Abstract

We report the emergent optical near field profiles from standard single mode optical fibers on the cleaved end of which were deposited particle layers of SnO2. The layers, composed of micron and sub-micron sized particles, were deposited by means of Electrostatic Spray Pyrolysis (ESP) technique. Powerful analytical tools such as Atomic Force Microscopy (AFM) and Scanning Near-field Optical Microscopy (SNOM) were used to obtain simultaneously the SnO2 layers topography and the related optical near field intensity distribution, when the fiber-substrate is illuminated by a light radiation in NIR range. We show that isolated microstructures, positioned in correspondence of the fiber core, reveal highly unusual capability of locally enhancing the collected optical near field. The observed phenomenon leads to new concepts of fiber optic chemical sensors and in fiber microsystems as well.

© 2007 Optical Society of America

Full Article  |  PDF Article
Related Articles
Near-field optical microscope based on local perturbation of a diffraction spot

R. Bachelot, P. Gleyzes, and A. C. Boccara
Opt. Lett. 20(18) 1924-1926 (1995)

Reflection-mode scanning near-field optical microscopy using an apertureless metallic tip

R. Bachelot, P. Gleyzes, and A. C. Boccara
Appl. Opt. 36(10) 2160-2170 (1997)

Characterization of antiresonant reflecting optical waveguide devices by scanning near-field optical microscopy

Xavier Borrisé, David Jiménez, Francesc Pérez-Murano, Andreu Llobera, Carlos Domı́nguez, and Núria Barniol
J. Opt. Soc. Am. A 17(12) 2243-2248 (2000)

References

  • View by:
  • |
  • |
  • |

  1. K. Ishiguro, T. Sasaki, T. Arai, and I. Imai, “Optical and electrical properties of tin oxide films,” J. Phys. Soc. Jpn. 13, 296 (1958).
    [Crossref]
  2. T. Seiyama, K. Fueki, J. Shiokawa, and S. Suzuki, “Chemical sensors,” in Proceedings of the International Meeting on Chemical Sensors, K. Tokyo, Jpn ed.), (Elsevier, Amsterdam, 1983).
  3. M. Batzill and U. Diebold, “The surface and materials science of tin oxide,” Prog. Surf. Sci. 79, 47–154 (2005).
    [Crossref]
  4. M. Pisco, M. Consales, R. Viter, V. Smyntyna, M. Giordano, S. Campopiano, A. Cutolo, and A. Cusano, “Optoelectronic sensor for ammonia detection in water based on SnO2 films as sensitive layer,” Proceedings of the First International Conference on Sensing Technology, pp. 359–364 (2005).
  5. A. Cusano, M. Consales, M. Pisco, P. Pilla, A. Cutolo, A. Buosciolo, R. Viter, V. Smyntyna, and M. Giordano “Opto-chemical sensor for water monitoring based on SnO2 particle layer deposited onto optical fibers by the electrospray pyrolysis method,” Appl. Phys. Lett. (to be published).
  6. M. Pisco, M. Consales, S. Campopiano, R. Viter, V. Smyntyna, M. Giordano, and A. Cusano “A novel opto-chemical sensor based on SnO2 sensitive thin film for ppm ammonia detection in liquid environment,” J. of Lightwave Technol. (to be published).
  7. T. W. Ebbsen, H. J. Lezec, H. F. Ghaemi, T. Thio , and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature (London) 391, 667–669 (1998).
    [Crossref]
  8. H. J. Lezec and T. Thio, “Diffracted evanescent wave model for enhanced and suppressed optical transmission through subwavelength hole arrays,” Opt. Express 12, 3629–3651 (2004).
    [Crossref] [PubMed]
  9. R. Quidant, G. Badenes, S. Cheylan, R. Alcubilla, J.-C. Weeber, and C. Girard, “Sub-wavelength patterning of the optical near-field,” Opt. Express 12, 282–287 (2004).
    [Crossref] [PubMed]
  10. E. H. A. Diagne and M. Lumbreras, “Elaboration and characterization of tin oxide-lanthanum oxide mixed layers prepared by the electrostatic spray pyrolysis technique,” Sens. Act. B 78, 98–105 (2001).
    [Crossref]
  11. Y. Higashiyama, S. Tanaka, T. Sugimoto, and K. Asano, “Size distribution of the charged droplets in an axisymmetric shower,” J. of Electrost. 47, 183–195 (1999).
    [Crossref]
  12. Y. Matsui, M. Mitsuhashi, and Y. Goto, “Early stage of tin oxide film growth in chemical vapor deposition,” Surf. Coat. Technol. 169, 549–552 (2003).
    [Crossref]
  13. A. Cusano, M. Pisco, M. Consales, S. Campopiano, A. Cutolo, R. Viter, V. Smyntyna, and M. Giordano, “Ammonia detection in water with a tin dioxide-based optical sensor,” in Optical Fibers: Applications, L. R. Jaroszewicz, B. Culshaw, and A. G. Mignani, eds., Proc. SPIE5952, 595214 (2005).
    [Crossref]
  14. G. Binnig, C. F. Quate, and C. Gerber, “Atomic force microscope,” Phys. Rev. Lett. 56, 930–933 (1986).
    [Crossref] [PubMed]
  15. D. W. Pohl, W. Denk, and M. Lanz, “Optical stethoscopy: Image recording with resolution λ/20A,” ppl. Phys. Lett. 44, 651–653 (1984).
  16. Y. Ebenstein, T. Mokari, and U. Banin, “Fluorescence quantum yield of CdSe/ZnS nanocrystals investigated by correlated atomic-force and single-particle fluorescence microscopy,” Appl. Phys. Lett. 80, 4033–4035 (2002).
    [Crossref]
  17. J. Prikulis, H. Xu, L. Gunnarsson, M. Kall, and H. Olin, “Phase-sensitive near-field imaging of metal nanoparticles,” J. Appl. Phys. 92, 6211–6214 (2002).
    [Crossref]
  18. U. Ben-Ami, N. Tessler, N. Ben-Ami, R. Nagar, G. Fish, K. Lieberman, G. Eisenstein, A. Lewis, J. M. Nielsen, and A. Moeller-Larsen , “Near-Infrared contact mode collection near-field optical and normal force microscopy of modulated multiple quantum well lasers,” Appl. Phys. Lett. 68, 2337–2339 (1996).
    [Crossref]
  19. J. J. Greffet and R. Carminati “Image formation in near field optics,” Prog. Surf. Sci. 56, 113–237 (1997).
    [Crossref]
  20. M. Giordano, M. Russo, A. Cusano, A. Cutolo, G. Mensitieri, and L. Nicolais, “Optical sensor based on ultrathin films of 5-form syndiotactic polystyrene for fast and high resolution detection of chloroform,” Appl. Phys. Lett. 85, 5349–5351 (2004).
    [Crossref]

2005 (1)

M. Batzill and U. Diebold, “The surface and materials science of tin oxide,” Prog. Surf. Sci. 79, 47–154 (2005).
[Crossref]

2004 (3)

2003 (1)

Y. Matsui, M. Mitsuhashi, and Y. Goto, “Early stage of tin oxide film growth in chemical vapor deposition,” Surf. Coat. Technol. 169, 549–552 (2003).
[Crossref]

2002 (2)

Y. Ebenstein, T. Mokari, and U. Banin, “Fluorescence quantum yield of CdSe/ZnS nanocrystals investigated by correlated atomic-force and single-particle fluorescence microscopy,” Appl. Phys. Lett. 80, 4033–4035 (2002).
[Crossref]

J. Prikulis, H. Xu, L. Gunnarsson, M. Kall, and H. Olin, “Phase-sensitive near-field imaging of metal nanoparticles,” J. Appl. Phys. 92, 6211–6214 (2002).
[Crossref]

2001 (1)

E. H. A. Diagne and M. Lumbreras, “Elaboration and characterization of tin oxide-lanthanum oxide mixed layers prepared by the electrostatic spray pyrolysis technique,” Sens. Act. B 78, 98–105 (2001).
[Crossref]

1999 (1)

Y. Higashiyama, S. Tanaka, T. Sugimoto, and K. Asano, “Size distribution of the charged droplets in an axisymmetric shower,” J. of Electrost. 47, 183–195 (1999).
[Crossref]

1998 (1)

T. W. Ebbsen, H. J. Lezec, H. F. Ghaemi, T. Thio , and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature (London) 391, 667–669 (1998).
[Crossref]

1997 (1)

J. J. Greffet and R. Carminati “Image formation in near field optics,” Prog. Surf. Sci. 56, 113–237 (1997).
[Crossref]

1996 (1)

U. Ben-Ami, N. Tessler, N. Ben-Ami, R. Nagar, G. Fish, K. Lieberman, G. Eisenstein, A. Lewis, J. M. Nielsen, and A. Moeller-Larsen , “Near-Infrared contact mode collection near-field optical and normal force microscopy of modulated multiple quantum well lasers,” Appl. Phys. Lett. 68, 2337–2339 (1996).
[Crossref]

1986 (1)

G. Binnig, C. F. Quate, and C. Gerber, “Atomic force microscope,” Phys. Rev. Lett. 56, 930–933 (1986).
[Crossref] [PubMed]

1984 (1)

D. W. Pohl, W. Denk, and M. Lanz, “Optical stethoscopy: Image recording with resolution λ/20A,” ppl. Phys. Lett. 44, 651–653 (1984).

1958 (1)

K. Ishiguro, T. Sasaki, T. Arai, and I. Imai, “Optical and electrical properties of tin oxide films,” J. Phys. Soc. Jpn. 13, 296 (1958).
[Crossref]

Alcubilla, R.

Arai, T.

K. Ishiguro, T. Sasaki, T. Arai, and I. Imai, “Optical and electrical properties of tin oxide films,” J. Phys. Soc. Jpn. 13, 296 (1958).
[Crossref]

Asano, K.

Y. Higashiyama, S. Tanaka, T. Sugimoto, and K. Asano, “Size distribution of the charged droplets in an axisymmetric shower,” J. of Electrost. 47, 183–195 (1999).
[Crossref]

Badenes, G.

Banin, U.

Y. Ebenstein, T. Mokari, and U. Banin, “Fluorescence quantum yield of CdSe/ZnS nanocrystals investigated by correlated atomic-force and single-particle fluorescence microscopy,” Appl. Phys. Lett. 80, 4033–4035 (2002).
[Crossref]

Batzill, M.

M. Batzill and U. Diebold, “The surface and materials science of tin oxide,” Prog. Surf. Sci. 79, 47–154 (2005).
[Crossref]

Ben-Ami, N.

U. Ben-Ami, N. Tessler, N. Ben-Ami, R. Nagar, G. Fish, K. Lieberman, G. Eisenstein, A. Lewis, J. M. Nielsen, and A. Moeller-Larsen , “Near-Infrared contact mode collection near-field optical and normal force microscopy of modulated multiple quantum well lasers,” Appl. Phys. Lett. 68, 2337–2339 (1996).
[Crossref]

Ben-Ami, U.

U. Ben-Ami, N. Tessler, N. Ben-Ami, R. Nagar, G. Fish, K. Lieberman, G. Eisenstein, A. Lewis, J. M. Nielsen, and A. Moeller-Larsen , “Near-Infrared contact mode collection near-field optical and normal force microscopy of modulated multiple quantum well lasers,” Appl. Phys. Lett. 68, 2337–2339 (1996).
[Crossref]

Binnig, G.

G. Binnig, C. F. Quate, and C. Gerber, “Atomic force microscope,” Phys. Rev. Lett. 56, 930–933 (1986).
[Crossref] [PubMed]

Buosciolo, A.

A. Cusano, M. Consales, M. Pisco, P. Pilla, A. Cutolo, A. Buosciolo, R. Viter, V. Smyntyna, and M. Giordano “Opto-chemical sensor for water monitoring based on SnO2 particle layer deposited onto optical fibers by the electrospray pyrolysis method,” Appl. Phys. Lett. (to be published).

Campopiano, S.

M. Pisco, M. Consales, S. Campopiano, R. Viter, V. Smyntyna, M. Giordano, and A. Cusano “A novel opto-chemical sensor based on SnO2 sensitive thin film for ppm ammonia detection in liquid environment,” J. of Lightwave Technol. (to be published).

M. Pisco, M. Consales, R. Viter, V. Smyntyna, M. Giordano, S. Campopiano, A. Cutolo, and A. Cusano, “Optoelectronic sensor for ammonia detection in water based on SnO2 films as sensitive layer,” Proceedings of the First International Conference on Sensing Technology, pp. 359–364 (2005).

A. Cusano, M. Pisco, M. Consales, S. Campopiano, A. Cutolo, R. Viter, V. Smyntyna, and M. Giordano, “Ammonia detection in water with a tin dioxide-based optical sensor,” in Optical Fibers: Applications, L. R. Jaroszewicz, B. Culshaw, and A. G. Mignani, eds., Proc. SPIE5952, 595214 (2005).
[Crossref]

Carminati, R.

J. J. Greffet and R. Carminati “Image formation in near field optics,” Prog. Surf. Sci. 56, 113–237 (1997).
[Crossref]

Cheylan, S.

Consales, M.

A. Cusano, M. Pisco, M. Consales, S. Campopiano, A. Cutolo, R. Viter, V. Smyntyna, and M. Giordano, “Ammonia detection in water with a tin dioxide-based optical sensor,” in Optical Fibers: Applications, L. R. Jaroszewicz, B. Culshaw, and A. G. Mignani, eds., Proc. SPIE5952, 595214 (2005).
[Crossref]

M. Pisco, M. Consales, R. Viter, V. Smyntyna, M. Giordano, S. Campopiano, A. Cutolo, and A. Cusano, “Optoelectronic sensor for ammonia detection in water based on SnO2 films as sensitive layer,” Proceedings of the First International Conference on Sensing Technology, pp. 359–364 (2005).

M. Pisco, M. Consales, S. Campopiano, R. Viter, V. Smyntyna, M. Giordano, and A. Cusano “A novel opto-chemical sensor based on SnO2 sensitive thin film for ppm ammonia detection in liquid environment,” J. of Lightwave Technol. (to be published).

A. Cusano, M. Consales, M. Pisco, P. Pilla, A. Cutolo, A. Buosciolo, R. Viter, V. Smyntyna, and M. Giordano “Opto-chemical sensor for water monitoring based on SnO2 particle layer deposited onto optical fibers by the electrospray pyrolysis method,” Appl. Phys. Lett. (to be published).

Cusano, A.

M. Giordano, M. Russo, A. Cusano, A. Cutolo, G. Mensitieri, and L. Nicolais, “Optical sensor based on ultrathin films of 5-form syndiotactic polystyrene for fast and high resolution detection of chloroform,” Appl. Phys. Lett. 85, 5349–5351 (2004).
[Crossref]

M. Pisco, M. Consales, S. Campopiano, R. Viter, V. Smyntyna, M. Giordano, and A. Cusano “A novel opto-chemical sensor based on SnO2 sensitive thin film for ppm ammonia detection in liquid environment,” J. of Lightwave Technol. (to be published).

M. Pisco, M. Consales, R. Viter, V. Smyntyna, M. Giordano, S. Campopiano, A. Cutolo, and A. Cusano, “Optoelectronic sensor for ammonia detection in water based on SnO2 films as sensitive layer,” Proceedings of the First International Conference on Sensing Technology, pp. 359–364 (2005).

A. Cusano, M. Consales, M. Pisco, P. Pilla, A. Cutolo, A. Buosciolo, R. Viter, V. Smyntyna, and M. Giordano “Opto-chemical sensor for water monitoring based on SnO2 particle layer deposited onto optical fibers by the electrospray pyrolysis method,” Appl. Phys. Lett. (to be published).

A. Cusano, M. Pisco, M. Consales, S. Campopiano, A. Cutolo, R. Viter, V. Smyntyna, and M. Giordano, “Ammonia detection in water with a tin dioxide-based optical sensor,” in Optical Fibers: Applications, L. R. Jaroszewicz, B. Culshaw, and A. G. Mignani, eds., Proc. SPIE5952, 595214 (2005).
[Crossref]

Cutolo, A.

M. Giordano, M. Russo, A. Cusano, A. Cutolo, G. Mensitieri, and L. Nicolais, “Optical sensor based on ultrathin films of 5-form syndiotactic polystyrene for fast and high resolution detection of chloroform,” Appl. Phys. Lett. 85, 5349–5351 (2004).
[Crossref]

A. Cusano, M. Pisco, M. Consales, S. Campopiano, A. Cutolo, R. Viter, V. Smyntyna, and M. Giordano, “Ammonia detection in water with a tin dioxide-based optical sensor,” in Optical Fibers: Applications, L. R. Jaroszewicz, B. Culshaw, and A. G. Mignani, eds., Proc. SPIE5952, 595214 (2005).
[Crossref]

M. Pisco, M. Consales, R. Viter, V. Smyntyna, M. Giordano, S. Campopiano, A. Cutolo, and A. Cusano, “Optoelectronic sensor for ammonia detection in water based on SnO2 films as sensitive layer,” Proceedings of the First International Conference on Sensing Technology, pp. 359–364 (2005).

A. Cusano, M. Consales, M. Pisco, P. Pilla, A. Cutolo, A. Buosciolo, R. Viter, V. Smyntyna, and M. Giordano “Opto-chemical sensor for water monitoring based on SnO2 particle layer deposited onto optical fibers by the electrospray pyrolysis method,” Appl. Phys. Lett. (to be published).

Denk, W.

D. W. Pohl, W. Denk, and M. Lanz, “Optical stethoscopy: Image recording with resolution λ/20A,” ppl. Phys. Lett. 44, 651–653 (1984).

Diagne, E. H. A.

E. H. A. Diagne and M. Lumbreras, “Elaboration and characterization of tin oxide-lanthanum oxide mixed layers prepared by the electrostatic spray pyrolysis technique,” Sens. Act. B 78, 98–105 (2001).
[Crossref]

Diebold, U.

M. Batzill and U. Diebold, “The surface and materials science of tin oxide,” Prog. Surf. Sci. 79, 47–154 (2005).
[Crossref]

Ebbsen, T. W.

T. W. Ebbsen, H. J. Lezec, H. F. Ghaemi, T. Thio , and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature (London) 391, 667–669 (1998).
[Crossref]

Ebenstein, Y.

Y. Ebenstein, T. Mokari, and U. Banin, “Fluorescence quantum yield of CdSe/ZnS nanocrystals investigated by correlated atomic-force and single-particle fluorescence microscopy,” Appl. Phys. Lett. 80, 4033–4035 (2002).
[Crossref]

Eisenstein, G.

U. Ben-Ami, N. Tessler, N. Ben-Ami, R. Nagar, G. Fish, K. Lieberman, G. Eisenstein, A. Lewis, J. M. Nielsen, and A. Moeller-Larsen , “Near-Infrared contact mode collection near-field optical and normal force microscopy of modulated multiple quantum well lasers,” Appl. Phys. Lett. 68, 2337–2339 (1996).
[Crossref]

Fish, G.

U. Ben-Ami, N. Tessler, N. Ben-Ami, R. Nagar, G. Fish, K. Lieberman, G. Eisenstein, A. Lewis, J. M. Nielsen, and A. Moeller-Larsen , “Near-Infrared contact mode collection near-field optical and normal force microscopy of modulated multiple quantum well lasers,” Appl. Phys. Lett. 68, 2337–2339 (1996).
[Crossref]

Fueki, K.

T. Seiyama, K. Fueki, J. Shiokawa, and S. Suzuki, “Chemical sensors,” in Proceedings of the International Meeting on Chemical Sensors, K. Tokyo, Jpn ed.), (Elsevier, Amsterdam, 1983).

Gerber, C.

G. Binnig, C. F. Quate, and C. Gerber, “Atomic force microscope,” Phys. Rev. Lett. 56, 930–933 (1986).
[Crossref] [PubMed]

Ghaemi, H. F.

T. W. Ebbsen, H. J. Lezec, H. F. Ghaemi, T. Thio , and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature (London) 391, 667–669 (1998).
[Crossref]

Giordano, M.

M. Giordano, M. Russo, A. Cusano, A. Cutolo, G. Mensitieri, and L. Nicolais, “Optical sensor based on ultrathin films of 5-form syndiotactic polystyrene for fast and high resolution detection of chloroform,” Appl. Phys. Lett. 85, 5349–5351 (2004).
[Crossref]

A. Cusano, M. Pisco, M. Consales, S. Campopiano, A. Cutolo, R. Viter, V. Smyntyna, and M. Giordano, “Ammonia detection in water with a tin dioxide-based optical sensor,” in Optical Fibers: Applications, L. R. Jaroszewicz, B. Culshaw, and A. G. Mignani, eds., Proc. SPIE5952, 595214 (2005).
[Crossref]

M. Pisco, M. Consales, R. Viter, V. Smyntyna, M. Giordano, S. Campopiano, A. Cutolo, and A. Cusano, “Optoelectronic sensor for ammonia detection in water based on SnO2 films as sensitive layer,” Proceedings of the First International Conference on Sensing Technology, pp. 359–364 (2005).

M. Pisco, M. Consales, S. Campopiano, R. Viter, V. Smyntyna, M. Giordano, and A. Cusano “A novel opto-chemical sensor based on SnO2 sensitive thin film for ppm ammonia detection in liquid environment,” J. of Lightwave Technol. (to be published).

A. Cusano, M. Consales, M. Pisco, P. Pilla, A. Cutolo, A. Buosciolo, R. Viter, V. Smyntyna, and M. Giordano “Opto-chemical sensor for water monitoring based on SnO2 particle layer deposited onto optical fibers by the electrospray pyrolysis method,” Appl. Phys. Lett. (to be published).

Girard, C.

Goto, Y.

Y. Matsui, M. Mitsuhashi, and Y. Goto, “Early stage of tin oxide film growth in chemical vapor deposition,” Surf. Coat. Technol. 169, 549–552 (2003).
[Crossref]

Greffet, J. J.

J. J. Greffet and R. Carminati “Image formation in near field optics,” Prog. Surf. Sci. 56, 113–237 (1997).
[Crossref]

Gunnarsson, L.

J. Prikulis, H. Xu, L. Gunnarsson, M. Kall, and H. Olin, “Phase-sensitive near-field imaging of metal nanoparticles,” J. Appl. Phys. 92, 6211–6214 (2002).
[Crossref]

Higashiyama, Y.

Y. Higashiyama, S. Tanaka, T. Sugimoto, and K. Asano, “Size distribution of the charged droplets in an axisymmetric shower,” J. of Electrost. 47, 183–195 (1999).
[Crossref]

Imai, I.

K. Ishiguro, T. Sasaki, T. Arai, and I. Imai, “Optical and electrical properties of tin oxide films,” J. Phys. Soc. Jpn. 13, 296 (1958).
[Crossref]

Ishiguro, K.

K. Ishiguro, T. Sasaki, T. Arai, and I. Imai, “Optical and electrical properties of tin oxide films,” J. Phys. Soc. Jpn. 13, 296 (1958).
[Crossref]

Kall, M.

J. Prikulis, H. Xu, L. Gunnarsson, M. Kall, and H. Olin, “Phase-sensitive near-field imaging of metal nanoparticles,” J. Appl. Phys. 92, 6211–6214 (2002).
[Crossref]

Lanz, M.

D. W. Pohl, W. Denk, and M. Lanz, “Optical stethoscopy: Image recording with resolution λ/20A,” ppl. Phys. Lett. 44, 651–653 (1984).

Lewis, A.

U. Ben-Ami, N. Tessler, N. Ben-Ami, R. Nagar, G. Fish, K. Lieberman, G. Eisenstein, A. Lewis, J. M. Nielsen, and A. Moeller-Larsen , “Near-Infrared contact mode collection near-field optical and normal force microscopy of modulated multiple quantum well lasers,” Appl. Phys. Lett. 68, 2337–2339 (1996).
[Crossref]

Lezec, H. J.

H. J. Lezec and T. Thio, “Diffracted evanescent wave model for enhanced and suppressed optical transmission through subwavelength hole arrays,” Opt. Express 12, 3629–3651 (2004).
[Crossref] [PubMed]

T. W. Ebbsen, H. J. Lezec, H. F. Ghaemi, T. Thio , and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature (London) 391, 667–669 (1998).
[Crossref]

Lieberman, K.

U. Ben-Ami, N. Tessler, N. Ben-Ami, R. Nagar, G. Fish, K. Lieberman, G. Eisenstein, A. Lewis, J. M. Nielsen, and A. Moeller-Larsen , “Near-Infrared contact mode collection near-field optical and normal force microscopy of modulated multiple quantum well lasers,” Appl. Phys. Lett. 68, 2337–2339 (1996).
[Crossref]

Lumbreras, M.

E. H. A. Diagne and M. Lumbreras, “Elaboration and characterization of tin oxide-lanthanum oxide mixed layers prepared by the electrostatic spray pyrolysis technique,” Sens. Act. B 78, 98–105 (2001).
[Crossref]

Matsui, Y.

Y. Matsui, M. Mitsuhashi, and Y. Goto, “Early stage of tin oxide film growth in chemical vapor deposition,” Surf. Coat. Technol. 169, 549–552 (2003).
[Crossref]

Mensitieri, G.

M. Giordano, M. Russo, A. Cusano, A. Cutolo, G. Mensitieri, and L. Nicolais, “Optical sensor based on ultrathin films of 5-form syndiotactic polystyrene for fast and high resolution detection of chloroform,” Appl. Phys. Lett. 85, 5349–5351 (2004).
[Crossref]

Mitsuhashi, M.

Y. Matsui, M. Mitsuhashi, and Y. Goto, “Early stage of tin oxide film growth in chemical vapor deposition,” Surf. Coat. Technol. 169, 549–552 (2003).
[Crossref]

Moeller-Larsen, A.

U. Ben-Ami, N. Tessler, N. Ben-Ami, R. Nagar, G. Fish, K. Lieberman, G. Eisenstein, A. Lewis, J. M. Nielsen, and A. Moeller-Larsen , “Near-Infrared contact mode collection near-field optical and normal force microscopy of modulated multiple quantum well lasers,” Appl. Phys. Lett. 68, 2337–2339 (1996).
[Crossref]

Mokari, T.

Y. Ebenstein, T. Mokari, and U. Banin, “Fluorescence quantum yield of CdSe/ZnS nanocrystals investigated by correlated atomic-force and single-particle fluorescence microscopy,” Appl. Phys. Lett. 80, 4033–4035 (2002).
[Crossref]

Nagar, R.

U. Ben-Ami, N. Tessler, N. Ben-Ami, R. Nagar, G. Fish, K. Lieberman, G. Eisenstein, A. Lewis, J. M. Nielsen, and A. Moeller-Larsen , “Near-Infrared contact mode collection near-field optical and normal force microscopy of modulated multiple quantum well lasers,” Appl. Phys. Lett. 68, 2337–2339 (1996).
[Crossref]

Nicolais, L.

M. Giordano, M. Russo, A. Cusano, A. Cutolo, G. Mensitieri, and L. Nicolais, “Optical sensor based on ultrathin films of 5-form syndiotactic polystyrene for fast and high resolution detection of chloroform,” Appl. Phys. Lett. 85, 5349–5351 (2004).
[Crossref]

Nielsen, J. M.

U. Ben-Ami, N. Tessler, N. Ben-Ami, R. Nagar, G. Fish, K. Lieberman, G. Eisenstein, A. Lewis, J. M. Nielsen, and A. Moeller-Larsen , “Near-Infrared contact mode collection near-field optical and normal force microscopy of modulated multiple quantum well lasers,” Appl. Phys. Lett. 68, 2337–2339 (1996).
[Crossref]

Olin, H.

J. Prikulis, H. Xu, L. Gunnarsson, M. Kall, and H. Olin, “Phase-sensitive near-field imaging of metal nanoparticles,” J. Appl. Phys. 92, 6211–6214 (2002).
[Crossref]

Pilla, P.

A. Cusano, M. Consales, M. Pisco, P. Pilla, A. Cutolo, A. Buosciolo, R. Viter, V. Smyntyna, and M. Giordano “Opto-chemical sensor for water monitoring based on SnO2 particle layer deposited onto optical fibers by the electrospray pyrolysis method,” Appl. Phys. Lett. (to be published).

Pisco, M.

A. Cusano, M. Consales, M. Pisco, P. Pilla, A. Cutolo, A. Buosciolo, R. Viter, V. Smyntyna, and M. Giordano “Opto-chemical sensor for water monitoring based on SnO2 particle layer deposited onto optical fibers by the electrospray pyrolysis method,” Appl. Phys. Lett. (to be published).

M. Pisco, M. Consales, S. Campopiano, R. Viter, V. Smyntyna, M. Giordano, and A. Cusano “A novel opto-chemical sensor based on SnO2 sensitive thin film for ppm ammonia detection in liquid environment,” J. of Lightwave Technol. (to be published).

M. Pisco, M. Consales, R. Viter, V. Smyntyna, M. Giordano, S. Campopiano, A. Cutolo, and A. Cusano, “Optoelectronic sensor for ammonia detection in water based on SnO2 films as sensitive layer,” Proceedings of the First International Conference on Sensing Technology, pp. 359–364 (2005).

A. Cusano, M. Pisco, M. Consales, S. Campopiano, A. Cutolo, R. Viter, V. Smyntyna, and M. Giordano, “Ammonia detection in water with a tin dioxide-based optical sensor,” in Optical Fibers: Applications, L. R. Jaroszewicz, B. Culshaw, and A. G. Mignani, eds., Proc. SPIE5952, 595214 (2005).
[Crossref]

Pohl, D. W.

D. W. Pohl, W. Denk, and M. Lanz, “Optical stethoscopy: Image recording with resolution λ/20A,” ppl. Phys. Lett. 44, 651–653 (1984).

Prikulis, J.

J. Prikulis, H. Xu, L. Gunnarsson, M. Kall, and H. Olin, “Phase-sensitive near-field imaging of metal nanoparticles,” J. Appl. Phys. 92, 6211–6214 (2002).
[Crossref]

Quate, C. F.

G. Binnig, C. F. Quate, and C. Gerber, “Atomic force microscope,” Phys. Rev. Lett. 56, 930–933 (1986).
[Crossref] [PubMed]

Quidant, R.

Russo, M.

M. Giordano, M. Russo, A. Cusano, A. Cutolo, G. Mensitieri, and L. Nicolais, “Optical sensor based on ultrathin films of 5-form syndiotactic polystyrene for fast and high resolution detection of chloroform,” Appl. Phys. Lett. 85, 5349–5351 (2004).
[Crossref]

Sasaki, T.

K. Ishiguro, T. Sasaki, T. Arai, and I. Imai, “Optical and electrical properties of tin oxide films,” J. Phys. Soc. Jpn. 13, 296 (1958).
[Crossref]

Seiyama, T.

T. Seiyama, K. Fueki, J. Shiokawa, and S. Suzuki, “Chemical sensors,” in Proceedings of the International Meeting on Chemical Sensors, K. Tokyo, Jpn ed.), (Elsevier, Amsterdam, 1983).

Shiokawa, J.

T. Seiyama, K. Fueki, J. Shiokawa, and S. Suzuki, “Chemical sensors,” in Proceedings of the International Meeting on Chemical Sensors, K. Tokyo, Jpn ed.), (Elsevier, Amsterdam, 1983).

Smyntyna, V.

M. Pisco, M. Consales, R. Viter, V. Smyntyna, M. Giordano, S. Campopiano, A. Cutolo, and A. Cusano, “Optoelectronic sensor for ammonia detection in water based on SnO2 films as sensitive layer,” Proceedings of the First International Conference on Sensing Technology, pp. 359–364 (2005).

M. Pisco, M. Consales, S. Campopiano, R. Viter, V. Smyntyna, M. Giordano, and A. Cusano “A novel opto-chemical sensor based on SnO2 sensitive thin film for ppm ammonia detection in liquid environment,” J. of Lightwave Technol. (to be published).

A. Cusano, M. Consales, M. Pisco, P. Pilla, A. Cutolo, A. Buosciolo, R. Viter, V. Smyntyna, and M. Giordano “Opto-chemical sensor for water monitoring based on SnO2 particle layer deposited onto optical fibers by the electrospray pyrolysis method,” Appl. Phys. Lett. (to be published).

A. Cusano, M. Pisco, M. Consales, S. Campopiano, A. Cutolo, R. Viter, V. Smyntyna, and M. Giordano, “Ammonia detection in water with a tin dioxide-based optical sensor,” in Optical Fibers: Applications, L. R. Jaroszewicz, B. Culshaw, and A. G. Mignani, eds., Proc. SPIE5952, 595214 (2005).
[Crossref]

Sugimoto, T.

Y. Higashiyama, S. Tanaka, T. Sugimoto, and K. Asano, “Size distribution of the charged droplets in an axisymmetric shower,” J. of Electrost. 47, 183–195 (1999).
[Crossref]

Suzuki, S.

T. Seiyama, K. Fueki, J. Shiokawa, and S. Suzuki, “Chemical sensors,” in Proceedings of the International Meeting on Chemical Sensors, K. Tokyo, Jpn ed.), (Elsevier, Amsterdam, 1983).

Tanaka, S.

Y. Higashiyama, S. Tanaka, T. Sugimoto, and K. Asano, “Size distribution of the charged droplets in an axisymmetric shower,” J. of Electrost. 47, 183–195 (1999).
[Crossref]

Tessler, N.

U. Ben-Ami, N. Tessler, N. Ben-Ami, R. Nagar, G. Fish, K. Lieberman, G. Eisenstein, A. Lewis, J. M. Nielsen, and A. Moeller-Larsen , “Near-Infrared contact mode collection near-field optical and normal force microscopy of modulated multiple quantum well lasers,” Appl. Phys. Lett. 68, 2337–2339 (1996).
[Crossref]

Thio, T.

H. J. Lezec and T. Thio, “Diffracted evanescent wave model for enhanced and suppressed optical transmission through subwavelength hole arrays,” Opt. Express 12, 3629–3651 (2004).
[Crossref] [PubMed]

T. W. Ebbsen, H. J. Lezec, H. F. Ghaemi, T. Thio , and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature (London) 391, 667–669 (1998).
[Crossref]

Viter, R.

A. Cusano, M. Pisco, M. Consales, S. Campopiano, A. Cutolo, R. Viter, V. Smyntyna, and M. Giordano, “Ammonia detection in water with a tin dioxide-based optical sensor,” in Optical Fibers: Applications, L. R. Jaroszewicz, B. Culshaw, and A. G. Mignani, eds., Proc. SPIE5952, 595214 (2005).
[Crossref]

M. Pisco, M. Consales, R. Viter, V. Smyntyna, M. Giordano, S. Campopiano, A. Cutolo, and A. Cusano, “Optoelectronic sensor for ammonia detection in water based on SnO2 films as sensitive layer,” Proceedings of the First International Conference on Sensing Technology, pp. 359–364 (2005).

M. Pisco, M. Consales, S. Campopiano, R. Viter, V. Smyntyna, M. Giordano, and A. Cusano “A novel opto-chemical sensor based on SnO2 sensitive thin film for ppm ammonia detection in liquid environment,” J. of Lightwave Technol. (to be published).

A. Cusano, M. Consales, M. Pisco, P. Pilla, A. Cutolo, A. Buosciolo, R. Viter, V. Smyntyna, and M. Giordano “Opto-chemical sensor for water monitoring based on SnO2 particle layer deposited onto optical fibers by the electrospray pyrolysis method,” Appl. Phys. Lett. (to be published).

Weeber, J.-C.

Wolff, P. A.

T. W. Ebbsen, H. J. Lezec, H. F. Ghaemi, T. Thio , and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature (London) 391, 667–669 (1998).
[Crossref]

Xu, H.

J. Prikulis, H. Xu, L. Gunnarsson, M. Kall, and H. Olin, “Phase-sensitive near-field imaging of metal nanoparticles,” J. Appl. Phys. 92, 6211–6214 (2002).
[Crossref]

Appl. Phys. Lett. (3)

Y. Ebenstein, T. Mokari, and U. Banin, “Fluorescence quantum yield of CdSe/ZnS nanocrystals investigated by correlated atomic-force and single-particle fluorescence microscopy,” Appl. Phys. Lett. 80, 4033–4035 (2002).
[Crossref]

U. Ben-Ami, N. Tessler, N. Ben-Ami, R. Nagar, G. Fish, K. Lieberman, G. Eisenstein, A. Lewis, J. M. Nielsen, and A. Moeller-Larsen , “Near-Infrared contact mode collection near-field optical and normal force microscopy of modulated multiple quantum well lasers,” Appl. Phys. Lett. 68, 2337–2339 (1996).
[Crossref]

M. Giordano, M. Russo, A. Cusano, A. Cutolo, G. Mensitieri, and L. Nicolais, “Optical sensor based on ultrathin films of 5-form syndiotactic polystyrene for fast and high resolution detection of chloroform,” Appl. Phys. Lett. 85, 5349–5351 (2004).
[Crossref]

J. Appl. Phys. (1)

J. Prikulis, H. Xu, L. Gunnarsson, M. Kall, and H. Olin, “Phase-sensitive near-field imaging of metal nanoparticles,” J. Appl. Phys. 92, 6211–6214 (2002).
[Crossref]

J. of Electrost. (1)

Y. Higashiyama, S. Tanaka, T. Sugimoto, and K. Asano, “Size distribution of the charged droplets in an axisymmetric shower,” J. of Electrost. 47, 183–195 (1999).
[Crossref]

J. Phys. Soc. Jpn. (1)

K. Ishiguro, T. Sasaki, T. Arai, and I. Imai, “Optical and electrical properties of tin oxide films,” J. Phys. Soc. Jpn. 13, 296 (1958).
[Crossref]

Nature (London) (1)

T. W. Ebbsen, H. J. Lezec, H. F. Ghaemi, T. Thio , and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature (London) 391, 667–669 (1998).
[Crossref]

Opt. Express (2)

Phys. Rev. Lett. (1)

G. Binnig, C. F. Quate, and C. Gerber, “Atomic force microscope,” Phys. Rev. Lett. 56, 930–933 (1986).
[Crossref] [PubMed]

ppl. Phys. Lett. (1)

D. W. Pohl, W. Denk, and M. Lanz, “Optical stethoscopy: Image recording with resolution λ/20A,” ppl. Phys. Lett. 44, 651–653 (1984).

Prog. Surf. Sci. (2)

M. Batzill and U. Diebold, “The surface and materials science of tin oxide,” Prog. Surf. Sci. 79, 47–154 (2005).
[Crossref]

J. J. Greffet and R. Carminati “Image formation in near field optics,” Prog. Surf. Sci. 56, 113–237 (1997).
[Crossref]

Sens. Act. B (1)

E. H. A. Diagne and M. Lumbreras, “Elaboration and characterization of tin oxide-lanthanum oxide mixed layers prepared by the electrostatic spray pyrolysis technique,” Sens. Act. B 78, 98–105 (2001).
[Crossref]

Surf. Coat. Technol. (1)

Y. Matsui, M. Mitsuhashi, and Y. Goto, “Early stage of tin oxide film growth in chemical vapor deposition,” Surf. Coat. Technol. 169, 549–552 (2003).
[Crossref]

Other (5)

A. Cusano, M. Pisco, M. Consales, S. Campopiano, A. Cutolo, R. Viter, V. Smyntyna, and M. Giordano, “Ammonia detection in water with a tin dioxide-based optical sensor,” in Optical Fibers: Applications, L. R. Jaroszewicz, B. Culshaw, and A. G. Mignani, eds., Proc. SPIE5952, 595214 (2005).
[Crossref]

T. Seiyama, K. Fueki, J. Shiokawa, and S. Suzuki, “Chemical sensors,” in Proceedings of the International Meeting on Chemical Sensors, K. Tokyo, Jpn ed.), (Elsevier, Amsterdam, 1983).

M. Pisco, M. Consales, R. Viter, V. Smyntyna, M. Giordano, S. Campopiano, A. Cutolo, and A. Cusano, “Optoelectronic sensor for ammonia detection in water based on SnO2 films as sensitive layer,” Proceedings of the First International Conference on Sensing Technology, pp. 359–364 (2005).

A. Cusano, M. Consales, M. Pisco, P. Pilla, A. Cutolo, A. Buosciolo, R. Viter, V. Smyntyna, and M. Giordano “Opto-chemical sensor for water monitoring based on SnO2 particle layer deposited onto optical fibers by the electrospray pyrolysis method,” Appl. Phys. Lett. (to be published).

M. Pisco, M. Consales, S. Campopiano, R. Viter, V. Smyntyna, M. Giordano, and A. Cusano “A novel opto-chemical sensor based on SnO2 sensitive thin film for ppm ammonia detection in liquid environment,” J. of Lightwave Technol. (to be published).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

AFM/SNOM experimental set up (direct configuration).

Fig. 2.
Fig. 2.

Topographic image of the sample a, in which is showed the core region with the red circle (a) and optical near field simultaneously collected by the SNOM probe in the same region (13×13) μm (b).

Fig. 3.
Fig. 3.

Topographic image of the sample b (a) and optical near field simultaneously collected by the SNOM probe in the same region (13×13) μm (b).

Fig. 4.
Fig. 4.

Histogram of the heights relative to a squared region strictly containing the core region of the sample b (a) and analysis of bumps present in the same region (b).

Fig. 5.
Fig. 5.

Topographic image of the sample c (a) and optical near field simultaneously collected by the SNOM probe in the same region (6×6) μm (b).

Fig. 6.
Fig. 6.

Topographic image of the sample d (a) and optical near field simultaneously collected by the SNOM probe in the same region (6×6) μm (b).

Fig. 7.
Fig. 7.

Emergent field collected from the sample d at constant sample-tip distance of about 2 μm.

Fig. 8.
Fig. 8.

A cross-section of the measured intensity of the optical near field (solid line) emergent from the sample d, relative to a line parallel to the y axis of the figure 6 (b) passing through the peak and of the interpolating surface (dotted line).

Fig. 9.
Fig. 9.

Reverse experimental set up.

Fig. 10.
Fig. 10.

The radiation intensity coupled into the standard optical fiber when it was illuminated by the SNOM probe.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

SnCl 4 + 2 H 2 O SnO 2 + 4 HCl

Metrics