Cao, D. Lee, R. Trebino, and A. L. Gaeta, “Nonlinear pulse propagation and supercontinuum generation in photonic nanowires: experiment and simulation,” Appl. Phys. B 81, 363–367 (2005).

[CrossRef]

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).

[CrossRef]

B. Kibler, J. M. Dudley, and S. Coen, “Supercontinuum generation and nonlinear pulse propagation in photonic crystal fiber: influence of the frequency-dependent effective mode area,” Appl. Phys. B 81, 337–342 (2005).

[CrossRef]

A. Ferrando, M. Zacares, P. F. de Cordoba, D. Binosi, and A. Montero, “Forward-backward equations for nonlinear propagation in axially invariant optical systems,” Phys. Rev. E 71, 016601 (2005).

[CrossRef]

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).

[CrossRef]

B. Kibler, J. M. Dudley, and S. Coen, “Supercontinuum generation and nonlinear pulse propagation in photonic crystal fiber: influence of the frequency-dependent effective mode area,” Appl. Phys. B 81, 337–342 (2005).

[CrossRef]

M. A. Foster, J.M. Dudley, B. Kibler, Q. Cao, D. Lee, R. Trebino, and A. L. Gaeta, “Nonlinear pulse propagation and supercontinuum generation in photonic nanowires: experiment and simulation,” Appl. Phys. B 81, 363–367 (2005).

[CrossRef]

A. Ferrando, M. Zacares, P. F. de Cordoba, D. Binosi, and A. Montero, “Forward-backward equations for nonlinear propagation in axially invariant optical systems,” Phys. Rev. E 71, 016601 (2005).

[CrossRef]

R. G. Flesch, A. Pushkarev, and J. V. Moloney, “Carrier wave shocking of femtosecond optical pulses,” Phys. Rev. Lett. 76, 2488–2491 (1996).

[CrossRef]
[PubMed]

M. A. Foster, A. L. Gaeta, Q. Cao, and R. Trebino, “Soliton-effect compression of supercontinuum to few-cycle durations in photonic nanowires,” Opt. Express 13, 6848–6855 (2005).

[CrossRef]
[PubMed]

M. A. Foster, J.M. Dudley, B. Kibler, Q. Cao, D. Lee, R. Trebino, and A. L. Gaeta, “Nonlinear pulse propagation and supercontinuum generation in photonic nanowires: experiment and simulation,” Appl. Phys. B 81, 363–367 (2005).

[CrossRef]

M. A. Foster, J.M. Dudley, B. Kibler, Q. Cao, D. Lee, R. Trebino, and A. L. Gaeta, “Nonlinear pulse propagation and supercontinuum generation in photonic nanowires: experiment and simulation,” Appl. Phys. B 81, 363–367 (2005).

[CrossRef]

M. A. Foster, A. L. Gaeta, Q. Cao, and R. Trebino, “Soliton-effect compression of supercontinuum to few-cycle durations in photonic nanowires,” Opt. Express 13, 6848–6855 (2005).

[CrossRef]
[PubMed]

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).

[CrossRef]

L. Gilles, J. V. Moloney, and L. Vazquez, “Electromagnetic shocks on the optical cycle of ultrashort pulses in triple-resonance lorentz dielectric media with subfemtosecond nonlinear electronic debye relaxation,” Phys. Rev. E 60, 1051–1059 (1999).

[CrossRef]

A. V. Husakou and J. Herrmann, “Supercontinuum generation, four-wave mixing, and fission of higher-order solitons in photonic-crystal fibers,” J. Opt. Soc. Am. B 19, 2171–2182 (2002).

[CrossRef]

A. V. Husakou and J. Herrmann, “Supercontinuum generation of higher-order solitons by fission in photonic crystal fibers,” Phys. Rev. Lett. 87, 203901 (2001).

[CrossRef]
[PubMed]

V. P. Kalosha and J. Herrmann, “Self-phase modulation and compression of few-optical-cycle pulses,” Phys. Rev. A 62, 011804(R) (2000).

[CrossRef]

V. P. Kalosha and J. Herrmann, “Self-phase modulation and compression of few-optical-cycle pulses,” Phys. Rev. A 62, 011804(R) (2000).

[CrossRef]

N. Karasawa, “Computer simulations of nonlinear propagation of an optical pulse using a finite-difference in the frequency-domain method,” IEEE J. Quantum Electron. 38, 626–629 (2002).

[CrossRef]

N. Karasawa, S. Nakamura, N. Nakagawa, M. Shibata, R. Morita, H. Shigekawa, and M. Yamashita, “Comparison between theory and experiment of nonlinear propagation for a-few-cycle and ultrabroadband optical pulses in a fused-silica fiber,” IEEE J. Quantum Electron. 37, 398–404 (2001).

[CrossRef]

B. Kibler, J. M. Dudley, and S. Coen, “Supercontinuum generation and nonlinear pulse propagation in photonic crystal fiber: influence of the frequency-dependent effective mode area,” Appl. Phys. B 81, 337–342 (2005).

[CrossRef]

M. A. Foster, J.M. Dudley, B. Kibler, Q. Cao, D. Lee, R. Trebino, and A. L. Gaeta, “Nonlinear pulse propagation and supercontinuum generation in photonic nanowires: experiment and simulation,” Appl. Phys. B 81, 363–367 (2005).

[CrossRef]

P. Kinsler, S. B. P. Radnor, J. Tyrrell, and G. H. C. New, “Optical carrier wave shocking and the effect of dispersion,” Phys. Rev. E, submitted (2007).

[CrossRef]

J. C. A. Tyrrell, P. Kinsler, and G. H. C. New, “Pseudospectral spatial-domain: a new method for nonlinear pulse propagation in the few-cycle regime with arbitrary dispersion,” J. Mod. Opt. 52, 973–986 (2005).

[CrossRef]

P. Kinsler, S. B. P. Radnor, and G. H. C. New, “Theory of directional pulse propagation,” Phys. Rev. A 72, 063807 (2005).

[CrossRef]

P. Kinsler and G.H.C. New, “ Wideband pulse propagation: single-field and multi-field approaches to Raman interactions,”Phys.Rev. A 72, 033804 (2005).

[CrossRef]

P. Kinsler, G. H. C. New, and J.C.A. Tyrrell, ”Phase sensitivity of nonlinear interactions”, arXiv.org/physics/0611213.

M. Kolesik, E. M. Wright, A. Becker, and J. V. Moloney, “Simulation of third-harmonic and supercontinuum generation for femtosecond pulses in air,” Appl. Phys. B 85, 531–538 (2006).

[CrossRef]

M. Kolesik and J. V. Moloney, “Nonlinear optical pulse propagation simulation: From Maxwell’s to unidirectional equations,” Phys. Rev. E 70, 036604 (2004).

[CrossRef]

M. Kolesik, J. V. Moloney, and M. Mlejnek, “Unidirectional optical pulse propagation equation,” Phys. Rev. Lett. 89, 283902 (2002).

[CrossRef]

T. Brabec and F. Krausz, “Nonlinear optical pulse propagation in the single-cycle regime,” Phys. Rev. Lett. 78, 3282–3285 (1997).

[CrossRef]

M. A. Foster, J.M. Dudley, B. Kibler, Q. Cao, D. Lee, R. Trebino, and A. L. Gaeta, “Nonlinear pulse propagation and supercontinuum generation in photonic nanowires: experiment and simulation,” Appl. Phys. B 81, 363–367 (2005).

[CrossRef]

Y. Mizuta, M. Nagasawa, M. Ohtani, and M. Yamashita, “Nonlinear propagation analysis of few-optical-cycle pulses for subfemtosecond pulse compression and carrier envelope phase effect,” Phys. Rev. A 72, 063802 (2005).

[CrossRef]

M. Kolesik, J. V. Moloney, and M. Mlejnek, “Unidirectional optical pulse propagation equation,” Phys. Rev. Lett. 89, 283902 (2002).

[CrossRef]

M. Kolesik, E. M. Wright, A. Becker, and J. V. Moloney, “Simulation of third-harmonic and supercontinuum generation for femtosecond pulses in air,” Appl. Phys. B 85, 531–538 (2006).

[CrossRef]

M. Kolesik and J. V. Moloney, “Nonlinear optical pulse propagation simulation: From Maxwell’s to unidirectional equations,” Phys. Rev. E 70, 036604 (2004).

[CrossRef]

M. Kolesik, J. V. Moloney, and M. Mlejnek, “Unidirectional optical pulse propagation equation,” Phys. Rev. Lett. 89, 283902 (2002).

[CrossRef]

L. Gilles, J. V. Moloney, and L. Vazquez, “Electromagnetic shocks on the optical cycle of ultrashort pulses in triple-resonance lorentz dielectric media with subfemtosecond nonlinear electronic debye relaxation,” Phys. Rev. E 60, 1051–1059 (1999).

[CrossRef]

R. G. Flesch, A. Pushkarev, and J. V. Moloney, “Carrier wave shocking of femtosecond optical pulses,” Phys. Rev. Lett. 76, 2488–2491 (1996).

[CrossRef]
[PubMed]

A. Ferrando, M. Zacares, P. F. de Cordoba, D. Binosi, and A. Montero, “Forward-backward equations for nonlinear propagation in axially invariant optical systems,” Phys. Rev. E 71, 016601 (2005).

[CrossRef]

N. Karasawa, S. Nakamura, N. Nakagawa, M. Shibata, R. Morita, H. Shigekawa, and M. Yamashita, “Comparison between theory and experiment of nonlinear propagation for a-few-cycle and ultrabroadband optical pulses in a fused-silica fiber,” IEEE J. Quantum Electron. 37, 398–404 (2001).

[CrossRef]

Y. Mizuta, M. Nagasawa, M. Ohtani, and M. Yamashita, “Nonlinear propagation analysis of few-optical-cycle pulses for subfemtosecond pulse compression and carrier envelope phase effect,” Phys. Rev. A 72, 063802 (2005).

[CrossRef]

N. Karasawa, S. Nakamura, N. Nakagawa, M. Shibata, R. Morita, H. Shigekawa, and M. Yamashita, “Comparison between theory and experiment of nonlinear propagation for a-few-cycle and ultrabroadband optical pulses in a fused-silica fiber,” IEEE J. Quantum Electron. 37, 398–404 (2001).

[CrossRef]

N. Karasawa, S. Nakamura, N. Nakagawa, M. Shibata, R. Morita, H. Shigekawa, and M. Yamashita, “Comparison between theory and experiment of nonlinear propagation for a-few-cycle and ultrabroadband optical pulses in a fused-silica fiber,” IEEE J. Quantum Electron. 37, 398–404 (2001).

[CrossRef]

P. Kinsler, S. B. P. Radnor, J. Tyrrell, and G. H. C. New, “Optical carrier wave shocking and the effect of dispersion,” Phys. Rev. E, submitted (2007).

[CrossRef]

J. C. A. Tyrrell, P. Kinsler, and G. H. C. New, “Pseudospectral spatial-domain: a new method for nonlinear pulse propagation in the few-cycle regime with arbitrary dispersion,” J. Mod. Opt. 52, 973–986 (2005).

[CrossRef]

P. Kinsler, S. B. P. Radnor, and G. H. C. New, “Theory of directional pulse propagation,” Phys. Rev. A 72, 063807 (2005).

[CrossRef]

P. Kinsler, G. H. C. New, and J.C.A. Tyrrell, ”Phase sensitivity of nonlinear interactions”, arXiv.org/physics/0611213.

P. Kinsler and G.H.C. New, “ Wideband pulse propagation: single-field and multi-field approaches to Raman interactions,”Phys.Rev. A 72, 033804 (2005).

[CrossRef]

Y. Mizuta, M. Nagasawa, M. Ohtani, and M. Yamashita, “Nonlinear propagation analysis of few-optical-cycle pulses for subfemtosecond pulse compression and carrier envelope phase effect,” Phys. Rev. A 72, 063802 (2005).

[CrossRef]

R. G. Flesch, A. Pushkarev, and J. V. Moloney, “Carrier wave shocking of femtosecond optical pulses,” Phys. Rev. Lett. 76, 2488–2491 (1996).

[CrossRef]
[PubMed]

P. Kinsler, S. B. P. Radnor, J. Tyrrell, and G. H. C. New, “Optical carrier wave shocking and the effect of dispersion,” Phys. Rev. E, submitted (2007).

[CrossRef]

P. Kinsler, S. B. P. Radnor, and G. H. C. New, “Theory of directional pulse propagation,” Phys. Rev. A 72, 063807 (2005).

[CrossRef]

G. Rosen, “Electromagnetic shocks and the self-annihilation of intense linearly polarized radiation in an ideal dielectric material,” Phys. Rev. A 139, A539–A543 (1965).

Y. R. Shen, Principles of Nonlinear Optics (Wiley, New York, 1984).

N. Karasawa, S. Nakamura, N. Nakagawa, M. Shibata, R. Morita, H. Shigekawa, and M. Yamashita, “Comparison between theory and experiment of nonlinear propagation for a-few-cycle and ultrabroadband optical pulses in a fused-silica fiber,” IEEE J. Quantum Electron. 37, 398–404 (2001).

[CrossRef]

N. Karasawa, S. Nakamura, N. Nakagawa, M. Shibata, R. Morita, H. Shigekawa, and M. Yamashita, “Comparison between theory and experiment of nonlinear propagation for a-few-cycle and ultrabroadband optical pulses in a fused-silica fiber,” IEEE J. Quantum Electron. 37, 398–404 (2001).

[CrossRef]

M. A. Foster, A. L. Gaeta, Q. Cao, and R. Trebino, “Soliton-effect compression of supercontinuum to few-cycle durations in photonic nanowires,” Opt. Express 13, 6848–6855 (2005).

[CrossRef]
[PubMed]

M. A. Foster, J.M. Dudley, B. Kibler, Q. Cao, D. Lee, R. Trebino, and A. L. Gaeta, “Nonlinear pulse propagation and supercontinuum generation in photonic nanowires: experiment and simulation,” Appl. Phys. B 81, 363–367 (2005).

[CrossRef]

P. Kinsler, S. B. P. Radnor, J. Tyrrell, and G. H. C. New, “Optical carrier wave shocking and the effect of dispersion,” Phys. Rev. E, submitted (2007).

[CrossRef]

J. C. A. Tyrrell, P. Kinsler, and G. H. C. New, “Pseudospectral spatial-domain: a new method for nonlinear pulse propagation in the few-cycle regime with arbitrary dispersion,” J. Mod. Opt. 52, 973–986 (2005).

[CrossRef]

P. Kinsler, G. H. C. New, and J.C.A. Tyrrell, ”Phase sensitivity of nonlinear interactions”, arXiv.org/physics/0611213.

L. Gilles, J. V. Moloney, and L. Vazquez, “Electromagnetic shocks on the optical cycle of ultrashort pulses in triple-resonance lorentz dielectric media with subfemtosecond nonlinear electronic debye relaxation,” Phys. Rev. E 60, 1051–1059 (1999).

[CrossRef]

K. J. Blow and D. Wood, “Theoretical description of transient stimulated Raman scattering in optical fibers,” IEEE J. Quantum Electron. 25, 2665–2673 (1989).

[CrossRef]

M. Kolesik, E. M. Wright, A. Becker, and J. V. Moloney, “Simulation of third-harmonic and supercontinuum generation for femtosecond pulses in air,” Appl. Phys. B 85, 531–538 (2006).

[CrossRef]

Y. Mizuta, M. Nagasawa, M. Ohtani, and M. Yamashita, “Nonlinear propagation analysis of few-optical-cycle pulses for subfemtosecond pulse compression and carrier envelope phase effect,” Phys. Rev. A 72, 063802 (2005).

[CrossRef]

N. Karasawa, S. Nakamura, N. Nakagawa, M. Shibata, R. Morita, H. Shigekawa, and M. Yamashita, “Comparison between theory and experiment of nonlinear propagation for a-few-cycle and ultrabroadband optical pulses in a fused-silica fiber,” IEEE J. Quantum Electron. 37, 398–404 (2001).

[CrossRef]

A. Ferrando, M. Zacares, P. F. de Cordoba, D. Binosi, and A. Montero, “Forward-backward equations for nonlinear propagation in axially invariant optical systems,” Phys. Rev. E 71, 016601 (2005).

[CrossRef]

M. Kolesik, E. M. Wright, A. Becker, and J. V. Moloney, “Simulation of third-harmonic and supercontinuum generation for femtosecond pulses in air,” Appl. Phys. B 85, 531–538 (2006).

[CrossRef]

B. Kibler, J. M. Dudley, and S. Coen, “Supercontinuum generation and nonlinear pulse propagation in photonic crystal fiber: influence of the frequency-dependent effective mode area,” Appl. Phys. B 81, 337–342 (2005).

[CrossRef]

M. A. Foster, J.M. Dudley, B. Kibler, Q. Cao, D. Lee, R. Trebino, and A. L. Gaeta, “Nonlinear pulse propagation and supercontinuum generation in photonic nanowires: experiment and simulation,” Appl. Phys. B 81, 363–367 (2005).

[CrossRef]

N. Karasawa, “Computer simulations of nonlinear propagation of an optical pulse using a finite-difference in the frequency-domain method,” IEEE J. Quantum Electron. 38, 626–629 (2002).

[CrossRef]

K. J. Blow and D. Wood, “Theoretical description of transient stimulated Raman scattering in optical fibers,” IEEE J. Quantum Electron. 25, 2665–2673 (1989).

[CrossRef]

N. Karasawa, S. Nakamura, N. Nakagawa, M. Shibata, R. Morita, H. Shigekawa, and M. Yamashita, “Comparison between theory and experiment of nonlinear propagation for a-few-cycle and ultrabroadband optical pulses in a fused-silica fiber,” IEEE J. Quantum Electron. 37, 398–404 (2001).

[CrossRef]

J. C. A. Tyrrell, P. Kinsler, and G. H. C. New, “Pseudospectral spatial-domain: a new method for nonlinear pulse propagation in the few-cycle regime with arbitrary dispersion,” J. Mod. Opt. 52, 973–986 (2005).

[CrossRef]

V. P. Kalosha and J. Herrmann, “Self-phase modulation and compression of few-optical-cycle pulses,” Phys. Rev. A 62, 011804(R) (2000).

[CrossRef]

Y. Mizuta, M. Nagasawa, M. Ohtani, and M. Yamashita, “Nonlinear propagation analysis of few-optical-cycle pulses for subfemtosecond pulse compression and carrier envelope phase effect,” Phys. Rev. A 72, 063802 (2005).

[CrossRef]

P. Kinsler, S. B. P. Radnor, and G. H. C. New, “Theory of directional pulse propagation,” Phys. Rev. A 72, 063807 (2005).

[CrossRef]

G. Rosen, “Electromagnetic shocks and the self-annihilation of intense linearly polarized radiation in an ideal dielectric material,” Phys. Rev. A 139, A539–A543 (1965).

L. Gilles, J. V. Moloney, and L. Vazquez, “Electromagnetic shocks on the optical cycle of ultrashort pulses in triple-resonance lorentz dielectric media with subfemtosecond nonlinear electronic debye relaxation,” Phys. Rev. E 60, 1051–1059 (1999).

[CrossRef]

P. Kinsler, S. B. P. Radnor, J. Tyrrell, and G. H. C. New, “Optical carrier wave shocking and the effect of dispersion,” Phys. Rev. E, submitted (2007).

[CrossRef]

A. Ferrando, M. Zacares, P. F. de Cordoba, D. Binosi, and A. Montero, “Forward-backward equations for nonlinear propagation in axially invariant optical systems,” Phys. Rev. E 71, 016601 (2005).

[CrossRef]

M. Kolesik and J. V. Moloney, “Nonlinear optical pulse propagation simulation: From Maxwell’s to unidirectional equations,” Phys. Rev. E 70, 036604 (2004).

[CrossRef]

M. Kolesik, J. V. Moloney, and M. Mlejnek, “Unidirectional optical pulse propagation equation,” Phys. Rev. Lett. 89, 283902 (2002).

[CrossRef]

T. Brabec and F. Krausz, “Nonlinear optical pulse propagation in the single-cycle regime,” Phys. Rev. Lett. 78, 3282–3285 (1997).

[CrossRef]

A. V. Husakou and J. Herrmann, “Supercontinuum generation of higher-order solitons by fission in photonic crystal fibers,” Phys. Rev. Lett. 87, 203901 (2001).

[CrossRef]
[PubMed]

R. G. Flesch, A. Pushkarev, and J. V. Moloney, “Carrier wave shocking of femtosecond optical pulses,” Phys. Rev. Lett. 76, 2488–2491 (1996).

[CrossRef]
[PubMed]

P. Kinsler and G.H.C. New, “ Wideband pulse propagation: single-field and multi-field approaches to Raman interactions,”Phys.Rev. A 72, 033804 (2005).

[CrossRef]

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).

[CrossRef]

G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic Press, San Diego, 2006).

Y. R. Shen, Principles of Nonlinear Optics (Wiley, New York, 1984).

P. Kinsler, G. H. C. New, and J.C.A. Tyrrell, ”Phase sensitivity of nonlinear interactions”, arXiv.org/physics/0611213.