Abstract

We demonstrate a solitary pulse output from an 8.3-MHz mode-locked Yb-doped fiber laser, operating entirely in the normal dispersion regime. The typical output hyperbolic-secant pulses have a 14-ps pulse width and a 1.2-mW average output power. The spectrum has steep band edges with a 6.1-nm width and a tunable center wavelength between 1050 and 1080 nm. Using a frequency-resolved optical gating setup, we show that the pulse intensity and phase profiles are consistent with a chirped soliton. Energy quantization is observed, thus demonstrating the non-parabolic nature of these pulses. The laser output is compressed to near the transform limit (~430 fs).

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Tamura, E. P. Ippen, H. A. Haus, and L.E. Nelson, "77-fs pulse generation from a stretched-pulse mode-locked all-fiber ring laser," Opt. Lett. 18, 1080 (1993).
    [CrossRef]
  2. H. Lim, F. Ilday, and F. Wise, "Femtosecond ytterbium fiber laser with photonic crystal fiber for dispersion control," Opt. Express 10, 1497 (2002), http://www.opticsinfobase.org/abstract.cfm?URI=oe-10-25-1497.
    [PubMed]
  3. V. Cautaerts, D. J. Richardson, R. Paschotta, and D. C. Hanna, "Stretched pulse Yb3+:silica fiber laser," Opt. Lett. 22, 316 (1997).
    [CrossRef] [PubMed]
  4. H. Lim, F. Ö. Ilday, and F. W. Wise, "Generation of 2-nJ pulses from a femtosecond ytterbium fiber laser," Opt. Lett. 28, 660 (2003).
    [CrossRef] [PubMed]
  5. F. Ö. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, "Self-similar evolution of parabolic pulses in a laser," Phys. Rev. Lett. 92, 213902 (2004).
    [CrossRef] [PubMed]
  6. K.S. Abedin, J. T. Gopinath, L. A. Jiang, M. E. Grein, H. A. Haus, and E. P. Ippen, "Self-stabilized passive, harmonically mode-locked stretched-pulse erbium fiber ring laser," Opt. Lett. 27, 1758 (2002).
    [CrossRef]
  7. T. Sylvestre, S. Coen, O. Deparis, P. Emplit, and M. Haelterman, "Demonstration of passive modelocking through dissipative four-wave mixing in fibre laser," Electron. Lett. 37, 881 (2001).
    [CrossRef]
  8. J. R. Buckley, F. W. Wise, F. Ö. Ilday, and T. Sosnowski, "Femtosecond fiber lasers with pulse energies above 10 nJ," Opt. Lett. 30, 1888 (2005).
    [CrossRef] [PubMed]
  9. P. A. Bélanger, L. Gagnon, and C. Paré, "Solitary pulses in an amplified nonlinear dispersive medium," Opt. Lett. 14, 943 (1989).
    [CrossRef] [PubMed]
  10. C. Paré, L. Gagnon, and P. A. Bélanger, "Spatial solitary wave in a weakly saturated amplifying absorbing medium," Opt. Commun. 74, 228 (1989).
    [CrossRef]
  11. D. T. Walton and H. G. Winful, "Passive mode locking with an active nonlinear directional coupler: positive group-velocity dispersion," Opt. Lett. 18, 720 (1993).
    [CrossRef] [PubMed]
  12. L. M. Zhao, D. Y. Tang, and J. Wu, "Gain-guided soliton in a positive group-dispersion fiber laser," Opt. Lett. 31, 1788 (2006).
    [CrossRef] [PubMed]
  13. A. Chong, J. Buckley, W. Renninger, and F. Wise, "All-normal-dispersion femtosecond fiber laser," Opt. Express 14, 10095 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-21-10095.
    [CrossRef] [PubMed]
  14. A. B. Grudinin, D. J. Richardson, and D. N. Payne, "Energy quantization in figure eight fibre laser," Electron. Lett. 28, 67 (1992).
    [CrossRef]
  15. M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, "Self-similar propagation and amplification of parabolic pulses in optical fibers," Phys. Rev. Lett. 84, 6010 (2000).
    [CrossRef] [PubMed]
  16. D. N. Fittinghoff, J. A. Squier, C. P. J. Barty, J. N. Sweetser, R. Trebino, and M. Müller, "Collinear type II second-harmonic-generation frequency-resolved optical gating for use with high-numerical-aperature objectives," Opt. Lett. 23, 1046 (1998).
    [CrossRef]
  17. J. M. Soto-Crespo, N. N. Akhemediev, V. V. Afanasjev, and S. Wabnitz, "Pulse solutions of the cubic-quintic complex Ginzburg-Landau equation in the case of normal dispersion," Phys. Rev. E 55, 4783 (1997).
    [CrossRef]
  18. F. K. Fatemi, "Analysis of nonadiabatically compressed pulses from dispersion-decreasing fiber," Opt. Lett. 27, 1637 (2002).
    [CrossRef]
  19. M. L. Dennis and I. N. Duling, III, "Experimental Study of Sideband Generation in Femtosecond Fiber Lasers," IEEE J. Quantum Electron. 30, 1469 (1994).
    [CrossRef]
  20. L. W. Liou and G. P. Agrawal, "Effect of frequency chirp on soliton spectral sidebands in fiber lasers," Opt. Lett. 20, 1286 (1995).
    [CrossRef] [PubMed]
  21. P. A. Bélanger, "On the profile of pulses generated by fiber lasers," Opt. Express 13, 8089 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-20-8089.
    [CrossRef] [PubMed]

2006 (2)

2005 (2)

2004 (1)

F. Ö. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, "Self-similar evolution of parabolic pulses in a laser," Phys. Rev. Lett. 92, 213902 (2004).
[CrossRef] [PubMed]

2003 (1)

2002 (3)

2001 (1)

T. Sylvestre, S. Coen, O. Deparis, P. Emplit, and M. Haelterman, "Demonstration of passive modelocking through dissipative four-wave mixing in fibre laser," Electron. Lett. 37, 881 (2001).
[CrossRef]

2000 (1)

M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, "Self-similar propagation and amplification of parabolic pulses in optical fibers," Phys. Rev. Lett. 84, 6010 (2000).
[CrossRef] [PubMed]

1998 (1)

1997 (2)

J. M. Soto-Crespo, N. N. Akhemediev, V. V. Afanasjev, and S. Wabnitz, "Pulse solutions of the cubic-quintic complex Ginzburg-Landau equation in the case of normal dispersion," Phys. Rev. E 55, 4783 (1997).
[CrossRef]

V. Cautaerts, D. J. Richardson, R. Paschotta, and D. C. Hanna, "Stretched pulse Yb3+:silica fiber laser," Opt. Lett. 22, 316 (1997).
[CrossRef] [PubMed]

1995 (1)

1994 (1)

M. L. Dennis and I. N. Duling, III, "Experimental Study of Sideband Generation in Femtosecond Fiber Lasers," IEEE J. Quantum Electron. 30, 1469 (1994).
[CrossRef]

1993 (2)

1992 (1)

A. B. Grudinin, D. J. Richardson, and D. N. Payne, "Energy quantization in figure eight fibre laser," Electron. Lett. 28, 67 (1992).
[CrossRef]

1989 (2)

P. A. Bélanger, L. Gagnon, and C. Paré, "Solitary pulses in an amplified nonlinear dispersive medium," Opt. Lett. 14, 943 (1989).
[CrossRef] [PubMed]

C. Paré, L. Gagnon, and P. A. Bélanger, "Spatial solitary wave in a weakly saturated amplifying absorbing medium," Opt. Commun. 74, 228 (1989).
[CrossRef]

Abedin, K.S.

Afanasjev, V. V.

J. M. Soto-Crespo, N. N. Akhemediev, V. V. Afanasjev, and S. Wabnitz, "Pulse solutions of the cubic-quintic complex Ginzburg-Landau equation in the case of normal dispersion," Phys. Rev. E 55, 4783 (1997).
[CrossRef]

Agrawal, G. P.

Akhemediev, N. N.

J. M. Soto-Crespo, N. N. Akhemediev, V. V. Afanasjev, and S. Wabnitz, "Pulse solutions of the cubic-quintic complex Ginzburg-Landau equation in the case of normal dispersion," Phys. Rev. E 55, 4783 (1997).
[CrossRef]

Barty, C. P. J.

Bélanger, P. A.

Buckley, J.

Buckley, J. R.

J. R. Buckley, F. W. Wise, F. Ö. Ilday, and T. Sosnowski, "Femtosecond fiber lasers with pulse energies above 10 nJ," Opt. Lett. 30, 1888 (2005).
[CrossRef] [PubMed]

F. Ö. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, "Self-similar evolution of parabolic pulses in a laser," Phys. Rev. Lett. 92, 213902 (2004).
[CrossRef] [PubMed]

Cautaerts, V.

Chong, A.

Clark, W. G.

F. Ö. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, "Self-similar evolution of parabolic pulses in a laser," Phys. Rev. Lett. 92, 213902 (2004).
[CrossRef] [PubMed]

Coen, S.

T. Sylvestre, S. Coen, O. Deparis, P. Emplit, and M. Haelterman, "Demonstration of passive modelocking through dissipative four-wave mixing in fibre laser," Electron. Lett. 37, 881 (2001).
[CrossRef]

Dennis, M. L.

M. L. Dennis and I. N. Duling, III, "Experimental Study of Sideband Generation in Femtosecond Fiber Lasers," IEEE J. Quantum Electron. 30, 1469 (1994).
[CrossRef]

Deparis, O.

T. Sylvestre, S. Coen, O. Deparis, P. Emplit, and M. Haelterman, "Demonstration of passive modelocking through dissipative four-wave mixing in fibre laser," Electron. Lett. 37, 881 (2001).
[CrossRef]

Dudley, J. M.

M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, "Self-similar propagation and amplification of parabolic pulses in optical fibers," Phys. Rev. Lett. 84, 6010 (2000).
[CrossRef] [PubMed]

Duling, I. N.

M. L. Dennis and I. N. Duling, III, "Experimental Study of Sideband Generation in Femtosecond Fiber Lasers," IEEE J. Quantum Electron. 30, 1469 (1994).
[CrossRef]

Emplit, P.

T. Sylvestre, S. Coen, O. Deparis, P. Emplit, and M. Haelterman, "Demonstration of passive modelocking through dissipative four-wave mixing in fibre laser," Electron. Lett. 37, 881 (2001).
[CrossRef]

Fatemi, F. K.

Fermann, M. E.

M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, "Self-similar propagation and amplification of parabolic pulses in optical fibers," Phys. Rev. Lett. 84, 6010 (2000).
[CrossRef] [PubMed]

Fittinghoff, D. N.

Gagnon, L.

C. Paré, L. Gagnon, and P. A. Bélanger, "Spatial solitary wave in a weakly saturated amplifying absorbing medium," Opt. Commun. 74, 228 (1989).
[CrossRef]

P. A. Bélanger, L. Gagnon, and C. Paré, "Solitary pulses in an amplified nonlinear dispersive medium," Opt. Lett. 14, 943 (1989).
[CrossRef] [PubMed]

Gopinath, J. T.

Grein, M. E.

Grudinin, A. B.

A. B. Grudinin, D. J. Richardson, and D. N. Payne, "Energy quantization in figure eight fibre laser," Electron. Lett. 28, 67 (1992).
[CrossRef]

Haelterman, M.

T. Sylvestre, S. Coen, O. Deparis, P. Emplit, and M. Haelterman, "Demonstration of passive modelocking through dissipative four-wave mixing in fibre laser," Electron. Lett. 37, 881 (2001).
[CrossRef]

Hanna, D. C.

Harvey, J. D.

M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, "Self-similar propagation and amplification of parabolic pulses in optical fibers," Phys. Rev. Lett. 84, 6010 (2000).
[CrossRef] [PubMed]

Haus, H. A.

Ilday, F.

Ilday, F. Ö.

Ippen, E. P.

Jiang, L. A.

Kruglov, V. I.

M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, "Self-similar propagation and amplification of parabolic pulses in optical fibers," Phys. Rev. Lett. 84, 6010 (2000).
[CrossRef] [PubMed]

Lim, H.

Liou, L. W.

Müller, M.

Nelson, L.E.

Paré, C.

P. A. Bélanger, L. Gagnon, and C. Paré, "Solitary pulses in an amplified nonlinear dispersive medium," Opt. Lett. 14, 943 (1989).
[CrossRef] [PubMed]

C. Paré, L. Gagnon, and P. A. Bélanger, "Spatial solitary wave in a weakly saturated amplifying absorbing medium," Opt. Commun. 74, 228 (1989).
[CrossRef]

Paschotta, R.

Payne, D. N.

A. B. Grudinin, D. J. Richardson, and D. N. Payne, "Energy quantization in figure eight fibre laser," Electron. Lett. 28, 67 (1992).
[CrossRef]

Renninger, W.

Richardson, D. J.

V. Cautaerts, D. J. Richardson, R. Paschotta, and D. C. Hanna, "Stretched pulse Yb3+:silica fiber laser," Opt. Lett. 22, 316 (1997).
[CrossRef] [PubMed]

A. B. Grudinin, D. J. Richardson, and D. N. Payne, "Energy quantization in figure eight fibre laser," Electron. Lett. 28, 67 (1992).
[CrossRef]

Sosnowski, T.

Soto-Crespo, J. M.

J. M. Soto-Crespo, N. N. Akhemediev, V. V. Afanasjev, and S. Wabnitz, "Pulse solutions of the cubic-quintic complex Ginzburg-Landau equation in the case of normal dispersion," Phys. Rev. E 55, 4783 (1997).
[CrossRef]

Squier, J. A.

Sweetser, J. N.

Sylvestre, T.

T. Sylvestre, S. Coen, O. Deparis, P. Emplit, and M. Haelterman, "Demonstration of passive modelocking through dissipative four-wave mixing in fibre laser," Electron. Lett. 37, 881 (2001).
[CrossRef]

Tamura, K.

Tang, D. Y.

Thomsen, B. C.

M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, "Self-similar propagation and amplification of parabolic pulses in optical fibers," Phys. Rev. Lett. 84, 6010 (2000).
[CrossRef] [PubMed]

Trebino, R.

Wabnitz, S.

J. M. Soto-Crespo, N. N. Akhemediev, V. V. Afanasjev, and S. Wabnitz, "Pulse solutions of the cubic-quintic complex Ginzburg-Landau equation in the case of normal dispersion," Phys. Rev. E 55, 4783 (1997).
[CrossRef]

Walton, D. T.

Winful, H. G.

Wise, F.

Wise, F. W.

Wu, J.

Zhao, L. M.

Electron. Lett. (2)

T. Sylvestre, S. Coen, O. Deparis, P. Emplit, and M. Haelterman, "Demonstration of passive modelocking through dissipative four-wave mixing in fibre laser," Electron. Lett. 37, 881 (2001).
[CrossRef]

A. B. Grudinin, D. J. Richardson, and D. N. Payne, "Energy quantization in figure eight fibre laser," Electron. Lett. 28, 67 (1992).
[CrossRef]

IEEE J. Quantum Electron. (1)

M. L. Dennis and I. N. Duling, III, "Experimental Study of Sideband Generation in Femtosecond Fiber Lasers," IEEE J. Quantum Electron. 30, 1469 (1994).
[CrossRef]

Opt. Commun. (1)

C. Paré, L. Gagnon, and P. A. Bélanger, "Spatial solitary wave in a weakly saturated amplifying absorbing medium," Opt. Commun. 74, 228 (1989).
[CrossRef]

Opt. Express (3)

Opt. Lett. (11)

L. W. Liou and G. P. Agrawal, "Effect of frequency chirp on soliton spectral sidebands in fiber lasers," Opt. Lett. 20, 1286 (1995).
[CrossRef] [PubMed]

V. Cautaerts, D. J. Richardson, R. Paschotta, and D. C. Hanna, "Stretched pulse Yb3+:silica fiber laser," Opt. Lett. 22, 316 (1997).
[CrossRef] [PubMed]

H. Lim, F. Ö. Ilday, and F. W. Wise, "Generation of 2-nJ pulses from a femtosecond ytterbium fiber laser," Opt. Lett. 28, 660 (2003).
[CrossRef] [PubMed]

J. R. Buckley, F. W. Wise, F. Ö. Ilday, and T. Sosnowski, "Femtosecond fiber lasers with pulse energies above 10 nJ," Opt. Lett. 30, 1888 (2005).
[CrossRef] [PubMed]

P. A. Bélanger, L. Gagnon, and C. Paré, "Solitary pulses in an amplified nonlinear dispersive medium," Opt. Lett. 14, 943 (1989).
[CrossRef] [PubMed]

K. Tamura, E. P. Ippen, H. A. Haus, and L.E. Nelson, "77-fs pulse generation from a stretched-pulse mode-locked all-fiber ring laser," Opt. Lett. 18, 1080 (1993).
[CrossRef]

K.S. Abedin, J. T. Gopinath, L. A. Jiang, M. E. Grein, H. A. Haus, and E. P. Ippen, "Self-stabilized passive, harmonically mode-locked stretched-pulse erbium fiber ring laser," Opt. Lett. 27, 1758 (2002).
[CrossRef]

F. K. Fatemi, "Analysis of nonadiabatically compressed pulses from dispersion-decreasing fiber," Opt. Lett. 27, 1637 (2002).
[CrossRef]

D. N. Fittinghoff, J. A. Squier, C. P. J. Barty, J. N. Sweetser, R. Trebino, and M. Müller, "Collinear type II second-harmonic-generation frequency-resolved optical gating for use with high-numerical-aperature objectives," Opt. Lett. 23, 1046 (1998).
[CrossRef]

D. T. Walton and H. G. Winful, "Passive mode locking with an active nonlinear directional coupler: positive group-velocity dispersion," Opt. Lett. 18, 720 (1993).
[CrossRef] [PubMed]

L. M. Zhao, D. Y. Tang, and J. Wu, "Gain-guided soliton in a positive group-dispersion fiber laser," Opt. Lett. 31, 1788 (2006).
[CrossRef] [PubMed]

Phys. Rev. E (1)

J. M. Soto-Crespo, N. N. Akhemediev, V. V. Afanasjev, and S. Wabnitz, "Pulse solutions of the cubic-quintic complex Ginzburg-Landau equation in the case of normal dispersion," Phys. Rev. E 55, 4783 (1997).
[CrossRef]

Phys. Rev. Lett. (2)

M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, "Self-similar propagation and amplification of parabolic pulses in optical fibers," Phys. Rev. Lett. 84, 6010 (2000).
[CrossRef] [PubMed]

F. Ö. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, "Self-similar evolution of parabolic pulses in a laser," Phys. Rev. Lett. 92, 213902 (2004).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig.1.
Fig.1.

Schematic diagram of 8.3-MHz soliton Yb-doped fiber laser. WDM = wavelength-division multiplexer. BPF = band-pass filter. PBS = polarizing beam splitter. Iso = isolator. AC = autocorrelator. OSA = optical spectrum analyzer.

Fig. 2.
Fig. 2.

Average laser pulse output power (left y-axis) and calculated normalized intensity |N| (right y-axis) vs. pump power.

Fig. 3.
Fig. 3.

Output power vs. pump power. The shaded regions indicate the difference between the total and the pulse power. The output spectra over a 60-dB intensity range for 3 different pump levels are shown.

Fig. 4.
Fig. 4.

FROG measurements of the laser output in (a) Time domain and (b) Spectral domain. The spectrum, measured by an OSA, is shown as a solid line. x = Intensity. o = Phase.

Fig. 5.
Fig. 5.

Comparison of pulse autocorrelation from the FROG measurement and from a commerical autocorrelator.

Fig. 6.
Fig. 6.

After compression, the laser output measured by FROG system (a) Time domain and (b) Spectral domain. Hyperbolic-secant pulse shape fit is shown as a solid line in (a). The spectrum, measured by an OSA, is shown as a solid line in (b). x = Intensity. o = Phase.

Metrics