Abstract

A theoretical investigation of silicon-on-insulator nanometer slot waveguides for highly sensitive and compact chemical and biochemical integrated optical sensing is proposed. Slot guiding structures enabling high optical confinement in a low-index very small region are demonstrated to be very sensitive to either cover medium refractive index change or deposited receptor layer thickness increase. Modal and confinement properties of slot waveguides have been investigated, considering also the influence of fabrication tolerances. Waveguide sensitivity has been calculated and compared with that exhibited by other silicon nanometer guiding structures, such as rib or wire waveguides, or with experimental values in literature.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Balslev, A. M. Jorgensen, B. Bilenberg, K. B. Mogensen, D. Snakenborg, O. Geschke, J. P. Kutter, and A. Kristensen, "Lab-on-a-chip with integrated optical transducers," Lab on a Chip 6, 213 (2006).
    [CrossRef] [PubMed]
  2. B. J. Luff, R. D. Harris, J. S. Wilkinson, R. Wilson, and D. J. Schiffrin, "Integrated-optical directional coupler biosensor," Opt. Lett. 21, 618 (1996).
    [CrossRef] [PubMed]
  3. F. Prieto, B. Sepulveda, A. Calle, A. Llobera, C. Domynguez, A. Abad, A. Montoya, and L M Lechuga, "An integrated optical interferometric nanodevice based on silicon technology for biosensor applications," Nanotechnology 14, 907 (2003).
    [CrossRef]
  4. W. C. L. Hopman, P. Pottier, D. Yudistira, J. van Lith, P. V. Lambeck, R. M. De La Rue, and A. Driessen, "Quasi-One-Dimensional Photonic Crystal as a Compact Building-Block for Refractometric Optical Sensors," IEEE J. Sel. Top. Quantum Electron. 11, 11 (2005).
    [CrossRef]
  5. C. Y. Chao, W. Fung, and L. J. Guo, "Polymer Microring Resonators for Biochemical Sensing Applications," IEEE J. Sel. Top. Quantum Electron. 12, 134 (2006).
    [CrossRef]
  6. B. Jalali and S. Fathpour, "Silicon Photonics," J. Lightwave Technol. 24, 4600 (2006).
    [CrossRef]
  7. H. Yamada, T. Chu, S. Ispida, and Y. Arakawa, "Si Photonic Wire Waveguide Devices," IEEE J. Sel. Top. Quantum Electron. 12, 1371 (2006).
    [CrossRef]
  8. A. Densmore, D.-X. Xu, P. Waldron, S. Janz, P. Cheben, J. Lapointe, A. Delâge, B. Lamontagne, J. H. Schmid, and E. Post, "A Silicon-on-Insulator Photonic Wire Based Evanescent Field Sensor," IEEE Photon. Technol. Lett. 18, 2520 (2006).
    [CrossRef]
  9. F. Dell’Olio, V. M. N. Passaro, and F. De Leonardis, "Ammonia Optical Sensing by Microring Resonators," in Proc. of 11th Int. Meeting on Chemical Sensors, G. Sberveglieri, ed. (Publisher, Brescia, 2006), p. 27.
  10. Q. Xu, V. R. Almeida, R. R. Panepucci, and M. Lipson, "Experimental demonstration of guiding and confining light in nanometer-size low-refractive-index material," Opt. Lett. 29, 1626 (2004).
    [CrossRef] [PubMed]
  11. T. Baehr-Jones, M. Hochberg, G. Wang, R. Lawson, Y. Liao, P. A. Sullivan, L. Dalton, A. K.-Y. Jen, and A. Scherer, "Optical modulation and detection in slotted silicon waveguides," Opt. Express 13, 5216 (2005).
    [CrossRef] [PubMed]
  12. C. A. Barrios and M. Lipson, "Electrically driven silicon resonant light emitting device based on slot-waveguide," Opt. Express 13, 10092 (2005).
    [CrossRef] [PubMed]
  13. T. Fujisawa and M. Koshiba, "Polarization-indipendent optical directional coupler based on slot waveguides," Opt. Lett. 31, 56 (2006).
    [CrossRef] [PubMed]
  14. T. Fujisawa and M. Koshiba, "All-optical logic gates based on nonlinear slot-waveguide couplers," J. Opt. Soc. Am. B 23,684 (2006).
    [CrossRef]
  15. T. Fujisawa and M. Koshiba, "Theoretical Investigation of Ultrasmall Polarization-Insensitive 1×2 Multimode Interference Waveguides Based on Sandwiched Structures," IEEE Photon. Technol. Lett. 18, 1246 (2006).
    [CrossRef]
  16. P. Müllner and R. Hainberger, "Structural Optimization of Silicon-On-Insulator Slot Waveguides," IEEE Photon. Technol. Lett. 18, 2557 (2006).
    [CrossRef]
  17. R. Bernini, N. Cennamo, A. Minardo, and L. Zeni, "Planar Waveguides for Fluorescence-Based Biosensing: Optimization and Analysis," IEEE Sens. J. 6, 1218 (2006).
    [CrossRef]
  18. R. Bernini, N. Cennamo, A. Minardo, and L. Zeni, "Silicon planar waveguides for absorption based biosensors," Proc. of 1st Int. Workshop on Advances in sensors and interfaces, D. De Venuto and B. Courtois, ed. (Laterza, Bari, 2005), pp. 138-142.
  19. Comsol Multiphysics by COMSOL ©, ver. 3.2, single license (2005).
  20. O. Parriaux and G. J. Valdhuis, "Normalized Analysis for the Sensitivity Optimization of Integrated Optical Evanescent-Wave Sensors," J. Lightwave Technol. 16, 573 (1998).
    [CrossRef]
  21. O. Parriaux, G. J. Valdhuis, H. J. W. M. Hoekstra, and P. V. Lambeck "Sensitivity Enhancement in Evanescent Optical Waveguide Sensors," J. Lightwave Technol. 18, 677 (2000).
    [CrossRef]
  22. F. Dell’Olio, V. M. N. Passaro, and F. De Leonardis, "Surface Sensitivity Optimization of a Microring Resonator for Biochmical Sensing," in Proc. of 8th Int. Conf. on Transparent Optical Networks, M. Marciniak, Ed. (National Institute of Telecommunications, 2006) 4, pp. 128-131.

2006 (10)

S. Balslev, A. M. Jorgensen, B. Bilenberg, K. B. Mogensen, D. Snakenborg, O. Geschke, J. P. Kutter, and A. Kristensen, "Lab-on-a-chip with integrated optical transducers," Lab on a Chip 6, 213 (2006).
[CrossRef] [PubMed]

C. Y. Chao, W. Fung, and L. J. Guo, "Polymer Microring Resonators for Biochemical Sensing Applications," IEEE J. Sel. Top. Quantum Electron. 12, 134 (2006).
[CrossRef]

B. Jalali and S. Fathpour, "Silicon Photonics," J. Lightwave Technol. 24, 4600 (2006).
[CrossRef]

H. Yamada, T. Chu, S. Ispida, and Y. Arakawa, "Si Photonic Wire Waveguide Devices," IEEE J. Sel. Top. Quantum Electron. 12, 1371 (2006).
[CrossRef]

A. Densmore, D.-X. Xu, P. Waldron, S. Janz, P. Cheben, J. Lapointe, A. Delâge, B. Lamontagne, J. H. Schmid, and E. Post, "A Silicon-on-Insulator Photonic Wire Based Evanescent Field Sensor," IEEE Photon. Technol. Lett. 18, 2520 (2006).
[CrossRef]

T. Fujisawa and M. Koshiba, "Polarization-indipendent optical directional coupler based on slot waveguides," Opt. Lett. 31, 56 (2006).
[CrossRef] [PubMed]

T. Fujisawa and M. Koshiba, "All-optical logic gates based on nonlinear slot-waveguide couplers," J. Opt. Soc. Am. B 23,684 (2006).
[CrossRef]

T. Fujisawa and M. Koshiba, "Theoretical Investigation of Ultrasmall Polarization-Insensitive 1×2 Multimode Interference Waveguides Based on Sandwiched Structures," IEEE Photon. Technol. Lett. 18, 1246 (2006).
[CrossRef]

P. Müllner and R. Hainberger, "Structural Optimization of Silicon-On-Insulator Slot Waveguides," IEEE Photon. Technol. Lett. 18, 2557 (2006).
[CrossRef]

R. Bernini, N. Cennamo, A. Minardo, and L. Zeni, "Planar Waveguides for Fluorescence-Based Biosensing: Optimization and Analysis," IEEE Sens. J. 6, 1218 (2006).
[CrossRef]

2005 (3)

2004 (1)

2003 (1)

F. Prieto, B. Sepulveda, A. Calle, A. Llobera, C. Domynguez, A. Abad, A. Montoya, and L M Lechuga, "An integrated optical interferometric nanodevice based on silicon technology for biosensor applications," Nanotechnology 14, 907 (2003).
[CrossRef]

2000 (1)

1998 (1)

1996 (1)

Abad, A.

F. Prieto, B. Sepulveda, A. Calle, A. Llobera, C. Domynguez, A. Abad, A. Montoya, and L M Lechuga, "An integrated optical interferometric nanodevice based on silicon technology for biosensor applications," Nanotechnology 14, 907 (2003).
[CrossRef]

Almeida, V. R.

Arakawa, Y.

H. Yamada, T. Chu, S. Ispida, and Y. Arakawa, "Si Photonic Wire Waveguide Devices," IEEE J. Sel. Top. Quantum Electron. 12, 1371 (2006).
[CrossRef]

Baehr-Jones, T.

Balslev, S.

S. Balslev, A. M. Jorgensen, B. Bilenberg, K. B. Mogensen, D. Snakenborg, O. Geschke, J. P. Kutter, and A. Kristensen, "Lab-on-a-chip with integrated optical transducers," Lab on a Chip 6, 213 (2006).
[CrossRef] [PubMed]

Barrios, C. A.

Bernini, R.

R. Bernini, N. Cennamo, A. Minardo, and L. Zeni, "Planar Waveguides for Fluorescence-Based Biosensing: Optimization and Analysis," IEEE Sens. J. 6, 1218 (2006).
[CrossRef]

Bilenberg, B.

S. Balslev, A. M. Jorgensen, B. Bilenberg, K. B. Mogensen, D. Snakenborg, O. Geschke, J. P. Kutter, and A. Kristensen, "Lab-on-a-chip with integrated optical transducers," Lab on a Chip 6, 213 (2006).
[CrossRef] [PubMed]

Calle, A.

F. Prieto, B. Sepulveda, A. Calle, A. Llobera, C. Domynguez, A. Abad, A. Montoya, and L M Lechuga, "An integrated optical interferometric nanodevice based on silicon technology for biosensor applications," Nanotechnology 14, 907 (2003).
[CrossRef]

Cennamo, N.

R. Bernini, N. Cennamo, A. Minardo, and L. Zeni, "Planar Waveguides for Fluorescence-Based Biosensing: Optimization and Analysis," IEEE Sens. J. 6, 1218 (2006).
[CrossRef]

Chao, C. Y.

C. Y. Chao, W. Fung, and L. J. Guo, "Polymer Microring Resonators for Biochemical Sensing Applications," IEEE J. Sel. Top. Quantum Electron. 12, 134 (2006).
[CrossRef]

Cheben, P.

A. Densmore, D.-X. Xu, P. Waldron, S. Janz, P. Cheben, J. Lapointe, A. Delâge, B. Lamontagne, J. H. Schmid, and E. Post, "A Silicon-on-Insulator Photonic Wire Based Evanescent Field Sensor," IEEE Photon. Technol. Lett. 18, 2520 (2006).
[CrossRef]

Chu, T.

H. Yamada, T. Chu, S. Ispida, and Y. Arakawa, "Si Photonic Wire Waveguide Devices," IEEE J. Sel. Top. Quantum Electron. 12, 1371 (2006).
[CrossRef]

Dalton, L.

De La Rue, R. M.

W. C. L. Hopman, P. Pottier, D. Yudistira, J. van Lith, P. V. Lambeck, R. M. De La Rue, and A. Driessen, "Quasi-One-Dimensional Photonic Crystal as a Compact Building-Block for Refractometric Optical Sensors," IEEE J. Sel. Top. Quantum Electron. 11, 11 (2005).
[CrossRef]

Delâge, A.

A. Densmore, D.-X. Xu, P. Waldron, S. Janz, P. Cheben, J. Lapointe, A. Delâge, B. Lamontagne, J. H. Schmid, and E. Post, "A Silicon-on-Insulator Photonic Wire Based Evanescent Field Sensor," IEEE Photon. Technol. Lett. 18, 2520 (2006).
[CrossRef]

Densmore, A.

A. Densmore, D.-X. Xu, P. Waldron, S. Janz, P. Cheben, J. Lapointe, A. Delâge, B. Lamontagne, J. H. Schmid, and E. Post, "A Silicon-on-Insulator Photonic Wire Based Evanescent Field Sensor," IEEE Photon. Technol. Lett. 18, 2520 (2006).
[CrossRef]

Domynguez, C.

F. Prieto, B. Sepulveda, A. Calle, A. Llobera, C. Domynguez, A. Abad, A. Montoya, and L M Lechuga, "An integrated optical interferometric nanodevice based on silicon technology for biosensor applications," Nanotechnology 14, 907 (2003).
[CrossRef]

Driessen, A.

W. C. L. Hopman, P. Pottier, D. Yudistira, J. van Lith, P. V. Lambeck, R. M. De La Rue, and A. Driessen, "Quasi-One-Dimensional Photonic Crystal as a Compact Building-Block for Refractometric Optical Sensors," IEEE J. Sel. Top. Quantum Electron. 11, 11 (2005).
[CrossRef]

Fathpour, S.

Fujisawa, T.

T. Fujisawa and M. Koshiba, "Polarization-indipendent optical directional coupler based on slot waveguides," Opt. Lett. 31, 56 (2006).
[CrossRef] [PubMed]

T. Fujisawa and M. Koshiba, "All-optical logic gates based on nonlinear slot-waveguide couplers," J. Opt. Soc. Am. B 23,684 (2006).
[CrossRef]

T. Fujisawa and M. Koshiba, "Theoretical Investigation of Ultrasmall Polarization-Insensitive 1×2 Multimode Interference Waveguides Based on Sandwiched Structures," IEEE Photon. Technol. Lett. 18, 1246 (2006).
[CrossRef]

Fung, W.

C. Y. Chao, W. Fung, and L. J. Guo, "Polymer Microring Resonators for Biochemical Sensing Applications," IEEE J. Sel. Top. Quantum Electron. 12, 134 (2006).
[CrossRef]

Geschke, O.

S. Balslev, A. M. Jorgensen, B. Bilenberg, K. B. Mogensen, D. Snakenborg, O. Geschke, J. P. Kutter, and A. Kristensen, "Lab-on-a-chip with integrated optical transducers," Lab on a Chip 6, 213 (2006).
[CrossRef] [PubMed]

Guo, L. J.

C. Y. Chao, W. Fung, and L. J. Guo, "Polymer Microring Resonators for Biochemical Sensing Applications," IEEE J. Sel. Top. Quantum Electron. 12, 134 (2006).
[CrossRef]

Hainberger, R.

P. Müllner and R. Hainberger, "Structural Optimization of Silicon-On-Insulator Slot Waveguides," IEEE Photon. Technol. Lett. 18, 2557 (2006).
[CrossRef]

Harris, R. D.

Hochberg, M.

Hoekstra, H. J. W. M.

Hopman, W. C. L.

W. C. L. Hopman, P. Pottier, D. Yudistira, J. van Lith, P. V. Lambeck, R. M. De La Rue, and A. Driessen, "Quasi-One-Dimensional Photonic Crystal as a Compact Building-Block for Refractometric Optical Sensors," IEEE J. Sel. Top. Quantum Electron. 11, 11 (2005).
[CrossRef]

Ispida, S.

H. Yamada, T. Chu, S. Ispida, and Y. Arakawa, "Si Photonic Wire Waveguide Devices," IEEE J. Sel. Top. Quantum Electron. 12, 1371 (2006).
[CrossRef]

Jalali, B.

Janz, S.

A. Densmore, D.-X. Xu, P. Waldron, S. Janz, P. Cheben, J. Lapointe, A. Delâge, B. Lamontagne, J. H. Schmid, and E. Post, "A Silicon-on-Insulator Photonic Wire Based Evanescent Field Sensor," IEEE Photon. Technol. Lett. 18, 2520 (2006).
[CrossRef]

Jen, A. K.-Y.

Jorgensen, A. M.

S. Balslev, A. M. Jorgensen, B. Bilenberg, K. B. Mogensen, D. Snakenborg, O. Geschke, J. P. Kutter, and A. Kristensen, "Lab-on-a-chip with integrated optical transducers," Lab on a Chip 6, 213 (2006).
[CrossRef] [PubMed]

Koshiba, M.

T. Fujisawa and M. Koshiba, "Polarization-indipendent optical directional coupler based on slot waveguides," Opt. Lett. 31, 56 (2006).
[CrossRef] [PubMed]

T. Fujisawa and M. Koshiba, "Theoretical Investigation of Ultrasmall Polarization-Insensitive 1×2 Multimode Interference Waveguides Based on Sandwiched Structures," IEEE Photon. Technol. Lett. 18, 1246 (2006).
[CrossRef]

T. Fujisawa and M. Koshiba, "All-optical logic gates based on nonlinear slot-waveguide couplers," J. Opt. Soc. Am. B 23,684 (2006).
[CrossRef]

Kristensen, A.

S. Balslev, A. M. Jorgensen, B. Bilenberg, K. B. Mogensen, D. Snakenborg, O. Geschke, J. P. Kutter, and A. Kristensen, "Lab-on-a-chip with integrated optical transducers," Lab on a Chip 6, 213 (2006).
[CrossRef] [PubMed]

Kutter, J. P.

S. Balslev, A. M. Jorgensen, B. Bilenberg, K. B. Mogensen, D. Snakenborg, O. Geschke, J. P. Kutter, and A. Kristensen, "Lab-on-a-chip with integrated optical transducers," Lab on a Chip 6, 213 (2006).
[CrossRef] [PubMed]

Lambeck, P. V.

W. C. L. Hopman, P. Pottier, D. Yudistira, J. van Lith, P. V. Lambeck, R. M. De La Rue, and A. Driessen, "Quasi-One-Dimensional Photonic Crystal as a Compact Building-Block for Refractometric Optical Sensors," IEEE J. Sel. Top. Quantum Electron. 11, 11 (2005).
[CrossRef]

O. Parriaux, G. J. Valdhuis, H. J. W. M. Hoekstra, and P. V. Lambeck "Sensitivity Enhancement in Evanescent Optical Waveguide Sensors," J. Lightwave Technol. 18, 677 (2000).
[CrossRef]

Lamontagne, B.

A. Densmore, D.-X. Xu, P. Waldron, S. Janz, P. Cheben, J. Lapointe, A. Delâge, B. Lamontagne, J. H. Schmid, and E. Post, "A Silicon-on-Insulator Photonic Wire Based Evanescent Field Sensor," IEEE Photon. Technol. Lett. 18, 2520 (2006).
[CrossRef]

Lapointe, J.

A. Densmore, D.-X. Xu, P. Waldron, S. Janz, P. Cheben, J. Lapointe, A. Delâge, B. Lamontagne, J. H. Schmid, and E. Post, "A Silicon-on-Insulator Photonic Wire Based Evanescent Field Sensor," IEEE Photon. Technol. Lett. 18, 2520 (2006).
[CrossRef]

Lawson, R.

Lechuga, L M

F. Prieto, B. Sepulveda, A. Calle, A. Llobera, C. Domynguez, A. Abad, A. Montoya, and L M Lechuga, "An integrated optical interferometric nanodevice based on silicon technology for biosensor applications," Nanotechnology 14, 907 (2003).
[CrossRef]

Liao, Y.

Lipson, M.

Llobera, A.

F. Prieto, B. Sepulveda, A. Calle, A. Llobera, C. Domynguez, A. Abad, A. Montoya, and L M Lechuga, "An integrated optical interferometric nanodevice based on silicon technology for biosensor applications," Nanotechnology 14, 907 (2003).
[CrossRef]

Luff, B. J.

Minardo, A.

R. Bernini, N. Cennamo, A. Minardo, and L. Zeni, "Planar Waveguides for Fluorescence-Based Biosensing: Optimization and Analysis," IEEE Sens. J. 6, 1218 (2006).
[CrossRef]

Mogensen, K. B.

S. Balslev, A. M. Jorgensen, B. Bilenberg, K. B. Mogensen, D. Snakenborg, O. Geschke, J. P. Kutter, and A. Kristensen, "Lab-on-a-chip with integrated optical transducers," Lab on a Chip 6, 213 (2006).
[CrossRef] [PubMed]

Montoya, A.

F. Prieto, B. Sepulveda, A. Calle, A. Llobera, C. Domynguez, A. Abad, A. Montoya, and L M Lechuga, "An integrated optical interferometric nanodevice based on silicon technology for biosensor applications," Nanotechnology 14, 907 (2003).
[CrossRef]

Müllner, P.

P. Müllner and R. Hainberger, "Structural Optimization of Silicon-On-Insulator Slot Waveguides," IEEE Photon. Technol. Lett. 18, 2557 (2006).
[CrossRef]

Panepucci, R. R.

Parriaux, O.

Post, E.

A. Densmore, D.-X. Xu, P. Waldron, S. Janz, P. Cheben, J. Lapointe, A. Delâge, B. Lamontagne, J. H. Schmid, and E. Post, "A Silicon-on-Insulator Photonic Wire Based Evanescent Field Sensor," IEEE Photon. Technol. Lett. 18, 2520 (2006).
[CrossRef]

Pottier, P.

W. C. L. Hopman, P. Pottier, D. Yudistira, J. van Lith, P. V. Lambeck, R. M. De La Rue, and A. Driessen, "Quasi-One-Dimensional Photonic Crystal as a Compact Building-Block for Refractometric Optical Sensors," IEEE J. Sel. Top. Quantum Electron. 11, 11 (2005).
[CrossRef]

Prieto, F.

F. Prieto, B. Sepulveda, A. Calle, A. Llobera, C. Domynguez, A. Abad, A. Montoya, and L M Lechuga, "An integrated optical interferometric nanodevice based on silicon technology for biosensor applications," Nanotechnology 14, 907 (2003).
[CrossRef]

Scherer, A.

Schiffrin, D. J.

Schmid, J. H.

A. Densmore, D.-X. Xu, P. Waldron, S. Janz, P. Cheben, J. Lapointe, A. Delâge, B. Lamontagne, J. H. Schmid, and E. Post, "A Silicon-on-Insulator Photonic Wire Based Evanescent Field Sensor," IEEE Photon. Technol. Lett. 18, 2520 (2006).
[CrossRef]

Sepulveda, B.

F. Prieto, B. Sepulveda, A. Calle, A. Llobera, C. Domynguez, A. Abad, A. Montoya, and L M Lechuga, "An integrated optical interferometric nanodevice based on silicon technology for biosensor applications," Nanotechnology 14, 907 (2003).
[CrossRef]

Snakenborg, D.

S. Balslev, A. M. Jorgensen, B. Bilenberg, K. B. Mogensen, D. Snakenborg, O. Geschke, J. P. Kutter, and A. Kristensen, "Lab-on-a-chip with integrated optical transducers," Lab on a Chip 6, 213 (2006).
[CrossRef] [PubMed]

Sullivan, P. A.

Valdhuis, G. J.

van Lith, J.

W. C. L. Hopman, P. Pottier, D. Yudistira, J. van Lith, P. V. Lambeck, R. M. De La Rue, and A. Driessen, "Quasi-One-Dimensional Photonic Crystal as a Compact Building-Block for Refractometric Optical Sensors," IEEE J. Sel. Top. Quantum Electron. 11, 11 (2005).
[CrossRef]

Waldron, P.

A. Densmore, D.-X. Xu, P. Waldron, S. Janz, P. Cheben, J. Lapointe, A. Delâge, B. Lamontagne, J. H. Schmid, and E. Post, "A Silicon-on-Insulator Photonic Wire Based Evanescent Field Sensor," IEEE Photon. Technol. Lett. 18, 2520 (2006).
[CrossRef]

Wang, G.

Wilkinson, J. S.

Wilson, R.

Xu, D.-X.

A. Densmore, D.-X. Xu, P. Waldron, S. Janz, P. Cheben, J. Lapointe, A. Delâge, B. Lamontagne, J. H. Schmid, and E. Post, "A Silicon-on-Insulator Photonic Wire Based Evanescent Field Sensor," IEEE Photon. Technol. Lett. 18, 2520 (2006).
[CrossRef]

Xu, Q.

Yamada, H.

H. Yamada, T. Chu, S. Ispida, and Y. Arakawa, "Si Photonic Wire Waveguide Devices," IEEE J. Sel. Top. Quantum Electron. 12, 1371 (2006).
[CrossRef]

Yudistira, D.

W. C. L. Hopman, P. Pottier, D. Yudistira, J. van Lith, P. V. Lambeck, R. M. De La Rue, and A. Driessen, "Quasi-One-Dimensional Photonic Crystal as a Compact Building-Block for Refractometric Optical Sensors," IEEE J. Sel. Top. Quantum Electron. 11, 11 (2005).
[CrossRef]

Zeni, L.

R. Bernini, N. Cennamo, A. Minardo, and L. Zeni, "Planar Waveguides for Fluorescence-Based Biosensing: Optimization and Analysis," IEEE Sens. J. 6, 1218 (2006).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (3)

W. C. L. Hopman, P. Pottier, D. Yudistira, J. van Lith, P. V. Lambeck, R. M. De La Rue, and A. Driessen, "Quasi-One-Dimensional Photonic Crystal as a Compact Building-Block for Refractometric Optical Sensors," IEEE J. Sel. Top. Quantum Electron. 11, 11 (2005).
[CrossRef]

C. Y. Chao, W. Fung, and L. J. Guo, "Polymer Microring Resonators for Biochemical Sensing Applications," IEEE J. Sel. Top. Quantum Electron. 12, 134 (2006).
[CrossRef]

H. Yamada, T. Chu, S. Ispida, and Y. Arakawa, "Si Photonic Wire Waveguide Devices," IEEE J. Sel. Top. Quantum Electron. 12, 1371 (2006).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

A. Densmore, D.-X. Xu, P. Waldron, S. Janz, P. Cheben, J. Lapointe, A. Delâge, B. Lamontagne, J. H. Schmid, and E. Post, "A Silicon-on-Insulator Photonic Wire Based Evanescent Field Sensor," IEEE Photon. Technol. Lett. 18, 2520 (2006).
[CrossRef]

T. Fujisawa and M. Koshiba, "Theoretical Investigation of Ultrasmall Polarization-Insensitive 1×2 Multimode Interference Waveguides Based on Sandwiched Structures," IEEE Photon. Technol. Lett. 18, 1246 (2006).
[CrossRef]

P. Müllner and R. Hainberger, "Structural Optimization of Silicon-On-Insulator Slot Waveguides," IEEE Photon. Technol. Lett. 18, 2557 (2006).
[CrossRef]

IEEE Sens. J. (1)

R. Bernini, N. Cennamo, A. Minardo, and L. Zeni, "Planar Waveguides for Fluorescence-Based Biosensing: Optimization and Analysis," IEEE Sens. J. 6, 1218 (2006).
[CrossRef]

J. Lightwave Technol. (3)

J. Opt. Soc. Am. B (1)

Lab on a Chip (1)

S. Balslev, A. M. Jorgensen, B. Bilenberg, K. B. Mogensen, D. Snakenborg, O. Geschke, J. P. Kutter, and A. Kristensen, "Lab-on-a-chip with integrated optical transducers," Lab on a Chip 6, 213 (2006).
[CrossRef] [PubMed]

Nanotechnology (1)

F. Prieto, B. Sepulveda, A. Calle, A. Llobera, C. Domynguez, A. Abad, A. Montoya, and L M Lechuga, "An integrated optical interferometric nanodevice based on silicon technology for biosensor applications," Nanotechnology 14, 907 (2003).
[CrossRef]

Opt. Express (2)

Opt. Lett. (3)

Other (4)

F. Dell’Olio, V. M. N. Passaro, and F. De Leonardis, "Ammonia Optical Sensing by Microring Resonators," in Proc. of 11th Int. Meeting on Chemical Sensors, G. Sberveglieri, ed. (Publisher, Brescia, 2006), p. 27.

F. Dell’Olio, V. M. N. Passaro, and F. De Leonardis, "Surface Sensitivity Optimization of a Microring Resonator for Biochmical Sensing," in Proc. of 8th Int. Conf. on Transparent Optical Networks, M. Marciniak, Ed. (National Institute of Telecommunications, 2006) 4, pp. 128-131.

R. Bernini, N. Cennamo, A. Minardo, and L. Zeni, "Silicon planar waveguides for absorption based biosensors," Proc. of 1st Int. Workshop on Advances in sensors and interfaces, D. De Venuto and B. Courtois, ed. (Laterza, Bari, 2005), pp. 138-142.

Comsol Multiphysics by COMSOL ©, ver. 3.2, single license (2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (20)

Fig. 1.
Fig. 1.

(a) Conventional SOI slot waveguide structure with vertical sidewalls (θ=0°). (b-c) Relevant electric field squared module for quasi-TE and quasi-TM optical modes. (d) SOI slot waveguide with non vertical sidewalls (θ =8°). (e-f) Relevant electric field squared module for quasi-TE and quasi-TM optical modes. In modal profile calculation, an aqueous solution (nc =1.33) has been assumed as cover medium (h= 250 nm, w= 180 nm, g=100 nm).

Fig. 2.
Fig. 2.

Percentage shift of quasi-TE and quasi-TM mode effective indices (with respect to vertical case) versus θ (h= 250 nm, w= 180 nm, g=100 nm, conventional slot waveguide), for various cover materials.

Fig. 3.
Fig. 3.

Percentage shift of quasi-TE and quasi-TM mode effective indices (with respect to vertical case) versus w, as induced by non vertical sidewalls in conventional slot waveguides (h = 250 nm, g =100 nm, θ = 8°).

Fig. 4.
Fig. 4.

Conventional SOI slot waveguide confinement factors in cover medium and gap region versus w, assuming either vertical or non vertical (θ = 8°) sidewalls (h=250 nm, g=100 nm).

Fig. 5.
Fig. 5.

(a) SOI slot rib waveguide (θ = 0°). (b-c) Quasi-TE and quasi-TM optical modes propagating in the waveguide (squared module of electric field). (d) SOI slot rib waveguide with non vertical sidewalls (θ = 8°). (e-f) Resultant electric field squared module for quasi-TE and quasi-TM optical modes. In modal profile calculation, an aqueous solution has been assumed as cover medium (h= 250 nm, w= 180 nm, g=100 nm, s=60 nm).

Fig. 6.
Fig. 6.

Percentage shift of quasi-TE and quasi-TM mode effective indices (with respect to vertical case) as a function of non vertical sidewall tilting angle θ (h= 250 nm, w= 180 nm, g=100 nm, s=60 nm), for a slot rib waveguide.

Fig. 7.
Fig. 7.

SOI slot rib waveguide confinement factors in the cover medium and in the gap region dependence on s, assuming either vertical or non vertical (θ = 8°) side-walls (h = 250 nm, g = 100 nm, w = 180 nm).

Fig. 8.
Fig. 8.

Conventional SOI slot waveguide sensitivity dependence on w, for vertical and non vertical sidewalls (h=250 nm).

Fig. 9.
Fig. 9.

Conventional SOI slot waveguide sensitivity versus h/w, for w=140 nm, 180 nm and 220 nm (g=100 nm).

Fig. 10.
Fig. 10.

Conventional SOI slot waveguide sensitivity as a function of g for quasi-TE and quasi-TM modes (w=180 nm, h=324 nm).

Fig. 11.
Fig. 11.

(a) SOI rib waveguide structure. (b) Si-wire waveguide structure.

Fig. 12.
Fig. 12.

SOI rib waveguide and Si-wire waveguide sensitivity as a function of waveguide width (hWIRE = hRIB = 250 nm), quasi-TE and quasi-TM polarizations.

Fig. 13.
Fig. 13.

SOI conventional slot (a) and slot rib (b) waveguides for surface sensing.

Fig. 14.
Fig. 14.

SOI conventional slot waveguide surface sensitivity versus w, for vertical and non vertical sidewalls (h=250 nm).

Fig. 15
Fig. 15

Conventional slot waveguide surface sensitivity versus g (h=250 nm, w=280 nm), for vertical sidewalls.

Fig. 16.
Fig. 16.

SOI slot rib waveguide surface sensitivity dependence on w, for vertical and non vertical sidewalls (h=250 nm, s=60 nm).

Fig. 17.
Fig. 17.

SOI slot rib waveguide surface sensitivity as a function of s (h =250 nm, g =100 nm, w =220 nm).

Fig. 18.
Fig. 18.

SOI slot rib waveguide surface sensitivity as a function of g (h=250 nm, s=10 nm, w=220 nm).

Fig. 19.
Fig. 19.

SOI rib waveguide surface sensitivity dependence on dRIB /hRIB for quasi-TE and quasi-TM modes (wRIB = 300 nm).

Fig. 20.
Fig. 20.

Si-wire waveguide surface sensitivity versus wWIRE for quasi-TE and quasi-TM modes (hWIRE = 250 and 300 nm).

Tables (3)

Tables Icon

Table 1. Fitting parameters of Eq. (6).

Tables Icon

Table 2. Parameters of conventional SOI slot waveguide optimized for homogeneous sensing.

Tables Icon

Table 3. Parameters of SOI slot rib waveguide optimized for surface sensing.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

Γ C = C E x y 2 dxdy E x y 2 dxdy Γ G = G E x y 2 dxdy E x y 2 dxdy
S h = n eff n c
S h = n eff n c | n c = n c 0 = 2 n c 0 η 0 P c E x y 2 dxdy = 2 n c 0 Γ c η 0 P E x y 2 dxdy
P = [ ( E × H * + E * × H ) z ̂ ] dxdy
S h = 2 n c 0 η 0 P [ C E x 2 dxdy + C E y 2 dxdy + C E z 2 dxdy ]
S h = c 0 + c 1 ( h w ) + c 2 ( h w ) 2
S s = n eff ρ
Δ n eff = n m 2 ( n c 0 ) 2 η 0 P M E x y 2 dxdy

Metrics