Abstract

We experimentally demonstrate the generation of optical squeezing at multiple longitudinal modes and transverse Hermite-Gauss modes of an optical parametric amplifier. We present measurements of approximately 3 dB squeezing at baseband, 1.7 GHz, 3.4 GHz and 5.1 GHz which correspond to the first, second and third resonances of the amplifier. We show that both the magnitude and the bandwidth of the squeezing at the higher longitudinal modes is greater than can be observed at baseband. The squeezing observed is the highest frequency squeezing reported to date.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. 1. N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, "Quantum cryptography," Rev. Mod. Phys. 74, 145-195 (2002); F. Grosshans, G. Van Assche, J. Wenger, R. Brouri, N. J. Cerf, P. Grangier, "Quantum key distribution using gaussian-modulated coherent states," Nature 421, 238-241 (2003).
    [CrossRef]
  2. C.M. Caves, "Quantum-mechanical noise in an interferometer," Phys. Rev. D 23, 1693-1708 (1981).
    [CrossRef]
  3. B.J. Meers and K.A. Strain "Modulation, signal, and quantum noise in interferometers," Phys. Rev. A 44, 4693-4703 (1991).
    [CrossRef] [PubMed]
  4. M. Nielsen and I. Chuang, Quantum computation and quantum information, (Cambridge University Press, Cambridge, UK, 2000).
  5. R.W. Boyd, Nonlinear Optics, (Academic Press, 1992).
  6. P.G. Kwiat, K. Mattle, H. Weinfurter, and A. Zeilinger, "New High-Intensity Source of Polarization-Entangled Photon Pairs," Phys. Rev. Lett. 75, 4337-4341 (1995).
    [CrossRef] [PubMed]
  7. L.A. Wu, H.J. Kimble, J.L. Hall, and H. Wu, "Generation of Squeezed States by Parametric Down Conversion," Phys. Rev. Lett. 57, 2520-2523 (1986).
    [CrossRef] [PubMed]
  8. Y. J. Lu and Z. Y. Ou, "Optical parametric oscillator far below threshold: Experiment versus theory," Phys. Rev. A 62033804 (2000).
    [CrossRef]
  9. C. Fabre and S. Reynaud, Quantum noise in optical systems: A semiclassical approach, J. Dalibard, J.M. Raimond and J. Zinn-Justin, eds. (Les Houches, Session LIII, 1990).
  10. A.E. Dunlop, E.H. Huntington, C.C. Harb, and T.C. Ralph, "Generation of a frequency comb of squeezing in an optical parametric oscillator," Phys. Rev. A 73, 013817 (2006).
    [CrossRef]
  11. G.N. Milford, C. C. Harb, and E. H. Huntington, "Shot noise limited, microwave bandwidth photodetector design," Rev. Sci. Instrum. 77, 114701 (2006).
    [CrossRef]
  12. B. Yurke, P.G. Kaminsky, and R.E. Miller, "Observation of 4.2-K equilibrium-noise squeezing via a Josephsonparametric amplifier," Phys. Rev. Lett. 60, 764-767 (1988).
    [CrossRef] [PubMed]
  13. R.W.P. Drever, J.L. Hall, F.V. Kowalski, J. Hough, G.M. Ford, A.J. Munley and H. Ward, "Laser phase and frequency stabilization using an optical resonator," Appl. Phys. B B31, 97-105 (1983).
    [CrossRef]
  14. "43 GBit/s DPSK Balanced Photoreceiver," http://www.u2t.de/pdf/Preliminary Datasheet BPRV2123 V10.pdf.
  15. M.B. Gray, D.A. Shaddock, C.C. Harb, and H.-A. Bachor, "Photodetector designs for low-noise, broadband, and high-power applications," Rev. Sci. Instrum. 69, 3755-3762 (1998).
    [CrossRef]
  16. G. Gonzalez, Microwave Transistor Amplifiers: Analysis and Design, 2nd Ed, (Prentice Hall, 1996).
    [PubMed]
  17. Mini-Circuits, http://www.mini-circuits.com
  18. M. G. Raymer, J. Noh, K. Banaszek and I. A. Walmsley, "Pure-state single-photon wave-packet generation by parametric down-conversion in a distributed microcavity," Phys. Rev. A 72023825 (2005).
    [CrossRef]
  19. D. F. Walls and G. J. Milburn, Quantum Optics, (Springer-Verlag, New York, 1994).
  20. M. Lassen, V. Delaubert, C.C. Harb, P.K. Lam, N. Treps, H-A. Bachor, "Generation of squeezing in higher order Hermite-Gaussian modes with an optical parametric amplifier," J. of the Euro Opt. Soc.-RP. 1, 06003 (2006).
    [CrossRef]
  21. K. McKenzie, N. Grosse, W.P. Bowen, S.E. Whitcomb, M.B. Gray, D.E. McClelland, and P.K. Lam, "Squeezing in the Audio Gravitational-Wave Detection Band," Phys. Rev. Lett. 93, 161105 (2004).
    [CrossRef] [PubMed]
  22. H. Vahlbruch, S. Chelkowski, B. Hage, A. Franzen, K. Danzmann, and R. Schnabel, "Demonstration of a Squeezed-Light-Enhanced Power- and Signal-Recycled Michelson Interferometer," Phys. Rev. Lett. 95, 211102 (2005).
    [CrossRef] [PubMed]

2006

A.E. Dunlop, E.H. Huntington, C.C. Harb, and T.C. Ralph, "Generation of a frequency comb of squeezing in an optical parametric oscillator," Phys. Rev. A 73, 013817 (2006).
[CrossRef]

G.N. Milford, C. C. Harb, and E. H. Huntington, "Shot noise limited, microwave bandwidth photodetector design," Rev. Sci. Instrum. 77, 114701 (2006).
[CrossRef]

M. Lassen, V. Delaubert, C.C. Harb, P.K. Lam, N. Treps, H-A. Bachor, "Generation of squeezing in higher order Hermite-Gaussian modes with an optical parametric amplifier," J. of the Euro Opt. Soc.-RP. 1, 06003 (2006).
[CrossRef]

2005

H. Vahlbruch, S. Chelkowski, B. Hage, A. Franzen, K. Danzmann, and R. Schnabel, "Demonstration of a Squeezed-Light-Enhanced Power- and Signal-Recycled Michelson Interferometer," Phys. Rev. Lett. 95, 211102 (2005).
[CrossRef] [PubMed]

M. G. Raymer, J. Noh, K. Banaszek and I. A. Walmsley, "Pure-state single-photon wave-packet generation by parametric down-conversion in a distributed microcavity," Phys. Rev. A 72023825 (2005).
[CrossRef]

2004

K. McKenzie, N. Grosse, W.P. Bowen, S.E. Whitcomb, M.B. Gray, D.E. McClelland, and P.K. Lam, "Squeezing in the Audio Gravitational-Wave Detection Band," Phys. Rev. Lett. 93, 161105 (2004).
[CrossRef] [PubMed]

2002

1. N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, "Quantum cryptography," Rev. Mod. Phys. 74, 145-195 (2002); F. Grosshans, G. Van Assche, J. Wenger, R. Brouri, N. J. Cerf, P. Grangier, "Quantum key distribution using gaussian-modulated coherent states," Nature 421, 238-241 (2003).
[CrossRef]

2000

Y. J. Lu and Z. Y. Ou, "Optical parametric oscillator far below threshold: Experiment versus theory," Phys. Rev. A 62033804 (2000).
[CrossRef]

1998

M.B. Gray, D.A. Shaddock, C.C. Harb, and H.-A. Bachor, "Photodetector designs for low-noise, broadband, and high-power applications," Rev. Sci. Instrum. 69, 3755-3762 (1998).
[CrossRef]

1995

P.G. Kwiat, K. Mattle, H. Weinfurter, and A. Zeilinger, "New High-Intensity Source of Polarization-Entangled Photon Pairs," Phys. Rev. Lett. 75, 4337-4341 (1995).
[CrossRef] [PubMed]

1991

B.J. Meers and K.A. Strain "Modulation, signal, and quantum noise in interferometers," Phys. Rev. A 44, 4693-4703 (1991).
[CrossRef] [PubMed]

1988

B. Yurke, P.G. Kaminsky, and R.E. Miller, "Observation of 4.2-K equilibrium-noise squeezing via a Josephsonparametric amplifier," Phys. Rev. Lett. 60, 764-767 (1988).
[CrossRef] [PubMed]

1986

L.A. Wu, H.J. Kimble, J.L. Hall, and H. Wu, "Generation of Squeezed States by Parametric Down Conversion," Phys. Rev. Lett. 57, 2520-2523 (1986).
[CrossRef] [PubMed]

1983

R.W.P. Drever, J.L. Hall, F.V. Kowalski, J. Hough, G.M. Ford, A.J. Munley and H. Ward, "Laser phase and frequency stabilization using an optical resonator," Appl. Phys. B B31, 97-105 (1983).
[CrossRef]

1981

C.M. Caves, "Quantum-mechanical noise in an interferometer," Phys. Rev. D 23, 1693-1708 (1981).
[CrossRef]

Bachor, H.-A.

M.B. Gray, D.A. Shaddock, C.C. Harb, and H.-A. Bachor, "Photodetector designs for low-noise, broadband, and high-power applications," Rev. Sci. Instrum. 69, 3755-3762 (1998).
[CrossRef]

Bachor, H-A.

M. Lassen, V. Delaubert, C.C. Harb, P.K. Lam, N. Treps, H-A. Bachor, "Generation of squeezing in higher order Hermite-Gaussian modes with an optical parametric amplifier," J. of the Euro Opt. Soc.-RP. 1, 06003 (2006).
[CrossRef]

Banaszek, K.

M. G. Raymer, J. Noh, K. Banaszek and I. A. Walmsley, "Pure-state single-photon wave-packet generation by parametric down-conversion in a distributed microcavity," Phys. Rev. A 72023825 (2005).
[CrossRef]

Bowen, W.P.

K. McKenzie, N. Grosse, W.P. Bowen, S.E. Whitcomb, M.B. Gray, D.E. McClelland, and P.K. Lam, "Squeezing in the Audio Gravitational-Wave Detection Band," Phys. Rev. Lett. 93, 161105 (2004).
[CrossRef] [PubMed]

Caves, C.M.

C.M. Caves, "Quantum-mechanical noise in an interferometer," Phys. Rev. D 23, 1693-1708 (1981).
[CrossRef]

Chelkowski, S.

H. Vahlbruch, S. Chelkowski, B. Hage, A. Franzen, K. Danzmann, and R. Schnabel, "Demonstration of a Squeezed-Light-Enhanced Power- and Signal-Recycled Michelson Interferometer," Phys. Rev. Lett. 95, 211102 (2005).
[CrossRef] [PubMed]

Danzmann, K.

H. Vahlbruch, S. Chelkowski, B. Hage, A. Franzen, K. Danzmann, and R. Schnabel, "Demonstration of a Squeezed-Light-Enhanced Power- and Signal-Recycled Michelson Interferometer," Phys. Rev. Lett. 95, 211102 (2005).
[CrossRef] [PubMed]

Delaubert, V.

M. Lassen, V. Delaubert, C.C. Harb, P.K. Lam, N. Treps, H-A. Bachor, "Generation of squeezing in higher order Hermite-Gaussian modes with an optical parametric amplifier," J. of the Euro Opt. Soc.-RP. 1, 06003 (2006).
[CrossRef]

Drever, R.W.P.

R.W.P. Drever, J.L. Hall, F.V. Kowalski, J. Hough, G.M. Ford, A.J. Munley and H. Ward, "Laser phase and frequency stabilization using an optical resonator," Appl. Phys. B B31, 97-105 (1983).
[CrossRef]

Dunlop, A.E.

A.E. Dunlop, E.H. Huntington, C.C. Harb, and T.C. Ralph, "Generation of a frequency comb of squeezing in an optical parametric oscillator," Phys. Rev. A 73, 013817 (2006).
[CrossRef]

Ford, G.M.

R.W.P. Drever, J.L. Hall, F.V. Kowalski, J. Hough, G.M. Ford, A.J. Munley and H. Ward, "Laser phase and frequency stabilization using an optical resonator," Appl. Phys. B B31, 97-105 (1983).
[CrossRef]

Franzen, A.

H. Vahlbruch, S. Chelkowski, B. Hage, A. Franzen, K. Danzmann, and R. Schnabel, "Demonstration of a Squeezed-Light-Enhanced Power- and Signal-Recycled Michelson Interferometer," Phys. Rev. Lett. 95, 211102 (2005).
[CrossRef] [PubMed]

Gisin, N.

1. N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, "Quantum cryptography," Rev. Mod. Phys. 74, 145-195 (2002); F. Grosshans, G. Van Assche, J. Wenger, R. Brouri, N. J. Cerf, P. Grangier, "Quantum key distribution using gaussian-modulated coherent states," Nature 421, 238-241 (2003).
[CrossRef]

Gray, M.B.

K. McKenzie, N. Grosse, W.P. Bowen, S.E. Whitcomb, M.B. Gray, D.E. McClelland, and P.K. Lam, "Squeezing in the Audio Gravitational-Wave Detection Band," Phys. Rev. Lett. 93, 161105 (2004).
[CrossRef] [PubMed]

M.B. Gray, D.A. Shaddock, C.C. Harb, and H.-A. Bachor, "Photodetector designs for low-noise, broadband, and high-power applications," Rev. Sci. Instrum. 69, 3755-3762 (1998).
[CrossRef]

Grosse, N.

K. McKenzie, N. Grosse, W.P. Bowen, S.E. Whitcomb, M.B. Gray, D.E. McClelland, and P.K. Lam, "Squeezing in the Audio Gravitational-Wave Detection Band," Phys. Rev. Lett. 93, 161105 (2004).
[CrossRef] [PubMed]

Hage, B.

H. Vahlbruch, S. Chelkowski, B. Hage, A. Franzen, K. Danzmann, and R. Schnabel, "Demonstration of a Squeezed-Light-Enhanced Power- and Signal-Recycled Michelson Interferometer," Phys. Rev. Lett. 95, 211102 (2005).
[CrossRef] [PubMed]

Hall, J.L.

L.A. Wu, H.J. Kimble, J.L. Hall, and H. Wu, "Generation of Squeezed States by Parametric Down Conversion," Phys. Rev. Lett. 57, 2520-2523 (1986).
[CrossRef] [PubMed]

R.W.P. Drever, J.L. Hall, F.V. Kowalski, J. Hough, G.M. Ford, A.J. Munley and H. Ward, "Laser phase and frequency stabilization using an optical resonator," Appl. Phys. B B31, 97-105 (1983).
[CrossRef]

Harb, C. C.

G.N. Milford, C. C. Harb, and E. H. Huntington, "Shot noise limited, microwave bandwidth photodetector design," Rev. Sci. Instrum. 77, 114701 (2006).
[CrossRef]

Harb, C.C.

A.E. Dunlop, E.H. Huntington, C.C. Harb, and T.C. Ralph, "Generation of a frequency comb of squeezing in an optical parametric oscillator," Phys. Rev. A 73, 013817 (2006).
[CrossRef]

M. Lassen, V. Delaubert, C.C. Harb, P.K. Lam, N. Treps, H-A. Bachor, "Generation of squeezing in higher order Hermite-Gaussian modes with an optical parametric amplifier," J. of the Euro Opt. Soc.-RP. 1, 06003 (2006).
[CrossRef]

M.B. Gray, D.A. Shaddock, C.C. Harb, and H.-A. Bachor, "Photodetector designs for low-noise, broadband, and high-power applications," Rev. Sci. Instrum. 69, 3755-3762 (1998).
[CrossRef]

Hough, J.

R.W.P. Drever, J.L. Hall, F.V. Kowalski, J. Hough, G.M. Ford, A.J. Munley and H. Ward, "Laser phase and frequency stabilization using an optical resonator," Appl. Phys. B B31, 97-105 (1983).
[CrossRef]

Huntington, E. H.

G.N. Milford, C. C. Harb, and E. H. Huntington, "Shot noise limited, microwave bandwidth photodetector design," Rev. Sci. Instrum. 77, 114701 (2006).
[CrossRef]

Huntington, E.H.

A.E. Dunlop, E.H. Huntington, C.C. Harb, and T.C. Ralph, "Generation of a frequency comb of squeezing in an optical parametric oscillator," Phys. Rev. A 73, 013817 (2006).
[CrossRef]

Kaminsky, P.G.

B. Yurke, P.G. Kaminsky, and R.E. Miller, "Observation of 4.2-K equilibrium-noise squeezing via a Josephsonparametric amplifier," Phys. Rev. Lett. 60, 764-767 (1988).
[CrossRef] [PubMed]

Kimble, H.J.

L.A. Wu, H.J. Kimble, J.L. Hall, and H. Wu, "Generation of Squeezed States by Parametric Down Conversion," Phys. Rev. Lett. 57, 2520-2523 (1986).
[CrossRef] [PubMed]

Kowalski, F.V.

R.W.P. Drever, J.L. Hall, F.V. Kowalski, J. Hough, G.M. Ford, A.J. Munley and H. Ward, "Laser phase and frequency stabilization using an optical resonator," Appl. Phys. B B31, 97-105 (1983).
[CrossRef]

Kwiat, P.G.

P.G. Kwiat, K. Mattle, H. Weinfurter, and A. Zeilinger, "New High-Intensity Source of Polarization-Entangled Photon Pairs," Phys. Rev. Lett. 75, 4337-4341 (1995).
[CrossRef] [PubMed]

Lam, P.K.

M. Lassen, V. Delaubert, C.C. Harb, P.K. Lam, N. Treps, H-A. Bachor, "Generation of squeezing in higher order Hermite-Gaussian modes with an optical parametric amplifier," J. of the Euro Opt. Soc.-RP. 1, 06003 (2006).
[CrossRef]

K. McKenzie, N. Grosse, W.P. Bowen, S.E. Whitcomb, M.B. Gray, D.E. McClelland, and P.K. Lam, "Squeezing in the Audio Gravitational-Wave Detection Band," Phys. Rev. Lett. 93, 161105 (2004).
[CrossRef] [PubMed]

Lassen, M.

M. Lassen, V. Delaubert, C.C. Harb, P.K. Lam, N. Treps, H-A. Bachor, "Generation of squeezing in higher order Hermite-Gaussian modes with an optical parametric amplifier," J. of the Euro Opt. Soc.-RP. 1, 06003 (2006).
[CrossRef]

Lu, Y. J.

Y. J. Lu and Z. Y. Ou, "Optical parametric oscillator far below threshold: Experiment versus theory," Phys. Rev. A 62033804 (2000).
[CrossRef]

Mattle, K.

P.G. Kwiat, K. Mattle, H. Weinfurter, and A. Zeilinger, "New High-Intensity Source of Polarization-Entangled Photon Pairs," Phys. Rev. Lett. 75, 4337-4341 (1995).
[CrossRef] [PubMed]

McClelland, D.E.

K. McKenzie, N. Grosse, W.P. Bowen, S.E. Whitcomb, M.B. Gray, D.E. McClelland, and P.K. Lam, "Squeezing in the Audio Gravitational-Wave Detection Band," Phys. Rev. Lett. 93, 161105 (2004).
[CrossRef] [PubMed]

McKenzie, K.

K. McKenzie, N. Grosse, W.P. Bowen, S.E. Whitcomb, M.B. Gray, D.E. McClelland, and P.K. Lam, "Squeezing in the Audio Gravitational-Wave Detection Band," Phys. Rev. Lett. 93, 161105 (2004).
[CrossRef] [PubMed]

Meers, B.J.

B.J. Meers and K.A. Strain "Modulation, signal, and quantum noise in interferometers," Phys. Rev. A 44, 4693-4703 (1991).
[CrossRef] [PubMed]

Milford, G.N.

G.N. Milford, C. C. Harb, and E. H. Huntington, "Shot noise limited, microwave bandwidth photodetector design," Rev. Sci. Instrum. 77, 114701 (2006).
[CrossRef]

Miller, R.E.

B. Yurke, P.G. Kaminsky, and R.E. Miller, "Observation of 4.2-K equilibrium-noise squeezing via a Josephsonparametric amplifier," Phys. Rev. Lett. 60, 764-767 (1988).
[CrossRef] [PubMed]

Munley, A.J.

R.W.P. Drever, J.L. Hall, F.V. Kowalski, J. Hough, G.M. Ford, A.J. Munley and H. Ward, "Laser phase and frequency stabilization using an optical resonator," Appl. Phys. B B31, 97-105 (1983).
[CrossRef]

Noh, J.

M. G. Raymer, J. Noh, K. Banaszek and I. A. Walmsley, "Pure-state single-photon wave-packet generation by parametric down-conversion in a distributed microcavity," Phys. Rev. A 72023825 (2005).
[CrossRef]

Ou, Z. Y.

Y. J. Lu and Z. Y. Ou, "Optical parametric oscillator far below threshold: Experiment versus theory," Phys. Rev. A 62033804 (2000).
[CrossRef]

Ralph, T.C.

A.E. Dunlop, E.H. Huntington, C.C. Harb, and T.C. Ralph, "Generation of a frequency comb of squeezing in an optical parametric oscillator," Phys. Rev. A 73, 013817 (2006).
[CrossRef]

Raymer, M. G.

M. G. Raymer, J. Noh, K. Banaszek and I. A. Walmsley, "Pure-state single-photon wave-packet generation by parametric down-conversion in a distributed microcavity," Phys. Rev. A 72023825 (2005).
[CrossRef]

Ribordy, G.

1. N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, "Quantum cryptography," Rev. Mod. Phys. 74, 145-195 (2002); F. Grosshans, G. Van Assche, J. Wenger, R. Brouri, N. J. Cerf, P. Grangier, "Quantum key distribution using gaussian-modulated coherent states," Nature 421, 238-241 (2003).
[CrossRef]

Schnabel, R.

H. Vahlbruch, S. Chelkowski, B. Hage, A. Franzen, K. Danzmann, and R. Schnabel, "Demonstration of a Squeezed-Light-Enhanced Power- and Signal-Recycled Michelson Interferometer," Phys. Rev. Lett. 95, 211102 (2005).
[CrossRef] [PubMed]

Shaddock, D.A.

M.B. Gray, D.A. Shaddock, C.C. Harb, and H.-A. Bachor, "Photodetector designs for low-noise, broadband, and high-power applications," Rev. Sci. Instrum. 69, 3755-3762 (1998).
[CrossRef]

Strain, K.A.

B.J. Meers and K.A. Strain "Modulation, signal, and quantum noise in interferometers," Phys. Rev. A 44, 4693-4703 (1991).
[CrossRef] [PubMed]

Tittel, W.

1. N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, "Quantum cryptography," Rev. Mod. Phys. 74, 145-195 (2002); F. Grosshans, G. Van Assche, J. Wenger, R. Brouri, N. J. Cerf, P. Grangier, "Quantum key distribution using gaussian-modulated coherent states," Nature 421, 238-241 (2003).
[CrossRef]

Treps, N.

M. Lassen, V. Delaubert, C.C. Harb, P.K. Lam, N. Treps, H-A. Bachor, "Generation of squeezing in higher order Hermite-Gaussian modes with an optical parametric amplifier," J. of the Euro Opt. Soc.-RP. 1, 06003 (2006).
[CrossRef]

Vahlbruch, H.

H. Vahlbruch, S. Chelkowski, B. Hage, A. Franzen, K. Danzmann, and R. Schnabel, "Demonstration of a Squeezed-Light-Enhanced Power- and Signal-Recycled Michelson Interferometer," Phys. Rev. Lett. 95, 211102 (2005).
[CrossRef] [PubMed]

Walmsley, I. A.

M. G. Raymer, J. Noh, K. Banaszek and I. A. Walmsley, "Pure-state single-photon wave-packet generation by parametric down-conversion in a distributed microcavity," Phys. Rev. A 72023825 (2005).
[CrossRef]

Ward, H.

R.W.P. Drever, J.L. Hall, F.V. Kowalski, J. Hough, G.M. Ford, A.J. Munley and H. Ward, "Laser phase and frequency stabilization using an optical resonator," Appl. Phys. B B31, 97-105 (1983).
[CrossRef]

Weinfurter, H.

P.G. Kwiat, K. Mattle, H. Weinfurter, and A. Zeilinger, "New High-Intensity Source of Polarization-Entangled Photon Pairs," Phys. Rev. Lett. 75, 4337-4341 (1995).
[CrossRef] [PubMed]

Whitcomb, S.E.

K. McKenzie, N. Grosse, W.P. Bowen, S.E. Whitcomb, M.B. Gray, D.E. McClelland, and P.K. Lam, "Squeezing in the Audio Gravitational-Wave Detection Band," Phys. Rev. Lett. 93, 161105 (2004).
[CrossRef] [PubMed]

Wu, H.

L.A. Wu, H.J. Kimble, J.L. Hall, and H. Wu, "Generation of Squeezed States by Parametric Down Conversion," Phys. Rev. Lett. 57, 2520-2523 (1986).
[CrossRef] [PubMed]

Wu, L.A.

L.A. Wu, H.J. Kimble, J.L. Hall, and H. Wu, "Generation of Squeezed States by Parametric Down Conversion," Phys. Rev. Lett. 57, 2520-2523 (1986).
[CrossRef] [PubMed]

Yurke, B.

B. Yurke, P.G. Kaminsky, and R.E. Miller, "Observation of 4.2-K equilibrium-noise squeezing via a Josephsonparametric amplifier," Phys. Rev. Lett. 60, 764-767 (1988).
[CrossRef] [PubMed]

Zbinden, H.

1. N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, "Quantum cryptography," Rev. Mod. Phys. 74, 145-195 (2002); F. Grosshans, G. Van Assche, J. Wenger, R. Brouri, N. J. Cerf, P. Grangier, "Quantum key distribution using gaussian-modulated coherent states," Nature 421, 238-241 (2003).
[CrossRef]

Zeilinger, A.

P.G. Kwiat, K. Mattle, H. Weinfurter, and A. Zeilinger, "New High-Intensity Source of Polarization-Entangled Photon Pairs," Phys. Rev. Lett. 75, 4337-4341 (1995).
[CrossRef] [PubMed]

Appl. Phys. B

R.W.P. Drever, J.L. Hall, F.V. Kowalski, J. Hough, G.M. Ford, A.J. Munley and H. Ward, "Laser phase and frequency stabilization using an optical resonator," Appl. Phys. B B31, 97-105 (1983).
[CrossRef]

J. of the Euro Opt. Soc.-RP.

M. Lassen, V. Delaubert, C.C. Harb, P.K. Lam, N. Treps, H-A. Bachor, "Generation of squeezing in higher order Hermite-Gaussian modes with an optical parametric amplifier," J. of the Euro Opt. Soc.-RP. 1, 06003 (2006).
[CrossRef]

Phys. Rev. A

A.E. Dunlop, E.H. Huntington, C.C. Harb, and T.C. Ralph, "Generation of a frequency comb of squeezing in an optical parametric oscillator," Phys. Rev. A 73, 013817 (2006).
[CrossRef]

M. G. Raymer, J. Noh, K. Banaszek and I. A. Walmsley, "Pure-state single-photon wave-packet generation by parametric down-conversion in a distributed microcavity," Phys. Rev. A 72023825 (2005).
[CrossRef]

B.J. Meers and K.A. Strain "Modulation, signal, and quantum noise in interferometers," Phys. Rev. A 44, 4693-4703 (1991).
[CrossRef] [PubMed]

Y. J. Lu and Z. Y. Ou, "Optical parametric oscillator far below threshold: Experiment versus theory," Phys. Rev. A 62033804 (2000).
[CrossRef]

Phys. Rev. D

C.M. Caves, "Quantum-mechanical noise in an interferometer," Phys. Rev. D 23, 1693-1708 (1981).
[CrossRef]

Phys. Rev. Lett.

P.G. Kwiat, K. Mattle, H. Weinfurter, and A. Zeilinger, "New High-Intensity Source of Polarization-Entangled Photon Pairs," Phys. Rev. Lett. 75, 4337-4341 (1995).
[CrossRef] [PubMed]

L.A. Wu, H.J. Kimble, J.L. Hall, and H. Wu, "Generation of Squeezed States by Parametric Down Conversion," Phys. Rev. Lett. 57, 2520-2523 (1986).
[CrossRef] [PubMed]

K. McKenzie, N. Grosse, W.P. Bowen, S.E. Whitcomb, M.B. Gray, D.E. McClelland, and P.K. Lam, "Squeezing in the Audio Gravitational-Wave Detection Band," Phys. Rev. Lett. 93, 161105 (2004).
[CrossRef] [PubMed]

H. Vahlbruch, S. Chelkowski, B. Hage, A. Franzen, K. Danzmann, and R. Schnabel, "Demonstration of a Squeezed-Light-Enhanced Power- and Signal-Recycled Michelson Interferometer," Phys. Rev. Lett. 95, 211102 (2005).
[CrossRef] [PubMed]

B. Yurke, P.G. Kaminsky, and R.E. Miller, "Observation of 4.2-K equilibrium-noise squeezing via a Josephsonparametric amplifier," Phys. Rev. Lett. 60, 764-767 (1988).
[CrossRef] [PubMed]

Rev. Mod. Phys.

1. N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, "Quantum cryptography," Rev. Mod. Phys. 74, 145-195 (2002); F. Grosshans, G. Van Assche, J. Wenger, R. Brouri, N. J. Cerf, P. Grangier, "Quantum key distribution using gaussian-modulated coherent states," Nature 421, 238-241 (2003).
[CrossRef]

Rev. Sci. Instrum.

M.B. Gray, D.A. Shaddock, C.C. Harb, and H.-A. Bachor, "Photodetector designs for low-noise, broadband, and high-power applications," Rev. Sci. Instrum. 69, 3755-3762 (1998).
[CrossRef]

G.N. Milford, C. C. Harb, and E. H. Huntington, "Shot noise limited, microwave bandwidth photodetector design," Rev. Sci. Instrum. 77, 114701 (2006).
[CrossRef]

Other

"43 GBit/s DPSK Balanced Photoreceiver," http://www.u2t.de/pdf/Preliminary Datasheet BPRV2123 V10.pdf.

G. Gonzalez, Microwave Transistor Amplifiers: Analysis and Design, 2nd Ed, (Prentice Hall, 1996).
[PubMed]

Mini-Circuits, http://www.mini-circuits.com

D. F. Walls and G. J. Milburn, Quantum Optics, (Springer-Verlag, New York, 1994).

M. Nielsen and I. Chuang, Quantum computation and quantum information, (Cambridge University Press, Cambridge, UK, 2000).

R.W. Boyd, Nonlinear Optics, (Academic Press, 1992).

C. Fabre and S. Reynaud, Quantum noise in optical systems: A semiclassical approach, J. Dalibard, J.M. Raimond and J. Zinn-Justin, eds. (Les Houches, Session LIII, 1990).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Schematic of the experimental setup. Photodetector PD-1 detects the 12 MHz phase modulated signal emitted by the laser and generates an error signal which is sent to a mirror on a piezo-electric transducer PZT-1 to lock the mode transfer cavity (MTC). The electro-optic modulator (EOM) is used to impose 1 MHz and 16 MHz phase modulated signals on the transmitted MTC beam. These two signals are detected on PD-2 which then is used to derive error signals that are sent to PZT-2 and PZT-3 to lock the OPA cavity to the seed and to lock the OPA to de-amplification. The Pound-Drever-Hall locking technique [13] is used in all the locking loops. The local oscillator (LO) phase is swept using PZT-4 with respect to the phase of the squeezing to observe the amplitude and phase quadratures.

Fig. 2.
Fig. 2.

TEM00 mode power spectrum of squeezing, normalised to the quantum noise limit. Upper traces show frequency measurements and theoretical predictions over a 15 MHz span at baseband, and 30 MHz span at the first, second and third FSRs; lower traces show zero span spectra as a function of sweeping the LO phase over a 2 second period. Zero span measurements are shown relative to the quantum noise level for the amplitude quadrature. The measurement resolution bandwidth is 1MHz and video bandwidth is 1 kHz for the high frequency results. Note that the baseband results show excess technical noise due to the imposed locking modulation signals.

Fig. 3.
Fig. 3.

TEM10 mode power spectrum of squeezing, normalised to the quantum noise limit. Upper traces show frequency measurements and theoretical predictions over a 15 MHz span at baseband, and 30 MHz span at the first, second and third FSRs; lower traces show zero span spectra as a function of sweeping the LO phase over a 2 second period. Zero span measurements are shown relative to the quantum noise level for the amplitude quadrature. The measurement resolution bandwidth is 1MHz and video bandwidth is 1 kHz for the high frequency results. Note that the baseband results show excess technical noise due to the imposed locking modulation signals.

Tables (1)

Tables Icon

Table 1. Parameters used to fit the theoretical simulations to the measured results.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

V out ± ( ω ) = ( κ ± χ ) 2 ( 1 e iωτ τ ) 2 ( κ 1 e iωτ τ ) 2 χ 2 2 V in ± ( ω ) ,

Metrics