Abstract

Using measurements obtained by the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) satellite, relationships between layer-integrated depolarization ratio (8) and layer-integrated attenuated backscatter (γ′) are established for moderately thick clouds of both ice and water. A new and simple form of the δ-γ′ relation for spherical particles, developed from Monte Carlo simulations and suitable for both water clouds and spherical aerosol particles, is found to agree well with the observations. A high-backscatter, low-depolarization δ-γ′ relationship observed for some ice clouds is shown to result primarily from horizontally oriented plates and implies a preferential lidar ratio - depolarization ratio relation in nature for ice cloud particles containing plates. ©2007 Optical Society of America

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Schotland,  et al., "Observations by lidar of linear depolarization ratios for hydrometers," J. Appl. Meteorol. 10, 1011-1017 (1971).
    [CrossRef]
  2. Y. Hu,  et al., "Identification of cloud phase from PICASSO-CENA lidar depolarization: A multiple scattering sensitivity study," J. Quant. Spectrosc. Radiat. Transf. 70, 569-579 (2001).
    [CrossRef]
  3. Y. Hu,  et al., "Using Backscattered Circular Component for Cloud Particle Shape Determination: A Theoretical Study," J. Quant. Spectrosc. Radiat. Transf. 79-80, 757-764 (2003).
    [CrossRef]
  4. D. M. Winker,  et al., "The CALIPSO mission: Spaceborne lidar for observation of aerosols and clouds," Proc. SPIE 4893, 1-11 (2003).
    [CrossRef]
  5. Y. Hu,  et al., "A simple relation between lidar multiple scattering and depolarization for water clouds," Opt. Lett. 31, 1809-1811 (2006).
    [CrossRef] [PubMed]
  6. C. M. R. Platt,  et al., "Backscatter to extinction ratios in the top layers of tropical mesoscale convective systems and in isolated cirrus from LITE observations," J. Appl. Meteorol. 38, 1330-1345. (1999).
    [CrossRef]
  7. R. G. Pinnick,  et al., "Backscatter and extinction in water clouds," J. Geophs. Res. 88, 6787-6796 (1983).
    [CrossRef]
  8. Y. Hu,  et al., "A simple multiple scattering-depolarization relation of water clouds and its potential applications," Proceedings of 23nd International Laser Radar Conference, Nara, Japan, 19-22 (2006).
  9. E. J. O’Connor,  et al., "A technique for autocalibration of cloud lidar," J. Atmos. Ocean Technol. 21, 777-786 (2004).
    [CrossRef]
  10. C. M. R. Platt, "Lidar Observation of a Mixed-Phase Altostratus cloud," J. Appl. Meteorol. 16, 339-345 (1977).
    [CrossRef]

2006 (1)

2004 (1)

E. J. O’Connor,  et al., "A technique for autocalibration of cloud lidar," J. Atmos. Ocean Technol. 21, 777-786 (2004).
[CrossRef]

2003 (2)

Y. Hu,  et al., "Using Backscattered Circular Component for Cloud Particle Shape Determination: A Theoretical Study," J. Quant. Spectrosc. Radiat. Transf. 79-80, 757-764 (2003).
[CrossRef]

D. M. Winker,  et al., "The CALIPSO mission: Spaceborne lidar for observation of aerosols and clouds," Proc. SPIE 4893, 1-11 (2003).
[CrossRef]

2001 (1)

Y. Hu,  et al., "Identification of cloud phase from PICASSO-CENA lidar depolarization: A multiple scattering sensitivity study," J. Quant. Spectrosc. Radiat. Transf. 70, 569-579 (2001).
[CrossRef]

1999 (1)

C. M. R. Platt,  et al., "Backscatter to extinction ratios in the top layers of tropical mesoscale convective systems and in isolated cirrus from LITE observations," J. Appl. Meteorol. 38, 1330-1345. (1999).
[CrossRef]

1983 (1)

R. G. Pinnick,  et al., "Backscatter and extinction in water clouds," J. Geophs. Res. 88, 6787-6796 (1983).
[CrossRef]

1977 (1)

C. M. R. Platt, "Lidar Observation of a Mixed-Phase Altostratus cloud," J. Appl. Meteorol. 16, 339-345 (1977).
[CrossRef]

1971 (1)

R. Schotland,  et al., "Observations by lidar of linear depolarization ratios for hydrometers," J. Appl. Meteorol. 10, 1011-1017 (1971).
[CrossRef]

Hu, Y.

Y. Hu,  et al., "A simple relation between lidar multiple scattering and depolarization for water clouds," Opt. Lett. 31, 1809-1811 (2006).
[CrossRef] [PubMed]

Y. Hu,  et al., "Using Backscattered Circular Component for Cloud Particle Shape Determination: A Theoretical Study," J. Quant. Spectrosc. Radiat. Transf. 79-80, 757-764 (2003).
[CrossRef]

Y. Hu,  et al., "Identification of cloud phase from PICASSO-CENA lidar depolarization: A multiple scattering sensitivity study," J. Quant. Spectrosc. Radiat. Transf. 70, 569-579 (2001).
[CrossRef]

O’Connor, E. J.

E. J. O’Connor,  et al., "A technique for autocalibration of cloud lidar," J. Atmos. Ocean Technol. 21, 777-786 (2004).
[CrossRef]

Pinnick, R. G.

R. G. Pinnick,  et al., "Backscatter and extinction in water clouds," J. Geophs. Res. 88, 6787-6796 (1983).
[CrossRef]

Platt, C. M. R.

C. M. R. Platt,  et al., "Backscatter to extinction ratios in the top layers of tropical mesoscale convective systems and in isolated cirrus from LITE observations," J. Appl. Meteorol. 38, 1330-1345. (1999).
[CrossRef]

C. M. R. Platt, "Lidar Observation of a Mixed-Phase Altostratus cloud," J. Appl. Meteorol. 16, 339-345 (1977).
[CrossRef]

Schotland, R.

R. Schotland,  et al., "Observations by lidar of linear depolarization ratios for hydrometers," J. Appl. Meteorol. 10, 1011-1017 (1971).
[CrossRef]

Winker, D. M.

D. M. Winker,  et al., "The CALIPSO mission: Spaceborne lidar for observation of aerosols and clouds," Proc. SPIE 4893, 1-11 (2003).
[CrossRef]

J. Appl. Meteorol. (3)

R. Schotland,  et al., "Observations by lidar of linear depolarization ratios for hydrometers," J. Appl. Meteorol. 10, 1011-1017 (1971).
[CrossRef]

C. M. R. Platt,  et al., "Backscatter to extinction ratios in the top layers of tropical mesoscale convective systems and in isolated cirrus from LITE observations," J. Appl. Meteorol. 38, 1330-1345. (1999).
[CrossRef]

C. M. R. Platt, "Lidar Observation of a Mixed-Phase Altostratus cloud," J. Appl. Meteorol. 16, 339-345 (1977).
[CrossRef]

J. Atmos. Ocean Technol. (1)

E. J. O’Connor,  et al., "A technique for autocalibration of cloud lidar," J. Atmos. Ocean Technol. 21, 777-786 (2004).
[CrossRef]

J. Geophs. Res. (1)

R. G. Pinnick,  et al., "Backscatter and extinction in water clouds," J. Geophs. Res. 88, 6787-6796 (1983).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transf. (2)

Y. Hu,  et al., "Identification of cloud phase from PICASSO-CENA lidar depolarization: A multiple scattering sensitivity study," J. Quant. Spectrosc. Radiat. Transf. 70, 569-579 (2001).
[CrossRef]

Y. Hu,  et al., "Using Backscattered Circular Component for Cloud Particle Shape Determination: A Theoretical Study," J. Quant. Spectrosc. Radiat. Transf. 79-80, 757-764 (2003).
[CrossRef]

Opt. Lett. (1)

Proc. SPIE (1)

D. M. Winker,  et al., "The CALIPSO mission: Spaceborne lidar for observation of aerosols and clouds," Proc. SPIE 4893, 1-11 (2003).
[CrossRef]

Other (1)

Y. Hu,  et al., "A simple multiple scattering-depolarization relation of water clouds and its potential applications," Proceedings of 23nd International Laser Radar Conference, Nara, Japan, 19-22 (2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Relationship between layer-integrated depolarization and attenuated backscatter for spherical cloud particles derived from Monte Carlo simulations. The green dashed line is from previous work (Hu et al. 2006). The solid red line is the revised form of the same relation reported in this work.

Fig. 2.
Fig. 2.

Summary statistics showing the δ-γ′ relationship for opaque clouds detected during the months of July (left panel) and October (right panel) 2006. The color of each pixel represents the frequency of occurrence for a Δδ-Δγ′ box measuring 0.001-by-0.01 sr-1. The green dashed line indicates the δ-γ′ relation for water clouds, as described by theory. Red dotted line: ice cloud δ-β relation with least square fit.

Fig. 3.
Fig. 3.

Summary statistics showing the δ-γ′ relationship for opaque clouds detected during the November 2006, when the pointing angle of the CALIPSO lidar was 3° off-nadir. The interpretation of the pixel colors in this image is the same as for Fig. 2.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

A s = γ SS γ = 0.999 3.906 δ + 6.263 δ 2 3.554 δ 3 .
1 A S = γ ss + γ ms γ ss = γ γ ss = ( 1 + δ 1 δ ) 2 .
γ = 1 1 + 88 δ .
γ = ( 2 ( 1 f ) η plate S plate + 2 MIP S MIP ) 1 + o ( η plate η MIP ) .
η MIP S MIP 44 δ MIP .
γ + γ TR γ ss = ( 1 + δ 1 δ ) 2 .

Metrics