Abstract

We propose and demonstrate a novel technique for measuring the distribution of the reflectivity along an optical fiber transmission line. Unlike the conventional optical time-domain reflectometer (OTDR), the proposed technique utilizes the data-modulated transmitter itself instead of the optical short-pulse source, and monitors the distribution of the back-reflected light by calculating the cross-correlation of the transmitted and back-reflected signals. In this paper, we describe the operating principle of the proposed technique and discuss its potential limitation on the dynamic range. We also show that this limitation can be mitigated by using the discrete-component elimination algorithm. In addition, we experimentally demonstrate that the proposed technique can be used for the in-service monitoring of the transmission fibers in a wavelength-division multiplexed passive optical network (WDM PON).

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. Tomita, H. Takasugi, N. Atobe, I. Nakamura, F. Takaesu, and S. Takashima, "Design and performance of a novel automatic fiber line testing system with OTDR for optical subscriber loops," J. Lightwave Technol. 12, 717-726 (1994).
    [CrossRef]
  2. F. Yamamoto and T. Horiguchi, "Allowable received OTDR light power for in-service measurement in lightwave SCM systems," J. Lightwave Technol. 18, 286-294 (2000).
    [CrossRef]
  3. K. C. Reichmann, N. J. Frigo, P. P. Iannone, X. Zhou, M. Leblanc, and S. Chabot, "In-service OTDR limitations in CWDM systems caused by spontaneous Stokes and anti-Stokes Raman scattering," IEEE Photon. Technol. Lett. 16, 1787-1789 (2004).
    [CrossRef]
  4. N. J. Frigo, P. P. Iannone, K. C. Reichmann, X. Zhou, and M. W. Stodden, "Centralized in-service OTDR testing in a CWDM business access network," J. Lightwave Technol. 22, 2641-2652 (2004).
    [CrossRef]
  5. U. Hilbk, M. Burmeister, B. Hoen, T. Hermes, J. Saniter, and F. J. Westphal, "Selective OTDR measurements at the central office of individual fiber link in a PON," in Optical Fiber Communication Conference and Exhibit, Technical Digest (Optical Society of America, 1997), paper Tuk3.
  6. K. Tanaka, H. Izumita, N. Tomita, and Y. Inoue, "In-service individual line monitoring and a method for compensating for the temperature-dependent channel drift of a WDM-PON containing an AWGR using a 1.6 mm tunable OTDR," in Proceedings of European Conference on Optical Communication, 3, paper 448, pp. 295-298 (1997).
  7. K. W. Lim, E. S. Son, K. H. Han, and Y. C. Chung, "Fault localization in WDM passive optical network by reusing downstream light sources," IEEE Photon. Technol. Lett. 17, 2691-2693 (2005).
    [CrossRef]
  8. N. Takeuchi, N. Sugimoto, H. Baba, and K. Sakurai, "Random modulation cw lidar," Appl. Opt. 22, 1382-1386 (1983).
    [CrossRef] [PubMed]
  9. M. Nazarathy, S. A. Newton, R. P. Giffard, D. S. Moberly, F. Sischika, W. R. Trutna, Jr., and S. Foster, "Real-time long range complementary correlation optical time domain reflectometer," J. Lightwave Technol. 7, 24-38 (1989).
    [CrossRef]
  10. ITU-T Recommendation G. 983.1, Broadband Optical Access Systems Based on Passive Optical Networks (2005).
  11. ITU-T Recommendation G. 984.2, Gigabit-capable Passive Optical Networks (GPON): Physical Media Dependent (PMD) layer specification (2003).
  12. IEEE Standard 802.3ah, Carrier Sense Multiple Access with Collision Detection (CSMA/CD) Access Method and Physical Layer Specifications (2004).
  13. D. Derickson, Fiber Optic Test and Measurement, ch. 11 (Prentice-Hall, New Jersey, 1998).

2005

K. W. Lim, E. S. Son, K. H. Han, and Y. C. Chung, "Fault localization in WDM passive optical network by reusing downstream light sources," IEEE Photon. Technol. Lett. 17, 2691-2693 (2005).
[CrossRef]

2004

K. C. Reichmann, N. J. Frigo, P. P. Iannone, X. Zhou, M. Leblanc, and S. Chabot, "In-service OTDR limitations in CWDM systems caused by spontaneous Stokes and anti-Stokes Raman scattering," IEEE Photon. Technol. Lett. 16, 1787-1789 (2004).
[CrossRef]

N. J. Frigo, P. P. Iannone, K. C. Reichmann, X. Zhou, and M. W. Stodden, "Centralized in-service OTDR testing in a CWDM business access network," J. Lightwave Technol. 22, 2641-2652 (2004).
[CrossRef]

2000

1994

N. Tomita, H. Takasugi, N. Atobe, I. Nakamura, F. Takaesu, and S. Takashima, "Design and performance of a novel automatic fiber line testing system with OTDR for optical subscriber loops," J. Lightwave Technol. 12, 717-726 (1994).
[CrossRef]

1989

M. Nazarathy, S. A. Newton, R. P. Giffard, D. S. Moberly, F. Sischika, W. R. Trutna, Jr., and S. Foster, "Real-time long range complementary correlation optical time domain reflectometer," J. Lightwave Technol. 7, 24-38 (1989).
[CrossRef]

1983

Atobe, N.

N. Tomita, H. Takasugi, N. Atobe, I. Nakamura, F. Takaesu, and S. Takashima, "Design and performance of a novel automatic fiber line testing system with OTDR for optical subscriber loops," J. Lightwave Technol. 12, 717-726 (1994).
[CrossRef]

Baba, H.

Chabot, S.

K. C. Reichmann, N. J. Frigo, P. P. Iannone, X. Zhou, M. Leblanc, and S. Chabot, "In-service OTDR limitations in CWDM systems caused by spontaneous Stokes and anti-Stokes Raman scattering," IEEE Photon. Technol. Lett. 16, 1787-1789 (2004).
[CrossRef]

Chung, Y. C.

K. W. Lim, E. S. Son, K. H. Han, and Y. C. Chung, "Fault localization in WDM passive optical network by reusing downstream light sources," IEEE Photon. Technol. Lett. 17, 2691-2693 (2005).
[CrossRef]

Foster, S.

M. Nazarathy, S. A. Newton, R. P. Giffard, D. S. Moberly, F. Sischika, W. R. Trutna, Jr., and S. Foster, "Real-time long range complementary correlation optical time domain reflectometer," J. Lightwave Technol. 7, 24-38 (1989).
[CrossRef]

Frigo, N. J.

N. J. Frigo, P. P. Iannone, K. C. Reichmann, X. Zhou, and M. W. Stodden, "Centralized in-service OTDR testing in a CWDM business access network," J. Lightwave Technol. 22, 2641-2652 (2004).
[CrossRef]

K. C. Reichmann, N. J. Frigo, P. P. Iannone, X. Zhou, M. Leblanc, and S. Chabot, "In-service OTDR limitations in CWDM systems caused by spontaneous Stokes and anti-Stokes Raman scattering," IEEE Photon. Technol. Lett. 16, 1787-1789 (2004).
[CrossRef]

Giffard, R. P.

M. Nazarathy, S. A. Newton, R. P. Giffard, D. S. Moberly, F. Sischika, W. R. Trutna, Jr., and S. Foster, "Real-time long range complementary correlation optical time domain reflectometer," J. Lightwave Technol. 7, 24-38 (1989).
[CrossRef]

Han, K. H.

K. W. Lim, E. S. Son, K. H. Han, and Y. C. Chung, "Fault localization in WDM passive optical network by reusing downstream light sources," IEEE Photon. Technol. Lett. 17, 2691-2693 (2005).
[CrossRef]

Horiguchi, T.

Iannone, P. P.

K. C. Reichmann, N. J. Frigo, P. P. Iannone, X. Zhou, M. Leblanc, and S. Chabot, "In-service OTDR limitations in CWDM systems caused by spontaneous Stokes and anti-Stokes Raman scattering," IEEE Photon. Technol. Lett. 16, 1787-1789 (2004).
[CrossRef]

N. J. Frigo, P. P. Iannone, K. C. Reichmann, X. Zhou, and M. W. Stodden, "Centralized in-service OTDR testing in a CWDM business access network," J. Lightwave Technol. 22, 2641-2652 (2004).
[CrossRef]

Leblanc, M.

K. C. Reichmann, N. J. Frigo, P. P. Iannone, X. Zhou, M. Leblanc, and S. Chabot, "In-service OTDR limitations in CWDM systems caused by spontaneous Stokes and anti-Stokes Raman scattering," IEEE Photon. Technol. Lett. 16, 1787-1789 (2004).
[CrossRef]

Lim, K. W.

K. W. Lim, E. S. Son, K. H. Han, and Y. C. Chung, "Fault localization in WDM passive optical network by reusing downstream light sources," IEEE Photon. Technol. Lett. 17, 2691-2693 (2005).
[CrossRef]

Moberly, D. S.

M. Nazarathy, S. A. Newton, R. P. Giffard, D. S. Moberly, F. Sischika, W. R. Trutna, Jr., and S. Foster, "Real-time long range complementary correlation optical time domain reflectometer," J. Lightwave Technol. 7, 24-38 (1989).
[CrossRef]

Nakamura, I.

N. Tomita, H. Takasugi, N. Atobe, I. Nakamura, F. Takaesu, and S. Takashima, "Design and performance of a novel automatic fiber line testing system with OTDR for optical subscriber loops," J. Lightwave Technol. 12, 717-726 (1994).
[CrossRef]

Nazarathy, M.

M. Nazarathy, S. A. Newton, R. P. Giffard, D. S. Moberly, F. Sischika, W. R. Trutna, Jr., and S. Foster, "Real-time long range complementary correlation optical time domain reflectometer," J. Lightwave Technol. 7, 24-38 (1989).
[CrossRef]

Newton, S. A.

M. Nazarathy, S. A. Newton, R. P. Giffard, D. S. Moberly, F. Sischika, W. R. Trutna, Jr., and S. Foster, "Real-time long range complementary correlation optical time domain reflectometer," J. Lightwave Technol. 7, 24-38 (1989).
[CrossRef]

Reichmann, K. C.

K. C. Reichmann, N. J. Frigo, P. P. Iannone, X. Zhou, M. Leblanc, and S. Chabot, "In-service OTDR limitations in CWDM systems caused by spontaneous Stokes and anti-Stokes Raman scattering," IEEE Photon. Technol. Lett. 16, 1787-1789 (2004).
[CrossRef]

N. J. Frigo, P. P. Iannone, K. C. Reichmann, X. Zhou, and M. W. Stodden, "Centralized in-service OTDR testing in a CWDM business access network," J. Lightwave Technol. 22, 2641-2652 (2004).
[CrossRef]

Sakurai, K.

Sischika, F.

M. Nazarathy, S. A. Newton, R. P. Giffard, D. S. Moberly, F. Sischika, W. R. Trutna, Jr., and S. Foster, "Real-time long range complementary correlation optical time domain reflectometer," J. Lightwave Technol. 7, 24-38 (1989).
[CrossRef]

Son, E. S.

K. W. Lim, E. S. Son, K. H. Han, and Y. C. Chung, "Fault localization in WDM passive optical network by reusing downstream light sources," IEEE Photon. Technol. Lett. 17, 2691-2693 (2005).
[CrossRef]

Stodden, M. W.

Sugimoto, N.

Takaesu, F.

N. Tomita, H. Takasugi, N. Atobe, I. Nakamura, F. Takaesu, and S. Takashima, "Design and performance of a novel automatic fiber line testing system with OTDR for optical subscriber loops," J. Lightwave Technol. 12, 717-726 (1994).
[CrossRef]

Takashima, S.

N. Tomita, H. Takasugi, N. Atobe, I. Nakamura, F. Takaesu, and S. Takashima, "Design and performance of a novel automatic fiber line testing system with OTDR for optical subscriber loops," J. Lightwave Technol. 12, 717-726 (1994).
[CrossRef]

Takasugi, H.

N. Tomita, H. Takasugi, N. Atobe, I. Nakamura, F. Takaesu, and S. Takashima, "Design and performance of a novel automatic fiber line testing system with OTDR for optical subscriber loops," J. Lightwave Technol. 12, 717-726 (1994).
[CrossRef]

Takeuchi, N.

Tomita, N.

N. Tomita, H. Takasugi, N. Atobe, I. Nakamura, F. Takaesu, and S. Takashima, "Design and performance of a novel automatic fiber line testing system with OTDR for optical subscriber loops," J. Lightwave Technol. 12, 717-726 (1994).
[CrossRef]

Trutna, W. R.

M. Nazarathy, S. A. Newton, R. P. Giffard, D. S. Moberly, F. Sischika, W. R. Trutna, Jr., and S. Foster, "Real-time long range complementary correlation optical time domain reflectometer," J. Lightwave Technol. 7, 24-38 (1989).
[CrossRef]

Yamamoto, F.

Zhou, X.

K. C. Reichmann, N. J. Frigo, P. P. Iannone, X. Zhou, M. Leblanc, and S. Chabot, "In-service OTDR limitations in CWDM systems caused by spontaneous Stokes and anti-Stokes Raman scattering," IEEE Photon. Technol. Lett. 16, 1787-1789 (2004).
[CrossRef]

N. J. Frigo, P. P. Iannone, K. C. Reichmann, X. Zhou, and M. W. Stodden, "Centralized in-service OTDR testing in a CWDM business access network," J. Lightwave Technol. 22, 2641-2652 (2004).
[CrossRef]

Appl. Opt.

IEEE Photon. Technol. Lett.

K. C. Reichmann, N. J. Frigo, P. P. Iannone, X. Zhou, M. Leblanc, and S. Chabot, "In-service OTDR limitations in CWDM systems caused by spontaneous Stokes and anti-Stokes Raman scattering," IEEE Photon. Technol. Lett. 16, 1787-1789 (2004).
[CrossRef]

K. W. Lim, E. S. Son, K. H. Han, and Y. C. Chung, "Fault localization in WDM passive optical network by reusing downstream light sources," IEEE Photon. Technol. Lett. 17, 2691-2693 (2005).
[CrossRef]

J. Lightwave Technol.

N. Tomita, H. Takasugi, N. Atobe, I. Nakamura, F. Takaesu, and S. Takashima, "Design and performance of a novel automatic fiber line testing system with OTDR for optical subscriber loops," J. Lightwave Technol. 12, 717-726 (1994).
[CrossRef]

F. Yamamoto and T. Horiguchi, "Allowable received OTDR light power for in-service measurement in lightwave SCM systems," J. Lightwave Technol. 18, 286-294 (2000).
[CrossRef]

N. J. Frigo, P. P. Iannone, K. C. Reichmann, X. Zhou, and M. W. Stodden, "Centralized in-service OTDR testing in a CWDM business access network," J. Lightwave Technol. 22, 2641-2652 (2004).
[CrossRef]

M. Nazarathy, S. A. Newton, R. P. Giffard, D. S. Moberly, F. Sischika, W. R. Trutna, Jr., and S. Foster, "Real-time long range complementary correlation optical time domain reflectometer," J. Lightwave Technol. 7, 24-38 (1989).
[CrossRef]

Other

ITU-T Recommendation G. 983.1, Broadband Optical Access Systems Based on Passive Optical Networks (2005).

ITU-T Recommendation G. 984.2, Gigabit-capable Passive Optical Networks (GPON): Physical Media Dependent (PMD) layer specification (2003).

IEEE Standard 802.3ah, Carrier Sense Multiple Access with Collision Detection (CSMA/CD) Access Method and Physical Layer Specifications (2004).

D. Derickson, Fiber Optic Test and Measurement, ch. 11 (Prentice-Hall, New Jersey, 1998).

U. Hilbk, M. Burmeister, B. Hoen, T. Hermes, J. Saniter, and F. J. Westphal, "Selective OTDR measurements at the central office of individual fiber link in a PON," in Optical Fiber Communication Conference and Exhibit, Technical Digest (Optical Society of America, 1997), paper Tuk3.

K. Tanaka, H. Izumita, N. Tomita, and Y. Inoue, "In-service individual line monitoring and a method for compensating for the temperature-dependent channel drift of a WDM-PON containing an AWGR using a 1.6 mm tunable OTDR," in Proceedings of European Conference on Optical Communication, 3, paper 448, pp. 295-298 (1997).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

The schematic diagram of the proposed technique.

Fig. 2.
Fig. 2.

(a). The autocorrelation function of the reference signal. The dashed curve shows the autocorrelation function calculated by using the ensemble average with infinite averaging time. The solid curve shows the autocorrelation function with a finite length of the sampled data. (N=4096). The inset shows the same trace plotted in log scale. (b) The background noise suppression ratio (BNSR) calculated as a function of the number of sampling points. Dots and open circles show the BNSR simulated for cases when fc /fs =0.1 and 0.3, respectively.

Fig. 3.
Fig. 3.

Limitation on the dynamic range due to the BNSR and its improvement by the discrete component elimination algorithm. (a) Simulation model. (b) The cross-correlation trace. (c) The cross-correlation trace after applying the discrete component elimination algorithm to (b).

Fig. 4.
Fig. 4.

Experimental setup. The inset shows the example of waveforms of the reference and the detected back-reflection signals.

Fig. 5.
Fig. 5.

(a). Cross-correlation trace when a 2.2-km fiber with open end was measured. (b) Cross-correlation trace when the discrete component elimination algorithm was applied to (a). The red dotted lines show the root-mean square of the background noise, and the BNSR was defined by the ratio of the peak to this background noise level. (c) The BNSR measured as a function of the number of sampling points. Open circles and dots show the BNSR measured with and without the discrete component elimination algorithm. The dashed line shows the theoretical BNSR calculated by using Eq. (7).

Fig. 6.
Fig. 6.

In-service monitoring of the WDM PON system. (a) Without averaging. (b) With averaging of 400 traces. The dashed line shows the root mean square of the background noise. (c) Cross-correlation trace when a fiber break with a small reflection of -39.2 dB was intentionally made just before the ONU.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

ν det ( t ) = ηP a + ηP a s ( t ) R ( ν c t 2 ) = ν 0 + ν det ( t ) ,
ν ref ( t ) = ν ref 0 + ν ref 0 s ( t ) = ν ref 0 + ν ref ( t ) ,
q ( τ ) = ν det ( t ) ν ref ( t + τ ) = η P a ν ref 0 ϕ s ( τ ) R ( ν c τ 2 ) ,
q ( τ ) = ν det,f ( t ) ν ref,f ( t + τ ) = η P a ν ref 0 ϕ s,f ( τ ) R ( ν c τ 2 ) ,
q ( k Δ t ) = 1 N i N ν def , f ( i Δ t ) ν ref , f ( ( i + k ) Δ t ) = ηP a ν ref 0 ϕ s , f ( k Δ t ) R ( ν c k Δ t 2 ) ,
ϕ s , f ( k Δ t ) = 1 N i N s f ( i Δ t ) s f ( ( i + k ) Δ t ) .
( BNSR ) = N 1 2 ( 1 exp ( 4 π f c f s ) 1 + exp ( 4 π f c f s ) ) 1 2 .
q ( k Δ t ) = ηP a ν ref 0 ϕ s , f ( k Δ t ) ξ ( k Δ t ) R ( ν c k Δ t 2 )

Metrics