Abstract

We study theoretically and experimentally spectrally flat and broadband double-pumped fiber-optical parametric amplifiers (2P-FOPAs). Closed formulas are derived for the gain ripple in 2P-FOPAs as a function of the pump wavelength separation and power, and the fiber non-linearity and fourth order dispersion coefficients. The impact of longitudinal random variations of the zero dispersion wavelength (λ0) on the gain flatness is investigated. Our theoretical findings are substantiated with experiments using conventional dispersion shifted fibers and highly nonlinear fibers (HNLFs). By using a HNLF having a low variation of λ0 we demonstrate high gain and flat spectrum (25 ± 1.5 dB) over 115 nm.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Emori, S. Matsushita, and S. Naminki, "1 THz-spaced multi-wavelength pumping for broad-band Raman amplifiers," in Proc. European Conference on Optical Communications (ECOC) vol. 2, 2000, paper 4.4.2, pp. 73-74.
  2. Y.B. Lu, P.L. Chu, A. Alphones, P. Shum, "A 105-nm ultrawide-band gain-flattened amplifier combining C-and L-band dual-core EDFAs in a parallel configuration," IEEE Photon. Technol. Lett. 16, 1640-1642 (2004).
    [CrossRef]
  3. E. Desurvire, "Optical communications in 2025," in Proc. European Conference on Optical Communications (ECOC), September 2005, Glasgow, Scotland.
  4. J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P. O. Hedekvist, "Fiber-based optical parametric amplifiers and their applications," IEEE J. Sel. Top. Quantum Electron. 8, 506-520 (2002).
    [CrossRef]
  5. S. Radic and C.J. McKinstrie, "Optical amplification and signal processing in highly nonlinear optical fiber," IEICE Trans. Electron. E88-C, 859-869 (2005).
    [CrossRef]
  6. M Yu, C.J. McKinstrie, GP Agrawal, "Modulation instabilities in dispersion flattened fibers," Phys. Rev. E,  52, 1072-1080 (1995).
    [CrossRef]
  7. M.E. Marhic, N. Kagi, T.-K. Chiang, and L.G. Kazovsky, "Broadband fiber optical parametric amplifiers," Opt. Lett. 21, 573− 575 (1996).
    [CrossRef] [PubMed]
  8. C. Floridia, M.L. Sundheimer, L.S. Menezes, and A.S.L. Gomes, "Optimization of spectrally flat and broadband single-pump fiber optic parametric amplifiers," Opt. Commun. 223, 381-388, 2003.
    [CrossRef]
  9. P. Dainese, G.S. Wiederhecker, A.A. Rieznik, H.L. Fragnito, and H.E. Hernandez-Figueroa "Designing fiber dispersion for broadband parametric amplifiers," IEEE-SBMO, International Microwave and Optoelectronics Conference (IMOC), 2005, pp. 1-3.
  10. K. Inoue, "Arrangement of fiber pieces for a wide wavelength conversion range by fiber four-wave mixing," Opt. Lett. 19, 1189-1191 (1994).
    [CrossRef] [PubMed]
  11. M.E. Marhic, F.S. Yang, M.C. Ho, and L.G. Kazovsky, "High-nonlinearity fiber optical parametric amplifier with periodic dispersion compensation," J. Ligthwave Technol. 17, 210-215 (1999).
    [CrossRef]
  12. J. Hansryd and P. A. Andrekson, "Broad-band continuous-wave-pumped fiber optical parametric amplifier with 49-dB gain and wavelength-conversion efficiency,"  13, 194-196 (2001).
  13. L. Provino, A. Mussot, E. Lantz, T. Sylvestre, and H. Maillote, "Broad-band and flat parametric amplifiers with a multi-section dispersion-tailored nonlinear fiber arrangement," J. Opt. Soc. Am. B. 20, 1532-1539 (2003).
    [CrossRef]
  14. M. Yu, C.J. McKinstrie, and G.P. Agrawal, "Instability due to cross-phase modulation in the normal dispersion regime," Phys. Rev. E 52, 1072-1080 (1993).
    [CrossRef]
  15. M.E. Marhic, Y. Park, F.S. Yang, and L.G. Kazovsky, "Broadband fiber optical parametric amplifiers and wavelength converters with low-ripple Chebyshev gain spectra," Opt. Lett. 21, 1354-1356 (1996).
    [CrossRef] [PubMed]
  16. J.M. Chavez Boggio, S. Tenenbaum and H.L. Fragnito, "Amplification of broadband noise pumped by two lasers in optical fibers," J. Opt. Soc. Am. B 18, 1428-1435 (2001).
    [CrossRef]
  17. C.J. McKinstrie, S. Radic, and A.R. Chraplyvy, "Parametric amplifiers driven by two pump waves," IEEE J. Sel. Top. Quantum. Electron. 8, 538-547 (2002).
    [CrossRef]
  18. M.Y. Gao, C. Jiang, W. Hu, and J. Wang, "Two-pump fiber optical parametric amplifiers with three sections fiber allocation," Opt. Laser Technol. 38, 186-191 (2006).
    [CrossRef]
  19. S. Radic, C.J. McKinstrie, R.M. Jopson, J.C. Centanni, Q. Lin, and G.P. Agrawal, "Record performance of parametric amplifier constructed with highly nonlinear fibre," Electron. Lett. 39, 838-839 (2003).
    [CrossRef]
  20. S. Radic, C.J. McKinstrie, R.M. Jopson, and J.C. Centanni, "Continuous wave parametric amplifier with 41.5 nm of flat gain," in Proc. of Optical Fiber Communication Conference (OFC), 2004, Paper TuC4.
  21. J.M. Chavez Boggio, J.D. Marconi, and H.L. Fragnito, "Double-pumped fiber optical parametric amplifier with flat gain over 47-nm bandwidth using a conventional dispersion-shifted fiber," IEEE Photon. Technol. Lett. 17, 1842-1844 (2005).
    [CrossRef]
  22. J.M. Chavez Boggio, J.D. Marconi, H.L. Fragnito, S.R. Bickham, and C. Mazzali, "Broadband and low ripple double-pumped fiber optical parametric amplifier and wavelength converters using HNLF," in Proc. Optical Amplifiers and their Applications (OAA), June 2006, Whistler, Canada.
  23. M. Hirano, T. Nakanishi, T. Okuno, and M. Onishi, "Broadband wavelength conversion over 193-nm by HNL-DSF improving higher-order dispersion performance," in Proc. European Conference Optical Communication (ECOC), 2005, Glasgow, Scotland, PD paper Th 4.4.4.
  24. T. Nakanishi, M. Hirano, T. Okuno, and M. Onishi, "Silica based highly nonlinear fiber with γ = 30 /W/km and its FWM-based conversion efficiency," in Proc. Optical Fiber Communication Conference (OFC), 2006, Anaheim, paper OtuH7.
  25. J.M. Chavez Boggio, P. Dainese, and H.L. Fragnito, "Performance of a two-pump fiber optical parametric amplifier in a 10Gb/s×64 channel dense wavelength division multiplexing system," Opt. Commun. 218, 303-310 (2003).
    [CrossRef]
  26. F. Yaman, Q. Lin, S. Radic, and G.P. Agrawal, "Impact of dispersion fluctuations on dual-pump fiber-optic parametric amplifiers," IEEE Photon. Technol. Lett. 16, 1292-1294 (2004).
    [CrossRef]
  27. X.M. Liu, W. Zhao, K.Q. Lu, T.Y. Zhang, Y.S. Wang, M. Ouyang, S.L. Zhu, G.F. Chen, and X. Hou "Optimization and comparison of single- and dual-pump fiber-optical parametric amplifiers with dispersion fluctuations," Jpn. J. Appl. Phys. 45, 4074-4082 (2006).
    [CrossRef]
  28. A. Legrand, C. Simonneau, D. Bayart, A. Mussot, E. Lantz, T. Sylvestre, H. Maillotte, in Proc. Optical Amplifiers and their Applications (OAA), July 2003, Otaru, Japan.
  29. F. Yaman, Q. Lin, and G.P. Agrawal, "Effects of polarization-mode dispersion in dual-pump fiber-optic parametric amplifiers," IEEE Photon. Technol. Lett. 16, 431-433 (2004).
    [CrossRef]
  30. C.J. McKinstrie, H. Kogelnik, R.M. Jopson, S. Radic, and A.V. Kanaev, "Four-wave mixing in fibers with random birefringence," Opt. Express 12, 2033 (2003).
    [CrossRef]
  31. M.E. Marhic, K.K.Y. Wong, and L.G. Kazovsky, "Parametric amplification in optical fibers with random birefringence," in Proc. Optical Fiber Communication Conference (OFC), February 2004, Anaheim, paper TuC2.
  32. J.M. Chavez Boggio, S. Tenenbaum, J.D. Marconi, and H.L. Fragnito, "A novel method for measuring longitudinal variations of the zero dispersion wavelength in optical fibers," in Proc. European Conference on Optical Communication (ECOC), September 2006, Cannes, France, paper Th1.5.2.
  33. M. Karlsson, J. Brentel, and P. A. Andrekson, "Long-term measurement of PMD and polarization drift in installed fibers," J. Lightwave Technol. 18, 941-951 (2000).
    [CrossRef]
  34. M. Farahmand and M. de Sterke, "Parametric amplification in presence of dispersion fluctuations," Opt. Express 12, 136-142 (2004).
    [CrossRef] [PubMed]
  35. J.L. Blows and P. F. Hu, "Cross-talk-induced limitations of two-pump optical fiber parametric amplifiers," J. Opt. Soc. Am. B 21, 989-995 (2004).
    [CrossRef]

2006

M.Y. Gao, C. Jiang, W. Hu, and J. Wang, "Two-pump fiber optical parametric amplifiers with three sections fiber allocation," Opt. Laser Technol. 38, 186-191 (2006).
[CrossRef]

X.M. Liu, W. Zhao, K.Q. Lu, T.Y. Zhang, Y.S. Wang, M. Ouyang, S.L. Zhu, G.F. Chen, and X. Hou "Optimization and comparison of single- and dual-pump fiber-optical parametric amplifiers with dispersion fluctuations," Jpn. J. Appl. Phys. 45, 4074-4082 (2006).
[CrossRef]

2005

J.M. Chavez Boggio, J.D. Marconi, and H.L. Fragnito, "Double-pumped fiber optical parametric amplifier with flat gain over 47-nm bandwidth using a conventional dispersion-shifted fiber," IEEE Photon. Technol. Lett. 17, 1842-1844 (2005).
[CrossRef]

S. Radic and C.J. McKinstrie, "Optical amplification and signal processing in highly nonlinear optical fiber," IEICE Trans. Electron. E88-C, 859-869 (2005).
[CrossRef]

2004

Y.B. Lu, P.L. Chu, A. Alphones, P. Shum, "A 105-nm ultrawide-band gain-flattened amplifier combining C-and L-band dual-core EDFAs in a parallel configuration," IEEE Photon. Technol. Lett. 16, 1640-1642 (2004).
[CrossRef]

F. Yaman, Q. Lin, and G.P. Agrawal, "Effects of polarization-mode dispersion in dual-pump fiber-optic parametric amplifiers," IEEE Photon. Technol. Lett. 16, 431-433 (2004).
[CrossRef]

F. Yaman, Q. Lin, S. Radic, and G.P. Agrawal, "Impact of dispersion fluctuations on dual-pump fiber-optic parametric amplifiers," IEEE Photon. Technol. Lett. 16, 1292-1294 (2004).
[CrossRef]

M. Farahmand and M. de Sterke, "Parametric amplification in presence of dispersion fluctuations," Opt. Express 12, 136-142 (2004).
[CrossRef] [PubMed]

J.L. Blows and P. F. Hu, "Cross-talk-induced limitations of two-pump optical fiber parametric amplifiers," J. Opt. Soc. Am. B 21, 989-995 (2004).
[CrossRef]

2003

C.J. McKinstrie, H. Kogelnik, R.M. Jopson, S. Radic, and A.V. Kanaev, "Four-wave mixing in fibers with random birefringence," Opt. Express 12, 2033 (2003).
[CrossRef]

C. Floridia, M.L. Sundheimer, L.S. Menezes, and A.S.L. Gomes, "Optimization of spectrally flat and broadband single-pump fiber optic parametric amplifiers," Opt. Commun. 223, 381-388, 2003.
[CrossRef]

J.M. Chavez Boggio, P. Dainese, and H.L. Fragnito, "Performance of a two-pump fiber optical parametric amplifier in a 10Gb/s×64 channel dense wavelength division multiplexing system," Opt. Commun. 218, 303-310 (2003).
[CrossRef]

S. Radic, C.J. McKinstrie, R.M. Jopson, J.C. Centanni, Q. Lin, and G.P. Agrawal, "Record performance of parametric amplifier constructed with highly nonlinear fibre," Electron. Lett. 39, 838-839 (2003).
[CrossRef]

L. Provino, A. Mussot, E. Lantz, T. Sylvestre, and H. Maillote, "Broad-band and flat parametric amplifiers with a multi-section dispersion-tailored nonlinear fiber arrangement," J. Opt. Soc. Am. B. 20, 1532-1539 (2003).
[CrossRef]

2002

J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P. O. Hedekvist, "Fiber-based optical parametric amplifiers and their applications," IEEE J. Sel. Top. Quantum Electron. 8, 506-520 (2002).
[CrossRef]

C.J. McKinstrie, S. Radic, and A.R. Chraplyvy, "Parametric amplifiers driven by two pump waves," IEEE J. Sel. Top. Quantum. Electron. 8, 538-547 (2002).
[CrossRef]

2001

2000

1999

M.E. Marhic, F.S. Yang, M.C. Ho, and L.G. Kazovsky, "High-nonlinearity fiber optical parametric amplifier with periodic dispersion compensation," J. Ligthwave Technol. 17, 210-215 (1999).
[CrossRef]

1996

1995

M Yu, C.J. McKinstrie, GP Agrawal, "Modulation instabilities in dispersion flattened fibers," Phys. Rev. E,  52, 1072-1080 (1995).
[CrossRef]

1994

1993

M. Yu, C.J. McKinstrie, and G.P. Agrawal, "Instability due to cross-phase modulation in the normal dispersion regime," Phys. Rev. E 52, 1072-1080 (1993).
[CrossRef]

Agrawal, G.P.

F. Yaman, Q. Lin, S. Radic, and G.P. Agrawal, "Impact of dispersion fluctuations on dual-pump fiber-optic parametric amplifiers," IEEE Photon. Technol. Lett. 16, 1292-1294 (2004).
[CrossRef]

F. Yaman, Q. Lin, and G.P. Agrawal, "Effects of polarization-mode dispersion in dual-pump fiber-optic parametric amplifiers," IEEE Photon. Technol. Lett. 16, 431-433 (2004).
[CrossRef]

S. Radic, C.J. McKinstrie, R.M. Jopson, J.C. Centanni, Q. Lin, and G.P. Agrawal, "Record performance of parametric amplifier constructed with highly nonlinear fibre," Electron. Lett. 39, 838-839 (2003).
[CrossRef]

M. Yu, C.J. McKinstrie, and G.P. Agrawal, "Instability due to cross-phase modulation in the normal dispersion regime," Phys. Rev. E 52, 1072-1080 (1993).
[CrossRef]

Agrawal, GP

M Yu, C.J. McKinstrie, GP Agrawal, "Modulation instabilities in dispersion flattened fibers," Phys. Rev. E,  52, 1072-1080 (1995).
[CrossRef]

Alphones, A.

Y.B. Lu, P.L. Chu, A. Alphones, P. Shum, "A 105-nm ultrawide-band gain-flattened amplifier combining C-and L-band dual-core EDFAs in a parallel configuration," IEEE Photon. Technol. Lett. 16, 1640-1642 (2004).
[CrossRef]

Andrekson, P. A.

J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P. O. Hedekvist, "Fiber-based optical parametric amplifiers and their applications," IEEE J. Sel. Top. Quantum Electron. 8, 506-520 (2002).
[CrossRef]

M. Karlsson, J. Brentel, and P. A. Andrekson, "Long-term measurement of PMD and polarization drift in installed fibers," J. Lightwave Technol. 18, 941-951 (2000).
[CrossRef]

J. Hansryd and P. A. Andrekson, "Broad-band continuous-wave-pumped fiber optical parametric amplifier with 49-dB gain and wavelength-conversion efficiency,"  13, 194-196 (2001).

Blows, J.L.

Brentel, J.

Centanni, J.C.

S. Radic, C.J. McKinstrie, R.M. Jopson, J.C. Centanni, Q. Lin, and G.P. Agrawal, "Record performance of parametric amplifier constructed with highly nonlinear fibre," Electron. Lett. 39, 838-839 (2003).
[CrossRef]

Chavez Boggio, J.M.

J.M. Chavez Boggio, J.D. Marconi, and H.L. Fragnito, "Double-pumped fiber optical parametric amplifier with flat gain over 47-nm bandwidth using a conventional dispersion-shifted fiber," IEEE Photon. Technol. Lett. 17, 1842-1844 (2005).
[CrossRef]

J.M. Chavez Boggio, P. Dainese, and H.L. Fragnito, "Performance of a two-pump fiber optical parametric amplifier in a 10Gb/s×64 channel dense wavelength division multiplexing system," Opt. Commun. 218, 303-310 (2003).
[CrossRef]

J.M. Chavez Boggio, S. Tenenbaum and H.L. Fragnito, "Amplification of broadband noise pumped by two lasers in optical fibers," J. Opt. Soc. Am. B 18, 1428-1435 (2001).
[CrossRef]

Chen, G.F.

X.M. Liu, W. Zhao, K.Q. Lu, T.Y. Zhang, Y.S. Wang, M. Ouyang, S.L. Zhu, G.F. Chen, and X. Hou "Optimization and comparison of single- and dual-pump fiber-optical parametric amplifiers with dispersion fluctuations," Jpn. J. Appl. Phys. 45, 4074-4082 (2006).
[CrossRef]

Chiang, T.-K.

Chraplyvy, A.R.

C.J. McKinstrie, S. Radic, and A.R. Chraplyvy, "Parametric amplifiers driven by two pump waves," IEEE J. Sel. Top. Quantum. Electron. 8, 538-547 (2002).
[CrossRef]

Chu, P.L.

Y.B. Lu, P.L. Chu, A. Alphones, P. Shum, "A 105-nm ultrawide-band gain-flattened amplifier combining C-and L-band dual-core EDFAs in a parallel configuration," IEEE Photon. Technol. Lett. 16, 1640-1642 (2004).
[CrossRef]

Dainese, P.

J.M. Chavez Boggio, P. Dainese, and H.L. Fragnito, "Performance of a two-pump fiber optical parametric amplifier in a 10Gb/s×64 channel dense wavelength division multiplexing system," Opt. Commun. 218, 303-310 (2003).
[CrossRef]

de Sterke, M.

Farahmand, M.

Floridia, C.

C. Floridia, M.L. Sundheimer, L.S. Menezes, and A.S.L. Gomes, "Optimization of spectrally flat and broadband single-pump fiber optic parametric amplifiers," Opt. Commun. 223, 381-388, 2003.
[CrossRef]

Fragnito, H.L.

J.M. Chavez Boggio, J.D. Marconi, and H.L. Fragnito, "Double-pumped fiber optical parametric amplifier with flat gain over 47-nm bandwidth using a conventional dispersion-shifted fiber," IEEE Photon. Technol. Lett. 17, 1842-1844 (2005).
[CrossRef]

J.M. Chavez Boggio, P. Dainese, and H.L. Fragnito, "Performance of a two-pump fiber optical parametric amplifier in a 10Gb/s×64 channel dense wavelength division multiplexing system," Opt. Commun. 218, 303-310 (2003).
[CrossRef]

J.M. Chavez Boggio, S. Tenenbaum and H.L. Fragnito, "Amplification of broadband noise pumped by two lasers in optical fibers," J. Opt. Soc. Am. B 18, 1428-1435 (2001).
[CrossRef]

Gao, M.Y.

M.Y. Gao, C. Jiang, W. Hu, and J. Wang, "Two-pump fiber optical parametric amplifiers with three sections fiber allocation," Opt. Laser Technol. 38, 186-191 (2006).
[CrossRef]

Gomes, A.S.L.

C. Floridia, M.L. Sundheimer, L.S. Menezes, and A.S.L. Gomes, "Optimization of spectrally flat and broadband single-pump fiber optic parametric amplifiers," Opt. Commun. 223, 381-388, 2003.
[CrossRef]

Hansryd, J.

J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P. O. Hedekvist, "Fiber-based optical parametric amplifiers and their applications," IEEE J. Sel. Top. Quantum Electron. 8, 506-520 (2002).
[CrossRef]

J. Hansryd and P. A. Andrekson, "Broad-band continuous-wave-pumped fiber optical parametric amplifier with 49-dB gain and wavelength-conversion efficiency,"  13, 194-196 (2001).

Hedekvist, P. O.

J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P. O. Hedekvist, "Fiber-based optical parametric amplifiers and their applications," IEEE J. Sel. Top. Quantum Electron. 8, 506-520 (2002).
[CrossRef]

Ho, M.C.

M.E. Marhic, F.S. Yang, M.C. Ho, and L.G. Kazovsky, "High-nonlinearity fiber optical parametric amplifier with periodic dispersion compensation," J. Ligthwave Technol. 17, 210-215 (1999).
[CrossRef]

Hou, X.

X.M. Liu, W. Zhao, K.Q. Lu, T.Y. Zhang, Y.S. Wang, M. Ouyang, S.L. Zhu, G.F. Chen, and X. Hou "Optimization and comparison of single- and dual-pump fiber-optical parametric amplifiers with dispersion fluctuations," Jpn. J. Appl. Phys. 45, 4074-4082 (2006).
[CrossRef]

Hu, P. F.

Hu, W.

M.Y. Gao, C. Jiang, W. Hu, and J. Wang, "Two-pump fiber optical parametric amplifiers with three sections fiber allocation," Opt. Laser Technol. 38, 186-191 (2006).
[CrossRef]

Inoue, K.

Jiang, C.

M.Y. Gao, C. Jiang, W. Hu, and J. Wang, "Two-pump fiber optical parametric amplifiers with three sections fiber allocation," Opt. Laser Technol. 38, 186-191 (2006).
[CrossRef]

Jopson, R.M.

C.J. McKinstrie, H. Kogelnik, R.M. Jopson, S. Radic, and A.V. Kanaev, "Four-wave mixing in fibers with random birefringence," Opt. Express 12, 2033 (2003).
[CrossRef]

S. Radic, C.J. McKinstrie, R.M. Jopson, J.C. Centanni, Q. Lin, and G.P. Agrawal, "Record performance of parametric amplifier constructed with highly nonlinear fibre," Electron. Lett. 39, 838-839 (2003).
[CrossRef]

Kagi, N.

Kanaev, A.V.

Karlsson, M.

Kazovsky, L.G.

Kogelnik, H.

Lantz, E.

L. Provino, A. Mussot, E. Lantz, T. Sylvestre, and H. Maillote, "Broad-band and flat parametric amplifiers with a multi-section dispersion-tailored nonlinear fiber arrangement," J. Opt. Soc. Am. B. 20, 1532-1539 (2003).
[CrossRef]

Li, J.

J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P. O. Hedekvist, "Fiber-based optical parametric amplifiers and their applications," IEEE J. Sel. Top. Quantum Electron. 8, 506-520 (2002).
[CrossRef]

Lin, Q.

F. Yaman, Q. Lin, and G.P. Agrawal, "Effects of polarization-mode dispersion in dual-pump fiber-optic parametric amplifiers," IEEE Photon. Technol. Lett. 16, 431-433 (2004).
[CrossRef]

F. Yaman, Q. Lin, S. Radic, and G.P. Agrawal, "Impact of dispersion fluctuations on dual-pump fiber-optic parametric amplifiers," IEEE Photon. Technol. Lett. 16, 1292-1294 (2004).
[CrossRef]

S. Radic, C.J. McKinstrie, R.M. Jopson, J.C. Centanni, Q. Lin, and G.P. Agrawal, "Record performance of parametric amplifier constructed with highly nonlinear fibre," Electron. Lett. 39, 838-839 (2003).
[CrossRef]

Liu, X.M.

X.M. Liu, W. Zhao, K.Q. Lu, T.Y. Zhang, Y.S. Wang, M. Ouyang, S.L. Zhu, G.F. Chen, and X. Hou "Optimization and comparison of single- and dual-pump fiber-optical parametric amplifiers with dispersion fluctuations," Jpn. J. Appl. Phys. 45, 4074-4082 (2006).
[CrossRef]

Lu, K.Q.

X.M. Liu, W. Zhao, K.Q. Lu, T.Y. Zhang, Y.S. Wang, M. Ouyang, S.L. Zhu, G.F. Chen, and X. Hou "Optimization and comparison of single- and dual-pump fiber-optical parametric amplifiers with dispersion fluctuations," Jpn. J. Appl. Phys. 45, 4074-4082 (2006).
[CrossRef]

Lu, Y.B.

Y.B. Lu, P.L. Chu, A. Alphones, P. Shum, "A 105-nm ultrawide-band gain-flattened amplifier combining C-and L-band dual-core EDFAs in a parallel configuration," IEEE Photon. Technol. Lett. 16, 1640-1642 (2004).
[CrossRef]

Maillote, H.

L. Provino, A. Mussot, E. Lantz, T. Sylvestre, and H. Maillote, "Broad-band and flat parametric amplifiers with a multi-section dispersion-tailored nonlinear fiber arrangement," J. Opt. Soc. Am. B. 20, 1532-1539 (2003).
[CrossRef]

Marconi, J.D.

J.M. Chavez Boggio, J.D. Marconi, and H.L. Fragnito, "Double-pumped fiber optical parametric amplifier with flat gain over 47-nm bandwidth using a conventional dispersion-shifted fiber," IEEE Photon. Technol. Lett. 17, 1842-1844 (2005).
[CrossRef]

Marhic, M.E.

McKinstrie, C.J.

S. Radic and C.J. McKinstrie, "Optical amplification and signal processing in highly nonlinear optical fiber," IEICE Trans. Electron. E88-C, 859-869 (2005).
[CrossRef]

C.J. McKinstrie, H. Kogelnik, R.M. Jopson, S. Radic, and A.V. Kanaev, "Four-wave mixing in fibers with random birefringence," Opt. Express 12, 2033 (2003).
[CrossRef]

S. Radic, C.J. McKinstrie, R.M. Jopson, J.C. Centanni, Q. Lin, and G.P. Agrawal, "Record performance of parametric amplifier constructed with highly nonlinear fibre," Electron. Lett. 39, 838-839 (2003).
[CrossRef]

C.J. McKinstrie, S. Radic, and A.R. Chraplyvy, "Parametric amplifiers driven by two pump waves," IEEE J. Sel. Top. Quantum. Electron. 8, 538-547 (2002).
[CrossRef]

M Yu, C.J. McKinstrie, GP Agrawal, "Modulation instabilities in dispersion flattened fibers," Phys. Rev. E,  52, 1072-1080 (1995).
[CrossRef]

M. Yu, C.J. McKinstrie, and G.P. Agrawal, "Instability due to cross-phase modulation in the normal dispersion regime," Phys. Rev. E 52, 1072-1080 (1993).
[CrossRef]

Menezes, L.S.

C. Floridia, M.L. Sundheimer, L.S. Menezes, and A.S.L. Gomes, "Optimization of spectrally flat and broadband single-pump fiber optic parametric amplifiers," Opt. Commun. 223, 381-388, 2003.
[CrossRef]

Mussot, A.

L. Provino, A. Mussot, E. Lantz, T. Sylvestre, and H. Maillote, "Broad-band and flat parametric amplifiers with a multi-section dispersion-tailored nonlinear fiber arrangement," J. Opt. Soc. Am. B. 20, 1532-1539 (2003).
[CrossRef]

Ouyang, M.

X.M. Liu, W. Zhao, K.Q. Lu, T.Y. Zhang, Y.S. Wang, M. Ouyang, S.L. Zhu, G.F. Chen, and X. Hou "Optimization and comparison of single- and dual-pump fiber-optical parametric amplifiers with dispersion fluctuations," Jpn. J. Appl. Phys. 45, 4074-4082 (2006).
[CrossRef]

Park, Y.

Provino, L.

L. Provino, A. Mussot, E. Lantz, T. Sylvestre, and H. Maillote, "Broad-band and flat parametric amplifiers with a multi-section dispersion-tailored nonlinear fiber arrangement," J. Opt. Soc. Am. B. 20, 1532-1539 (2003).
[CrossRef]

Radic, S.

S. Radic and C.J. McKinstrie, "Optical amplification and signal processing in highly nonlinear optical fiber," IEICE Trans. Electron. E88-C, 859-869 (2005).
[CrossRef]

F. Yaman, Q. Lin, S. Radic, and G.P. Agrawal, "Impact of dispersion fluctuations on dual-pump fiber-optic parametric amplifiers," IEEE Photon. Technol. Lett. 16, 1292-1294 (2004).
[CrossRef]

C.J. McKinstrie, H. Kogelnik, R.M. Jopson, S. Radic, and A.V. Kanaev, "Four-wave mixing in fibers with random birefringence," Opt. Express 12, 2033 (2003).
[CrossRef]

S. Radic, C.J. McKinstrie, R.M. Jopson, J.C. Centanni, Q. Lin, and G.P. Agrawal, "Record performance of parametric amplifier constructed with highly nonlinear fibre," Electron. Lett. 39, 838-839 (2003).
[CrossRef]

C.J. McKinstrie, S. Radic, and A.R. Chraplyvy, "Parametric amplifiers driven by two pump waves," IEEE J. Sel. Top. Quantum. Electron. 8, 538-547 (2002).
[CrossRef]

Shum, P.

Y.B. Lu, P.L. Chu, A. Alphones, P. Shum, "A 105-nm ultrawide-band gain-flattened amplifier combining C-and L-band dual-core EDFAs in a parallel configuration," IEEE Photon. Technol. Lett. 16, 1640-1642 (2004).
[CrossRef]

Sundheimer, M.L.

C. Floridia, M.L. Sundheimer, L.S. Menezes, and A.S.L. Gomes, "Optimization of spectrally flat and broadband single-pump fiber optic parametric amplifiers," Opt. Commun. 223, 381-388, 2003.
[CrossRef]

Sylvestre, T.

L. Provino, A. Mussot, E. Lantz, T. Sylvestre, and H. Maillote, "Broad-band and flat parametric amplifiers with a multi-section dispersion-tailored nonlinear fiber arrangement," J. Opt. Soc. Am. B. 20, 1532-1539 (2003).
[CrossRef]

Tenenbaum, S.

Wang, J.

M.Y. Gao, C. Jiang, W. Hu, and J. Wang, "Two-pump fiber optical parametric amplifiers with three sections fiber allocation," Opt. Laser Technol. 38, 186-191 (2006).
[CrossRef]

Wang, Y.S.

X.M. Liu, W. Zhao, K.Q. Lu, T.Y. Zhang, Y.S. Wang, M. Ouyang, S.L. Zhu, G.F. Chen, and X. Hou "Optimization and comparison of single- and dual-pump fiber-optical parametric amplifiers with dispersion fluctuations," Jpn. J. Appl. Phys. 45, 4074-4082 (2006).
[CrossRef]

Westlund, M.

J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P. O. Hedekvist, "Fiber-based optical parametric amplifiers and their applications," IEEE J. Sel. Top. Quantum Electron. 8, 506-520 (2002).
[CrossRef]

Yaman, F.

F. Yaman, Q. Lin, and G.P. Agrawal, "Effects of polarization-mode dispersion in dual-pump fiber-optic parametric amplifiers," IEEE Photon. Technol. Lett. 16, 431-433 (2004).
[CrossRef]

F. Yaman, Q. Lin, S. Radic, and G.P. Agrawal, "Impact of dispersion fluctuations on dual-pump fiber-optic parametric amplifiers," IEEE Photon. Technol. Lett. 16, 1292-1294 (2004).
[CrossRef]

Yang, F.S.

M.E. Marhic, F.S. Yang, M.C. Ho, and L.G. Kazovsky, "High-nonlinearity fiber optical parametric amplifier with periodic dispersion compensation," J. Ligthwave Technol. 17, 210-215 (1999).
[CrossRef]

M.E. Marhic, Y. Park, F.S. Yang, and L.G. Kazovsky, "Broadband fiber optical parametric amplifiers and wavelength converters with low-ripple Chebyshev gain spectra," Opt. Lett. 21, 1354-1356 (1996).
[CrossRef] [PubMed]

Yu, M

M Yu, C.J. McKinstrie, GP Agrawal, "Modulation instabilities in dispersion flattened fibers," Phys. Rev. E,  52, 1072-1080 (1995).
[CrossRef]

Yu, M.

M. Yu, C.J. McKinstrie, and G.P. Agrawal, "Instability due to cross-phase modulation in the normal dispersion regime," Phys. Rev. E 52, 1072-1080 (1993).
[CrossRef]

Zhang, T.Y.

X.M. Liu, W. Zhao, K.Q. Lu, T.Y. Zhang, Y.S. Wang, M. Ouyang, S.L. Zhu, G.F. Chen, and X. Hou "Optimization and comparison of single- and dual-pump fiber-optical parametric amplifiers with dispersion fluctuations," Jpn. J. Appl. Phys. 45, 4074-4082 (2006).
[CrossRef]

Zhao, W.

X.M. Liu, W. Zhao, K.Q. Lu, T.Y. Zhang, Y.S. Wang, M. Ouyang, S.L. Zhu, G.F. Chen, and X. Hou "Optimization and comparison of single- and dual-pump fiber-optical parametric amplifiers with dispersion fluctuations," Jpn. J. Appl. Phys. 45, 4074-4082 (2006).
[CrossRef]

Zhu, S.L.

X.M. Liu, W. Zhao, K.Q. Lu, T.Y. Zhang, Y.S. Wang, M. Ouyang, S.L. Zhu, G.F. Chen, and X. Hou "Optimization and comparison of single- and dual-pump fiber-optical parametric amplifiers with dispersion fluctuations," Jpn. J. Appl. Phys. 45, 4074-4082 (2006).
[CrossRef]

Electron. Lett.

S. Radic, C.J. McKinstrie, R.M. Jopson, J.C. Centanni, Q. Lin, and G.P. Agrawal, "Record performance of parametric amplifier constructed with highly nonlinear fibre," Electron. Lett. 39, 838-839 (2003).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P. O. Hedekvist, "Fiber-based optical parametric amplifiers and their applications," IEEE J. Sel. Top. Quantum Electron. 8, 506-520 (2002).
[CrossRef]

IEEE J. Sel. Top. Quantum. Electron.

C.J. McKinstrie, S. Radic, and A.R. Chraplyvy, "Parametric amplifiers driven by two pump waves," IEEE J. Sel. Top. Quantum. Electron. 8, 538-547 (2002).
[CrossRef]

IEEE Photon. Technol. Lett.

J.M. Chavez Boggio, J.D. Marconi, and H.L. Fragnito, "Double-pumped fiber optical parametric amplifier with flat gain over 47-nm bandwidth using a conventional dispersion-shifted fiber," IEEE Photon. Technol. Lett. 17, 1842-1844 (2005).
[CrossRef]

Y.B. Lu, P.L. Chu, A. Alphones, P. Shum, "A 105-nm ultrawide-band gain-flattened amplifier combining C-and L-band dual-core EDFAs in a parallel configuration," IEEE Photon. Technol. Lett. 16, 1640-1642 (2004).
[CrossRef]

F. Yaman, Q. Lin, S. Radic, and G.P. Agrawal, "Impact of dispersion fluctuations on dual-pump fiber-optic parametric amplifiers," IEEE Photon. Technol. Lett. 16, 1292-1294 (2004).
[CrossRef]

F. Yaman, Q. Lin, and G.P. Agrawal, "Effects of polarization-mode dispersion in dual-pump fiber-optic parametric amplifiers," IEEE Photon. Technol. Lett. 16, 431-433 (2004).
[CrossRef]

IEICE Trans. Electron.

S. Radic and C.J. McKinstrie, "Optical amplification and signal processing in highly nonlinear optical fiber," IEICE Trans. Electron. E88-C, 859-869 (2005).
[CrossRef]

J. Lightwave Technol.

J. Ligthwave Technol.

M.E. Marhic, F.S. Yang, M.C. Ho, and L.G. Kazovsky, "High-nonlinearity fiber optical parametric amplifier with periodic dispersion compensation," J. Ligthwave Technol. 17, 210-215 (1999).
[CrossRef]

J. Opt. Soc. Am. B

J. Opt. Soc. Am. B.

L. Provino, A. Mussot, E. Lantz, T. Sylvestre, and H. Maillote, "Broad-band and flat parametric amplifiers with a multi-section dispersion-tailored nonlinear fiber arrangement," J. Opt. Soc. Am. B. 20, 1532-1539 (2003).
[CrossRef]

Jpn. J. Appl. Phys.

X.M. Liu, W. Zhao, K.Q. Lu, T.Y. Zhang, Y.S. Wang, M. Ouyang, S.L. Zhu, G.F. Chen, and X. Hou "Optimization and comparison of single- and dual-pump fiber-optical parametric amplifiers with dispersion fluctuations," Jpn. J. Appl. Phys. 45, 4074-4082 (2006).
[CrossRef]

Opt. Commun.

J.M. Chavez Boggio, P. Dainese, and H.L. Fragnito, "Performance of a two-pump fiber optical parametric amplifier in a 10Gb/s×64 channel dense wavelength division multiplexing system," Opt. Commun. 218, 303-310 (2003).
[CrossRef]

C. Floridia, M.L. Sundheimer, L.S. Menezes, and A.S.L. Gomes, "Optimization of spectrally flat and broadband single-pump fiber optic parametric amplifiers," Opt. Commun. 223, 381-388, 2003.
[CrossRef]

Opt. Express

Opt. Laser Technol.

M.Y. Gao, C. Jiang, W. Hu, and J. Wang, "Two-pump fiber optical parametric amplifiers with three sections fiber allocation," Opt. Laser Technol. 38, 186-191 (2006).
[CrossRef]

Opt. Lett.

Phys. Rev. E

M. Yu, C.J. McKinstrie, and G.P. Agrawal, "Instability due to cross-phase modulation in the normal dispersion regime," Phys. Rev. E 52, 1072-1080 (1993).
[CrossRef]

M Yu, C.J. McKinstrie, GP Agrawal, "Modulation instabilities in dispersion flattened fibers," Phys. Rev. E,  52, 1072-1080 (1995).
[CrossRef]

Other

E. Desurvire, "Optical communications in 2025," in Proc. European Conference on Optical Communications (ECOC), September 2005, Glasgow, Scotland.

J. Hansryd and P. A. Andrekson, "Broad-band continuous-wave-pumped fiber optical parametric amplifier with 49-dB gain and wavelength-conversion efficiency,"  13, 194-196 (2001).

S. Radic, C.J. McKinstrie, R.M. Jopson, and J.C. Centanni, "Continuous wave parametric amplifier with 41.5 nm of flat gain," in Proc. of Optical Fiber Communication Conference (OFC), 2004, Paper TuC4.

J.M. Chavez Boggio, J.D. Marconi, H.L. Fragnito, S.R. Bickham, and C. Mazzali, "Broadband and low ripple double-pumped fiber optical parametric amplifier and wavelength converters using HNLF," in Proc. Optical Amplifiers and their Applications (OAA), June 2006, Whistler, Canada.

M. Hirano, T. Nakanishi, T. Okuno, and M. Onishi, "Broadband wavelength conversion over 193-nm by HNL-DSF improving higher-order dispersion performance," in Proc. European Conference Optical Communication (ECOC), 2005, Glasgow, Scotland, PD paper Th 4.4.4.

T. Nakanishi, M. Hirano, T. Okuno, and M. Onishi, "Silica based highly nonlinear fiber with γ = 30 /W/km and its FWM-based conversion efficiency," in Proc. Optical Fiber Communication Conference (OFC), 2006, Anaheim, paper OtuH7.

P. Dainese, G.S. Wiederhecker, A.A. Rieznik, H.L. Fragnito, and H.E. Hernandez-Figueroa "Designing fiber dispersion for broadband parametric amplifiers," IEEE-SBMO, International Microwave and Optoelectronics Conference (IMOC), 2005, pp. 1-3.

M.E. Marhic, K.K.Y. Wong, and L.G. Kazovsky, "Parametric amplification in optical fibers with random birefringence," in Proc. Optical Fiber Communication Conference (OFC), February 2004, Anaheim, paper TuC2.

J.M. Chavez Boggio, S. Tenenbaum, J.D. Marconi, and H.L. Fragnito, "A novel method for measuring longitudinal variations of the zero dispersion wavelength in optical fibers," in Proc. European Conference on Optical Communication (ECOC), September 2006, Cannes, France, paper Th1.5.2.

Y. Emori, S. Matsushita, and S. Naminki, "1 THz-spaced multi-wavelength pumping for broad-band Raman amplifiers," in Proc. European Conference on Optical Communications (ECOC) vol. 2, 2000, paper 4.4.2, pp. 73-74.

A. Legrand, C. Simonneau, D. Bayart, A. Mussot, E. Lantz, T. Sylvestre, H. Maillotte, in Proc. Optical Amplifiers and their Applications (OAA), July 2003, Otaru, Japan.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (16)

Fig. 1.
Fig. 1.

Gain spectra calculated using Eq. (2). By tuning λc from shorter to longer wavelengths we have the spectra in (a) Black (λc = 1544.56 nm), red (λc = 1544.6 nm), green (λc = 1544.64 nm) and blue (λc = 1544.68 nm). (b) Black (λc = 1544.72 nm), red (λc = 1544.75 nm), green (λc = 1544.79 nm), blue (λc = 1544.83 nm), and magenta (λc = 1544.87 nm).

Fig. 2.
Fig. 2.

(a) Gain spectrum with Chebyshev shape for positive (blue line) and negative (black line) β4. (b) ΔG dB as a function of ξ for β4 > 0 and (c) ΔG dB as a function of ξ for β4 < 0. Solid red lines: ΔG as calculated with Eq. (10) for G max = 21.35 dB and G max = 48 dB. Dotted black lines: fittings with the expressions quoted in table I.

Fig. 3.
Fig. 3.

(a) Gain spectrum when the ripple is minimized in a region Δωs = 0.85Δωp. (b) In red lines: Calculated ΔG dB as a function of ξ for b = 0.85 for two values of x 0. Black dotted lines: Power law fits to ΔG. (For x 0 = 3.15 we have ΔG = 0.9 + 0.9∣ξ∣1.53, while for x 0 = 6.3 we have ΔG = 2.2 + 2.3∣ξ∣1.5.)

Fig. 4.
Fig. 4.

Gain spectra having 5 extrema. The gain ripple was minimized in the region Δωs = Δωp (solid line) and Δωs = 0.85Δωp (dashed line).

Fig. 5.
Fig. 5.

ΔG dB as a function of ξ when the ripple is minimized in the region (a) Δωs = Δωp. (b) Δωs = 0.85Δωp. The dotted lines in Figure (a) show the power law fits to ΔG. For x 0 = 3.15 we have ΔG = 3.2 ∣ξ∣1.15, while for x 0 = 6.3 we have ΔG = 8.7 ∣ξ∣1.2. The value of G max is 19 dB for the case b = 1, while for the case b = 0.85 depends on ξ and we have plotted in Fig. (b).

Fig. 6.
Fig. 6.

(a) Gain ripple as a function of σλ0 for β30 = 0.065 ps3/km (red squares) and β30 = 0.0325 ps3/km (black squares). The lines are guides for the eye. (b) Optimized output spectra obtained with 25 simulated fibers having σλ0 = 0.52 nm and β30 = 0.065 ps3/km. The bold black line indicates the spectrum for the case σλ0 = 0.

Fig. 7.
Fig. 7.

Gain ripple as a function of σλ0 for γ(P 1 + P 2) = 28 km-1, L = 0.2 km, pumps separation ∼100 nm, and Lcorr = 8.65 m (cyan triangles). For γ(P 1 + P 2) = 28 km-1, L = 0.2 km, pumps separation ∼200 nm, and Lcorr = 86.5 m (blue triangles). For γ(P 1 + P 2) = 28 km-1, L = 0.1 km, pumps separation ∼200 nm, and Lcorr = 86.5 m (green triangles). The lines are guides for the eye. In all cases β30 = 0.065 ps3/km and β4 is varied in order to keep ξ constant. For comparison the data with red squares in Fig. 6(a) is plotted.

Fig. 8.
Fig. 8.

(a) Experimental setup for measurements of gain in FOPAs. (b) 2P-FOPA output spectrum measured in fiber C with L = 150 m.

Fig. 9.
Fig. 9.

2P-FOPA gain spectrum for: (a) λ1 = 1540.7 nm and λ2 = 1595.65 nm; (b) λ1 = 1537.3 nm and λ2 = 1599.2 nm; (c) λ1 = 1533.9 nm and λ2 = 1602.8 nm. Blue circles: experimental points. Black and red lines: gain spectrum using Eq. 2 for λ0 = 1568.15 nm and λ0 = 1568.25 nm, respectively. The effective interaction lengths are (a) L int = 0.78 km. (b) L int = 0.73 km. (c) L int = 0.67 km.

Fig. 10.
Fig. 10.

(a) 2P-FOPA gain spectrum: blue squares (measurement), black line (λ0 = 1570.1 nm), red line (λ0: 1570.15 nm). (b) Output spectra for two locations of λs = 1539 nm (red dotted line) and λ’s = 1581 nm (blue line). The ellipse indicates unfiltered noise due to the 40 nm free spectral range of the Fabry-Perot filter.

Fig. 11.
Fig. 11.

2P-FOPA gain spectrum. (a) Blue squares (measurement), black line (λ0 = 1570.1 nm), red line (λ0: 1570.05 nm). (b) Black circles (measurement), black line (λ0 = 1570.15 nm), red line (λ0: 1570.1 nm).

Fig. 12.
Fig. 12.

2P-FOPA gain spectrum measured with fiber C. (a) L = 150 m. (b) L = 100m.

Fig. 14.
Fig. 14.

2P-FOPA gain spectra using fiber D for P 1 ≅ 190 mW and P 2 ≅ 170 mW (a) Δλpumps = 18.2 nm, (b) Δλpumps = 24.8 nm, and (c) Δλpumps = 39.4 nm. The lines are guides for the eye.

Fig. A1.
Fig. A1.

Solid lines: Numerical solution of the NLSE for the amplification of 80 signals by a 2P-FOPA. Red line: Gain spectrum obtained with Eq. (2) using identical parameters in the NLSE.

Fig. B1.
Fig. B1.

(a) Gain spectrum obtained with β2c from Eq. B1. Inset: zoom of gain spectrum. (b) Gain ripple as a function of ξ for two values of x 0. Continuous lines in red: analytical calculation. Dashed lines: power law fits to ΔG. We have ΔG = 0.54ξ3.85 for x 0 = 3.15 and ΔG = 0.26ξ3.55 for x 0 = 6.3.

Fig. B2.
Fig. B2.

(a) Spectrum with one extreme (β4 > 0). (b) ΔG as a function of ξ for two values of x 0. Continuous lines in red: analytical calculation. Dashed lines: power law fits to ΔG. We have ΔG = 3.1 - 2.8ξ0.9 for x 0 = 3.15 and ΔG = 1.25 - 1.1ξ0.9 for x 0 = 6.3.

Tables (3)

Tables Icon

Table I. Expression for fitting ΔG.

Tables Icon

Table II: Parameters for the three fibers in the experiments.

Tables Icon

Table III. Experimental and numerical ΔG for the three pump wavelength separations.

Equations (20)

Equations on this page are rendered with MathJax. Learn more.

Δβ = β 2 c [ Δ ω s 2 Δ ω p 2 ] + β 4 c [ Δ ω s 4 Δ ω p 4 ] 12 +
G = 1 + ( x 0 sinh x x ) 2 ,
x = x 0 1 ( κ 2 γ P 0 ) 2 ,
G Δ ω s = 1 2 x 0 2 L 2 f ( x ) Δβ Δ ω s κ = 0
f ( x ) = sinh ( x ) ( x cosh ( x ) sinh ( x ) ) x 4 .
Δ ω s = ± Δ ω p 6 β 2 c β 4 Δ ω p 2 ± ( 6 β 2 c β 4 Δ ω p 2 ) 2 12 γ ( P 1 + P 2 ) β 4 Δ ω p 4 .
2 G Δ ω s 2 = 1 2 x 0 2 L 2 { κ df dx x Δ ω s Δβ Δ ω s + f ( x ) [ ( Δβ Δ ω s ) 2 + κ 2 Δβ Δ ω s 2 ] }
β 2 c = β 4 Δω p 2 b 2 12
β 2 c = β 4 Δ ω p 2 12 ( 2 b 2 ) [ 1 ξ ( 2 b 2 ) ]
ξ = β 4 Δω p 4 24 γ ( P 1 + P 2 ) .
G dB 8.7 x 0 1 ( κ 2 γ P 0 ) 2 10 log ( 1 ( κ 2 γ P 0 ) 2 ) 6
β 2 c = β 4 Δω p 2 3 [ 1 1 2 + 1 4 ξ ]
Δ G dB 8.7 x 0 { 1 ( 2 ξ 0.5 sgn ( ξ ) + ξ ) 4 } + 10 log ( 1 ( 2 ξ 0.5 sgn ( ξ ) + ξ ) 4 )
κ min 2 γ P 0 = 0.5 ( b 2 b 2 2 ) ( 0.5 ξ ( 1 b 2 ) )
κ max 2 γ P 0 = ξ ( b 2 1 ) + 1 2 ,
κ min 2 γ P 0 = ξ b 2 ( 1 b 2 4 ) ξ + 1 2 .
Δ G dB 4.3 3 x 0 ( 1 1 + ξ 3 ξ 2 12 ) + 10 log ( 1 + ξ 3 ξ 2 12 )
δ λ 0 ( z k ) = exp ( Δ z L c ) δ λ 0 ( z k 1 ) + σ λ 0 1 exp ( 2 Δ z L c ) × r ( k ) ,
δ G 8.7 β 30 ( ω s ω 1 ) ( ω s ω 2 ) 4 γ P 0 δ ω 0
β 2 c = Δ ω p 2 β 4 ( 1 2 ξ ) ( 24 ξ ) .

Metrics