Abstract

We propose a technique for achieving equalized power in upstream traffic in the gigabit passive optical network (G-PON). A simple power equalizer based on a Fabry–Perot laser diode (FP–LD) is proposed and demonstrated experimentally. By the proposed scheme, the different upstream powers can be equalized. As a result, a 20 dB dynamic upstream power range from -5 to -25 dBm, having a 1.7 dB maximal power variation, is attained. Moreover, the performance of the proposed configuration is also discussed.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Noell, P.-A. Clerc, L. Dellmann, B. Guldimann, H.-P. Herziq, O. Manzardo, C. R. Marxer, K. J. Weible, R. Dandiker, and N. de Rooij, "Applications of SOI-based optical MEMS," IEEE J. Sel. Top. Quantum Electron. 8, 148-154 (2002).
    [CrossRef]
  2. A. Godil, "Diffractive MEMS technology offers a new platform for optical networks," Laser Focus World 38, 181-185 (2002).
  3. S.-S. Lee, J.-U. Bu, S.-Y. Lee, K.-C. Song, C.-G. Park, and T.-S. Kim, "Low-power consumption polymeric attenuator using a micromachined membrane-type waveguide," IEEE Photon. Technol. Lett. 12, 407-409 (2000).
    [CrossRef]
  4. S.-S. Lee, Y.-S. Jin, and Y.-S. Son, "Variable optical attenuator based on a cutoff modulator with tapered waveguides in polymers," J. Lightwave Technol. 17, 2556-2561 (1999).
    [CrossRef]
  5. Y. Park, C. Lim, and I. Jung, "ONU power equalization of Ethernet PON system," IEEE Photon. Technol. Lett. 16, 1984-1886 (2004).
    [CrossRef]
  6. D. E. Dodds and M. J. Sieben, "Fabry-Pérot laser diode modeling," IEEE Photon. Technol. Lett. 7, 254-256 (1995).
    [CrossRef]
  7. C. H. Yeh, C. C. Lee, Y. W. Hsu, and S. Chi, "Fast wavelength-tunable laser technique based on a Fabry-Perot laser pair with optical inter-injection," IEEE Photon. Technol. Lett. 16, 891-893 (2003).
    [CrossRef]

2004 (1)

Y. Park, C. Lim, and I. Jung, "ONU power equalization of Ethernet PON system," IEEE Photon. Technol. Lett. 16, 1984-1886 (2004).
[CrossRef]

2003 (1)

C. H. Yeh, C. C. Lee, Y. W. Hsu, and S. Chi, "Fast wavelength-tunable laser technique based on a Fabry-Perot laser pair with optical inter-injection," IEEE Photon. Technol. Lett. 16, 891-893 (2003).
[CrossRef]

2002 (2)

W. Noell, P.-A. Clerc, L. Dellmann, B. Guldimann, H.-P. Herziq, O. Manzardo, C. R. Marxer, K. J. Weible, R. Dandiker, and N. de Rooij, "Applications of SOI-based optical MEMS," IEEE J. Sel. Top. Quantum Electron. 8, 148-154 (2002).
[CrossRef]

A. Godil, "Diffractive MEMS technology offers a new platform for optical networks," Laser Focus World 38, 181-185 (2002).

2000 (1)

S.-S. Lee, J.-U. Bu, S.-Y. Lee, K.-C. Song, C.-G. Park, and T.-S. Kim, "Low-power consumption polymeric attenuator using a micromachined membrane-type waveguide," IEEE Photon. Technol. Lett. 12, 407-409 (2000).
[CrossRef]

1999 (1)

1995 (1)

D. E. Dodds and M. J. Sieben, "Fabry-Pérot laser diode modeling," IEEE Photon. Technol. Lett. 7, 254-256 (1995).
[CrossRef]

Bu, J.-U.

S.-S. Lee, J.-U. Bu, S.-Y. Lee, K.-C. Song, C.-G. Park, and T.-S. Kim, "Low-power consumption polymeric attenuator using a micromachined membrane-type waveguide," IEEE Photon. Technol. Lett. 12, 407-409 (2000).
[CrossRef]

Chi, S.

C. H. Yeh, C. C. Lee, Y. W. Hsu, and S. Chi, "Fast wavelength-tunable laser technique based on a Fabry-Perot laser pair with optical inter-injection," IEEE Photon. Technol. Lett. 16, 891-893 (2003).
[CrossRef]

Clerc, P.-A.

W. Noell, P.-A. Clerc, L. Dellmann, B. Guldimann, H.-P. Herziq, O. Manzardo, C. R. Marxer, K. J. Weible, R. Dandiker, and N. de Rooij, "Applications of SOI-based optical MEMS," IEEE J. Sel. Top. Quantum Electron. 8, 148-154 (2002).
[CrossRef]

Dandiker, R.

W. Noell, P.-A. Clerc, L. Dellmann, B. Guldimann, H.-P. Herziq, O. Manzardo, C. R. Marxer, K. J. Weible, R. Dandiker, and N. de Rooij, "Applications of SOI-based optical MEMS," IEEE J. Sel. Top. Quantum Electron. 8, 148-154 (2002).
[CrossRef]

de Rooij, N.

W. Noell, P.-A. Clerc, L. Dellmann, B. Guldimann, H.-P. Herziq, O. Manzardo, C. R. Marxer, K. J. Weible, R. Dandiker, and N. de Rooij, "Applications of SOI-based optical MEMS," IEEE J. Sel. Top. Quantum Electron. 8, 148-154 (2002).
[CrossRef]

Dellmann, L.

W. Noell, P.-A. Clerc, L. Dellmann, B. Guldimann, H.-P. Herziq, O. Manzardo, C. R. Marxer, K. J. Weible, R. Dandiker, and N. de Rooij, "Applications of SOI-based optical MEMS," IEEE J. Sel. Top. Quantum Electron. 8, 148-154 (2002).
[CrossRef]

Dodds, D. E.

D. E. Dodds and M. J. Sieben, "Fabry-Pérot laser diode modeling," IEEE Photon. Technol. Lett. 7, 254-256 (1995).
[CrossRef]

Godil, A.

A. Godil, "Diffractive MEMS technology offers a new platform for optical networks," Laser Focus World 38, 181-185 (2002).

Guldimann, B.

W. Noell, P.-A. Clerc, L. Dellmann, B. Guldimann, H.-P. Herziq, O. Manzardo, C. R. Marxer, K. J. Weible, R. Dandiker, and N. de Rooij, "Applications of SOI-based optical MEMS," IEEE J. Sel. Top. Quantum Electron. 8, 148-154 (2002).
[CrossRef]

Herziq, H.-P.

W. Noell, P.-A. Clerc, L. Dellmann, B. Guldimann, H.-P. Herziq, O. Manzardo, C. R. Marxer, K. J. Weible, R. Dandiker, and N. de Rooij, "Applications of SOI-based optical MEMS," IEEE J. Sel. Top. Quantum Electron. 8, 148-154 (2002).
[CrossRef]

Hsu, Y. W.

C. H. Yeh, C. C. Lee, Y. W. Hsu, and S. Chi, "Fast wavelength-tunable laser technique based on a Fabry-Perot laser pair with optical inter-injection," IEEE Photon. Technol. Lett. 16, 891-893 (2003).
[CrossRef]

Jin, Y.-S.

Jung, I.

Y. Park, C. Lim, and I. Jung, "ONU power equalization of Ethernet PON system," IEEE Photon. Technol. Lett. 16, 1984-1886 (2004).
[CrossRef]

Kim, T.-S.

S.-S. Lee, J.-U. Bu, S.-Y. Lee, K.-C. Song, C.-G. Park, and T.-S. Kim, "Low-power consumption polymeric attenuator using a micromachined membrane-type waveguide," IEEE Photon. Technol. Lett. 12, 407-409 (2000).
[CrossRef]

Lee, C. C.

C. H. Yeh, C. C. Lee, Y. W. Hsu, and S. Chi, "Fast wavelength-tunable laser technique based on a Fabry-Perot laser pair with optical inter-injection," IEEE Photon. Technol. Lett. 16, 891-893 (2003).
[CrossRef]

Lee, S.-S.

S.-S. Lee, J.-U. Bu, S.-Y. Lee, K.-C. Song, C.-G. Park, and T.-S. Kim, "Low-power consumption polymeric attenuator using a micromachined membrane-type waveguide," IEEE Photon. Technol. Lett. 12, 407-409 (2000).
[CrossRef]

S.-S. Lee, Y.-S. Jin, and Y.-S. Son, "Variable optical attenuator based on a cutoff modulator with tapered waveguides in polymers," J. Lightwave Technol. 17, 2556-2561 (1999).
[CrossRef]

Lee, S.-Y.

S.-S. Lee, J.-U. Bu, S.-Y. Lee, K.-C. Song, C.-G. Park, and T.-S. Kim, "Low-power consumption polymeric attenuator using a micromachined membrane-type waveguide," IEEE Photon. Technol. Lett. 12, 407-409 (2000).
[CrossRef]

Lim, C.

Y. Park, C. Lim, and I. Jung, "ONU power equalization of Ethernet PON system," IEEE Photon. Technol. Lett. 16, 1984-1886 (2004).
[CrossRef]

Manzardo, O.

W. Noell, P.-A. Clerc, L. Dellmann, B. Guldimann, H.-P. Herziq, O. Manzardo, C. R. Marxer, K. J. Weible, R. Dandiker, and N. de Rooij, "Applications of SOI-based optical MEMS," IEEE J. Sel. Top. Quantum Electron. 8, 148-154 (2002).
[CrossRef]

Marxer, C. R.

W. Noell, P.-A. Clerc, L. Dellmann, B. Guldimann, H.-P. Herziq, O. Manzardo, C. R. Marxer, K. J. Weible, R. Dandiker, and N. de Rooij, "Applications of SOI-based optical MEMS," IEEE J. Sel. Top. Quantum Electron. 8, 148-154 (2002).
[CrossRef]

Noell, W.

W. Noell, P.-A. Clerc, L. Dellmann, B. Guldimann, H.-P. Herziq, O. Manzardo, C. R. Marxer, K. J. Weible, R. Dandiker, and N. de Rooij, "Applications of SOI-based optical MEMS," IEEE J. Sel. Top. Quantum Electron. 8, 148-154 (2002).
[CrossRef]

Park, C.-G.

S.-S. Lee, J.-U. Bu, S.-Y. Lee, K.-C. Song, C.-G. Park, and T.-S. Kim, "Low-power consumption polymeric attenuator using a micromachined membrane-type waveguide," IEEE Photon. Technol. Lett. 12, 407-409 (2000).
[CrossRef]

Park, Y.

Y. Park, C. Lim, and I. Jung, "ONU power equalization of Ethernet PON system," IEEE Photon. Technol. Lett. 16, 1984-1886 (2004).
[CrossRef]

Sieben, M. J.

D. E. Dodds and M. J. Sieben, "Fabry-Pérot laser diode modeling," IEEE Photon. Technol. Lett. 7, 254-256 (1995).
[CrossRef]

Son, Y.-S.

Song, K.-C.

S.-S. Lee, J.-U. Bu, S.-Y. Lee, K.-C. Song, C.-G. Park, and T.-S. Kim, "Low-power consumption polymeric attenuator using a micromachined membrane-type waveguide," IEEE Photon. Technol. Lett. 12, 407-409 (2000).
[CrossRef]

Weible, K. J.

W. Noell, P.-A. Clerc, L. Dellmann, B. Guldimann, H.-P. Herziq, O. Manzardo, C. R. Marxer, K. J. Weible, R. Dandiker, and N. de Rooij, "Applications of SOI-based optical MEMS," IEEE J. Sel. Top. Quantum Electron. 8, 148-154 (2002).
[CrossRef]

Yeh, C. H.

C. H. Yeh, C. C. Lee, Y. W. Hsu, and S. Chi, "Fast wavelength-tunable laser technique based on a Fabry-Perot laser pair with optical inter-injection," IEEE Photon. Technol. Lett. 16, 891-893 (2003).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

W. Noell, P.-A. Clerc, L. Dellmann, B. Guldimann, H.-P. Herziq, O. Manzardo, C. R. Marxer, K. J. Weible, R. Dandiker, and N. de Rooij, "Applications of SOI-based optical MEMS," IEEE J. Sel. Top. Quantum Electron. 8, 148-154 (2002).
[CrossRef]

IEEE Photon. Technol. Lett. (4)

S.-S. Lee, J.-U. Bu, S.-Y. Lee, K.-C. Song, C.-G. Park, and T.-S. Kim, "Low-power consumption polymeric attenuator using a micromachined membrane-type waveguide," IEEE Photon. Technol. Lett. 12, 407-409 (2000).
[CrossRef]

Y. Park, C. Lim, and I. Jung, "ONU power equalization of Ethernet PON system," IEEE Photon. Technol. Lett. 16, 1984-1886 (2004).
[CrossRef]

D. E. Dodds and M. J. Sieben, "Fabry-Pérot laser diode modeling," IEEE Photon. Technol. Lett. 7, 254-256 (1995).
[CrossRef]

C. H. Yeh, C. C. Lee, Y. W. Hsu, and S. Chi, "Fast wavelength-tunable laser technique based on a Fabry-Perot laser pair with optical inter-injection," IEEE Photon. Technol. Lett. 16, 891-893 (2003).
[CrossRef]

J. Lightwave Technol. (1)

Laser Focus World (1)

A. Godil, "Diffractive MEMS technology offers a new platform for optical networks," Laser Focus World 38, 181-185 (2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Proposed power equalizer in G-PONs to equalize the entire uplink power of each ONU. The equalizer is integrated in the OLT.

Fig. 2.
Fig. 2.

Output wavelength spectrum of 1.5 μm FP-LD at 9 mA bias current.

Fig. 3.
Fig. 3.

Output spectra of the LD-1 when the different average output powers from LD-2 are (a) -8.5, (b) -11.5, (c) -13.5, and (d) -15.5 dBm, respectively.

Fig. 4.
Fig. 4.

Received average output power versus different upstream injection powers from -1.5 to -25 dBm when the upstream signal passes through the equalizer.

Fig. 5.
Fig. 5.

Observed eye diagrams at the upstream powers of (a) -8.5, (b) -11.5, (c) -13.5, and (d) -15.5 dBm, respectively, modulated at 2.5 Gbit/s before passing through the proposed power equalizer.

Fig. 6.
Fig. 6.

Observed eye diagrams at the upstream powers of (a) -8.5, (b) -11.5, (c) -13.5, and (d) -15.5 dBm, respectively, modulated at 2.5 Gbit/s after passing through the proposed power equalizer. The four powers become -14.1, -14.5, -14.7, and -14.9 dBm, respectively.

Metrics