Abstract

The two-photon excited fluorescence from a dye solution is enhanced when a small amount of micro-meter sized silica beads are added. This observation is made in the simple scattering regime (inter-sphere distance four times larger than their radius) and is shown to depend on the concentration of the silica spheres. For a solution of rhodamine B, the enhancement can reach more than 30 %. As complementary experiments show that the fluorescence efficiency is unchanged, we argue that the non-linear absorption is enhanced due to focussing of the incident beam in the near-field of the spheres, a situation previously referred to as photonic (nano-)jets [3]. Our calculations indeed show that for the parameters of the spheres studied near-field focussing leads to an intensity concentration close to the sphere surface. We suggest that these photonic jets could be used to enhance other non-linear optical effects.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Mie, "Beiträge zur Optik trberMedien, speziell kolloidalerMetallösungen," Ann. d. Phys. 25377-445 (1908).
    [CrossRef]
  2. J. P. Barton, "Near-surface and scattered electromagnetic fields for a layered spheroid with arbitrary illumination," Appl. Opt. 40,3598-3607 (2001).
    [CrossRef]
  3. Z. Chen, A. Taflove, and V. Backman, "Photonic nanojet enhancement of backscattering of light by nanoparticles: a potential novel visible-light ultramicroscopy technique," Opt. Express. 12,1214-1220 (2004).
    [CrossRef] [PubMed]
  4. S. Lecler, Y. Takakura, and P. Meyrueis, "Properties of a 3D photonic jet," Opt. Lett. 30,2641-2643 (2005).
    [CrossRef] [PubMed]
  5. D. S. Benincasa, P. W. Barber, J. Z. Zhang, W. F. Hsieh, and R. K. Chang, "Spatial distribution of the internal and near-field intensities of large cylindrical and spherical scatterers," Appl. Opt. 26,1348-1357 (1987).
    [CrossRef] [PubMed]
  6. L. E. McNeil, A. R. Hanuska, and R. H. French, "Orientation dependence in near-field scattering from TiO2 particles," Appl. Opt. 40,3726-3736 (2001).
    [CrossRef]
  7. A. V. Itagi and W. A. Challener, "Optics of photonic nanojets," J. Opt. Soc. Am. A 22,2847-2858 (2005).
    [CrossRef]
  8. S. Lecler, "Light scattering by sub-micrometric particles," thesis at the Louis Pasteur University (http://wwwscd-ulp.u-strasbg.fr/theses/theselec.html) - Strasbourg -France (2005).
  9. S. C. Hill, V. Boutou, J. Yu et al. "Enhanced backward-directed multiphoton-excited fluorescence from dielectric microcavities," Phys. Rev. Lett. 85,54-7 (2000).
    [CrossRef] [PubMed]
  10. J. B. Snow, S. X. Qian, and R. K. Chang "Stimulated Raman scattering from individual water and ethanol droplets at morphology-dependent resonances," Opt. Lett. 10,37-39 (1985).
    [CrossRef] [PubMed]
  11. C. Favre, V. Boutou, StevenC. Hill,  et al. "White-light nanosource with directional emission," Phys. Rev. Lett. 89,37-39 (2002).
    [CrossRef]
  12. P. Chylek, M. A. Jarzembski, and V. Srivastava,  et al. "Effect of spherical particles on laser-induced breakdown of gases," Appl. Opt. 26,760-762 (1987).
    [CrossRef] [PubMed]
  13. M. Moskovits, "Surface-enhanced spectroscopy," Rev. Mod. Phys. 57,783-826 (1985).
    [CrossRef]
  14. I. Teraoka and S. Arnold "Theory of resonance shifts in TE and TM whispering gallery modes by nonradial perturbations for sensing applications, " J. Opt. Soc. Am. B 23,1381-1389 (2006).
    [CrossRef]
  15. H. J. Munzer, M. Mosbacher,M. Bertsch, J. Zimmermann, P. Leiderer, and J. Boneberg, "Local field enhancement effects for nanostructuring of surfaces," J. Microsc. 202,129-135 (2001).
    [CrossRef] [PubMed]
  16. X. Li, Z. Chen, A. Taflove, and V. Backman, "Optical analysis of nanoparticles via enhanced backscattering facilitated by 3-D photonic nanojets," Opt. Express. 13,526-533 (2005).
    [CrossRef] [PubMed]
  17. S. Lecler, Y. Takakura, and P. Meyrueis, "Generation of a 3D photonic nanojet to enhance scattering of light by nanoparticles: interest for microscopy," IMVIE symposium, Strasbourg, France, 1-4 march (2005).
  18. M. Born and E. Wolf, Principle of optics ed.7, (Pergamon Press, p.633, 1980).
  19. W. Stöber, A. Fink, and E. Bohn, "Controlled growth of monodisperse silica spheres in the micron size range," J. Colloid Interface Sci. 26,62-69 (1968).
    [CrossRef]
  20. B. Thomas, "Effets propagatifs d’impulsions lumineuses femtosecondes dans des tunnels optiques," thesis at the Louis Pasteur University - Strasbourg -France (2002).
  21. H. C. Van de Hulst, Light scattering by small particles, (Dover publications, 1981).
  22. A. Fischer, C. Cremer, and E. H. K. Stelzer, "Fluorescence of coumarins and xanthenes after two-photon absprption with a pulsed titanium-sapphire laser," Appl. Opt. 34,1989-2003 (1995).
    [CrossRef] [PubMed]
  23. N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, and E. Sauvain, "Laser action in strongly scattering media, " Nature 368, 436-438 (1994).
    [CrossRef]
  24. H. Z. Wang, F. L. Zhao, Y. J. He, X. G. Zheng and X. G. Huang, "Low-threshold lasing of a rhodamine dye solution embedded with nanoparticle fractal aggregates," Opt. Lett. 23,777-779 (1998).
    [CrossRef]
  25. J. R. Lakowicz, "Principles of Fluorescence Spectroscopy," (Kluwer Academic - Plenum Publishers, New York, 1999).

2006

2005

X. Li, Z. Chen, A. Taflove, and V. Backman, "Optical analysis of nanoparticles via enhanced backscattering facilitated by 3-D photonic nanojets," Opt. Express. 13,526-533 (2005).
[CrossRef] [PubMed]

S. Lecler, Y. Takakura, and P. Meyrueis, "Properties of a 3D photonic jet," Opt. Lett. 30,2641-2643 (2005).
[CrossRef] [PubMed]

A. V. Itagi and W. A. Challener, "Optics of photonic nanojets," J. Opt. Soc. Am. A 22,2847-2858 (2005).
[CrossRef]

2004

Z. Chen, A. Taflove, and V. Backman, "Photonic nanojet enhancement of backscattering of light by nanoparticles: a potential novel visible-light ultramicroscopy technique," Opt. Express. 12,1214-1220 (2004).
[CrossRef] [PubMed]

2002

C. Favre, V. Boutou, StevenC. Hill,  et al. "White-light nanosource with directional emission," Phys. Rev. Lett. 89,37-39 (2002).
[CrossRef]

2001

2000

S. C. Hill, V. Boutou, J. Yu et al. "Enhanced backward-directed multiphoton-excited fluorescence from dielectric microcavities," Phys. Rev. Lett. 85,54-7 (2000).
[CrossRef] [PubMed]

1998

1995

1994

N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, and E. Sauvain, "Laser action in strongly scattering media, " Nature 368, 436-438 (1994).
[CrossRef]

1987

1985

1968

W. Stöber, A. Fink, and E. Bohn, "Controlled growth of monodisperse silica spheres in the micron size range," J. Colloid Interface Sci. 26,62-69 (1968).
[CrossRef]

1908

G. Mie, "Beiträge zur Optik trberMedien, speziell kolloidalerMetallösungen," Ann. d. Phys. 25377-445 (1908).
[CrossRef]

Arnold, S.

Backman, V.

X. Li, Z. Chen, A. Taflove, and V. Backman, "Optical analysis of nanoparticles via enhanced backscattering facilitated by 3-D photonic nanojets," Opt. Express. 13,526-533 (2005).
[CrossRef] [PubMed]

Z. Chen, A. Taflove, and V. Backman, "Photonic nanojet enhancement of backscattering of light by nanoparticles: a potential novel visible-light ultramicroscopy technique," Opt. Express. 12,1214-1220 (2004).
[CrossRef] [PubMed]

Balachandran, R. M.

N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, and E. Sauvain, "Laser action in strongly scattering media, " Nature 368, 436-438 (1994).
[CrossRef]

Barber, P. W.

Barton, J. P.

Benincasa, D. S.

Bertsch, M.

H. J. Munzer, M. Mosbacher,M. Bertsch, J. Zimmermann, P. Leiderer, and J. Boneberg, "Local field enhancement effects for nanostructuring of surfaces," J. Microsc. 202,129-135 (2001).
[CrossRef] [PubMed]

Bohn, E.

W. Stöber, A. Fink, and E. Bohn, "Controlled growth of monodisperse silica spheres in the micron size range," J. Colloid Interface Sci. 26,62-69 (1968).
[CrossRef]

Boneberg, J.

H. J. Munzer, M. Mosbacher,M. Bertsch, J. Zimmermann, P. Leiderer, and J. Boneberg, "Local field enhancement effects for nanostructuring of surfaces," J. Microsc. 202,129-135 (2001).
[CrossRef] [PubMed]

Boutou, V.

C. Favre, V. Boutou, StevenC. Hill,  et al. "White-light nanosource with directional emission," Phys. Rev. Lett. 89,37-39 (2002).
[CrossRef]

S. C. Hill, V. Boutou, J. Yu et al. "Enhanced backward-directed multiphoton-excited fluorescence from dielectric microcavities," Phys. Rev. Lett. 85,54-7 (2000).
[CrossRef] [PubMed]

Challener, W. A.

Chang, R. K.

Chen, Z.

X. Li, Z. Chen, A. Taflove, and V. Backman, "Optical analysis of nanoparticles via enhanced backscattering facilitated by 3-D photonic nanojets," Opt. Express. 13,526-533 (2005).
[CrossRef] [PubMed]

Z. Chen, A. Taflove, and V. Backman, "Photonic nanojet enhancement of backscattering of light by nanoparticles: a potential novel visible-light ultramicroscopy technique," Opt. Express. 12,1214-1220 (2004).
[CrossRef] [PubMed]

Chylek, P.

Cremer, C.

Favre, C.

C. Favre, V. Boutou, StevenC. Hill,  et al. "White-light nanosource with directional emission," Phys. Rev. Lett. 89,37-39 (2002).
[CrossRef]

Fink, A.

W. Stöber, A. Fink, and E. Bohn, "Controlled growth of monodisperse silica spheres in the micron size range," J. Colloid Interface Sci. 26,62-69 (1968).
[CrossRef]

Fischer, A.

French, R. H.

Gomes, A. S. L.

N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, and E. Sauvain, "Laser action in strongly scattering media, " Nature 368, 436-438 (1994).
[CrossRef]

Hanuska, A. R.

He, Y. J.

Hill, C.

C. Favre, V. Boutou, StevenC. Hill,  et al. "White-light nanosource with directional emission," Phys. Rev. Lett. 89,37-39 (2002).
[CrossRef]

Hill, S. C.

S. C. Hill, V. Boutou, J. Yu et al. "Enhanced backward-directed multiphoton-excited fluorescence from dielectric microcavities," Phys. Rev. Lett. 85,54-7 (2000).
[CrossRef] [PubMed]

Hsieh, W. F.

Huang, X. G.

Itagi, A. V.

Jarzembski, M. A.

Lawandy, N. M.

N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, and E. Sauvain, "Laser action in strongly scattering media, " Nature 368, 436-438 (1994).
[CrossRef]

Lecler, S.

Leiderer, P.

H. J. Munzer, M. Mosbacher,M. Bertsch, J. Zimmermann, P. Leiderer, and J. Boneberg, "Local field enhancement effects for nanostructuring of surfaces," J. Microsc. 202,129-135 (2001).
[CrossRef] [PubMed]

Li, X.

X. Li, Z. Chen, A. Taflove, and V. Backman, "Optical analysis of nanoparticles via enhanced backscattering facilitated by 3-D photonic nanojets," Opt. Express. 13,526-533 (2005).
[CrossRef] [PubMed]

McNeil, L. E.

Meyrueis, P.

Mie, G.

G. Mie, "Beiträge zur Optik trberMedien, speziell kolloidalerMetallösungen," Ann. d. Phys. 25377-445 (1908).
[CrossRef]

Mosbacher, M.

H. J. Munzer, M. Mosbacher,M. Bertsch, J. Zimmermann, P. Leiderer, and J. Boneberg, "Local field enhancement effects for nanostructuring of surfaces," J. Microsc. 202,129-135 (2001).
[CrossRef] [PubMed]

Moskovits, M.

M. Moskovits, "Surface-enhanced spectroscopy," Rev. Mod. Phys. 57,783-826 (1985).
[CrossRef]

Munzer, H. J.

H. J. Munzer, M. Mosbacher,M. Bertsch, J. Zimmermann, P. Leiderer, and J. Boneberg, "Local field enhancement effects for nanostructuring of surfaces," J. Microsc. 202,129-135 (2001).
[CrossRef] [PubMed]

Qian, S. X.

Sauvain, E.

N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, and E. Sauvain, "Laser action in strongly scattering media, " Nature 368, 436-438 (1994).
[CrossRef]

Snow, J. B.

Srivastava, V.

Stelzer, E. H. K.

Steven, V.

C. Favre, V. Boutou, StevenC. Hill,  et al. "White-light nanosource with directional emission," Phys. Rev. Lett. 89,37-39 (2002).
[CrossRef]

Stöber, W.

W. Stöber, A. Fink, and E. Bohn, "Controlled growth of monodisperse silica spheres in the micron size range," J. Colloid Interface Sci. 26,62-69 (1968).
[CrossRef]

Taflove, A.

X. Li, Z. Chen, A. Taflove, and V. Backman, "Optical analysis of nanoparticles via enhanced backscattering facilitated by 3-D photonic nanojets," Opt. Express. 13,526-533 (2005).
[CrossRef] [PubMed]

Z. Chen, A. Taflove, and V. Backman, "Photonic nanojet enhancement of backscattering of light by nanoparticles: a potential novel visible-light ultramicroscopy technique," Opt. Express. 12,1214-1220 (2004).
[CrossRef] [PubMed]

Takakura, Y.

Teraoka, I.

Wang, H. Z.

Yu, J.

S. C. Hill, V. Boutou, J. Yu et al. "Enhanced backward-directed multiphoton-excited fluorescence from dielectric microcavities," Phys. Rev. Lett. 85,54-7 (2000).
[CrossRef] [PubMed]

Zhang, J. Z.

Zhao, F. L.

Zheng, X. G.

Zimmermann, J.

H. J. Munzer, M. Mosbacher,M. Bertsch, J. Zimmermann, P. Leiderer, and J. Boneberg, "Local field enhancement effects for nanostructuring of surfaces," J. Microsc. 202,129-135 (2001).
[CrossRef] [PubMed]

Ann. d. Phys.

G. Mie, "Beiträge zur Optik trberMedien, speziell kolloidalerMetallösungen," Ann. d. Phys. 25377-445 (1908).
[CrossRef]

Appl. Opt.

J. Colloid Interface Sci.

W. Stöber, A. Fink, and E. Bohn, "Controlled growth of monodisperse silica spheres in the micron size range," J. Colloid Interface Sci. 26,62-69 (1968).
[CrossRef]

J. Microsc.

H. J. Munzer, M. Mosbacher,M. Bertsch, J. Zimmermann, P. Leiderer, and J. Boneberg, "Local field enhancement effects for nanostructuring of surfaces," J. Microsc. 202,129-135 (2001).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A

J. Opt. Soc. Am. B

Nature

N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, and E. Sauvain, "Laser action in strongly scattering media, " Nature 368, 436-438 (1994).
[CrossRef]

Opt. Express.

X. Li, Z. Chen, A. Taflove, and V. Backman, "Optical analysis of nanoparticles via enhanced backscattering facilitated by 3-D photonic nanojets," Opt. Express. 13,526-533 (2005).
[CrossRef] [PubMed]

Z. Chen, A. Taflove, and V. Backman, "Photonic nanojet enhancement of backscattering of light by nanoparticles: a potential novel visible-light ultramicroscopy technique," Opt. Express. 12,1214-1220 (2004).
[CrossRef] [PubMed]

Opt. Lett.

Phys. Rev. Lett.

S. C. Hill, V. Boutou, J. Yu et al. "Enhanced backward-directed multiphoton-excited fluorescence from dielectric microcavities," Phys. Rev. Lett. 85,54-7 (2000).
[CrossRef] [PubMed]

C. Favre, V. Boutou, StevenC. Hill,  et al. "White-light nanosource with directional emission," Phys. Rev. Lett. 89,37-39 (2002).
[CrossRef]

Rev. Mod. Phys.

M. Moskovits, "Surface-enhanced spectroscopy," Rev. Mod. Phys. 57,783-826 (1985).
[CrossRef]

Other

J. R. Lakowicz, "Principles of Fluorescence Spectroscopy," (Kluwer Academic - Plenum Publishers, New York, 1999).

S. Lecler, "Light scattering by sub-micrometric particles," thesis at the Louis Pasteur University (http://wwwscd-ulp.u-strasbg.fr/theses/theselec.html) - Strasbourg -France (2005).

B. Thomas, "Effets propagatifs d’impulsions lumineuses femtosecondes dans des tunnels optiques," thesis at the Louis Pasteur University - Strasbourg -France (2002).

H. C. Van de Hulst, Light scattering by small particles, (Dover publications, 1981).

S. Lecler, Y. Takakura, and P. Meyrueis, "Generation of a 3D photonic nanojet to enhance scattering of light by nanoparticles: interest for microscopy," IMVIE symposium, Strasbourg, France, 1-4 march (2005).

M. Born and E. Wolf, Principle of optics ed.7, (Pergamon Press, p.633, 1980).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Electric field intensity map, around the silica sphere (map) and on the optical axis (curve), for an unitary plane wave. D = 590 nm, λ o = 795 nm, n 1 = 1.36, n 2 = 1.495. The incident wave is linearly polarized along the x-axis and propagates in the z direction. The sphere is centered on the 0 position.

Fig. 2.
Fig. 2.

Schematic description of the experimental setup. The Ti:sapphire laser produces 35–40 fs pulses at 795 nm with a repetition rate of 27Mhz.

Fig. 3.
Fig. 3.

Two photon excited fluorescence of Rhodamine B with and without micro-spheres (5 × 1011 spheres/L). Excitation wavelength is λo = 795 nm, with 115 mW average power. Inset: Excitation power dependence of the spectrally integrated fluorescence of a sample with silica spheres (7 × 1011 spheres/L). The spectrum is observed with small deformation due to the BG39 filter. See text for details.

Fig. 4.
Fig. 4.

Spectrally integrated fluorescence of Rhodamine as a function of sphere concentration for three incident powers. Fluorescence has been normalized to one when there is no sphere. Excitation wavelength is λo = 795 nm. Average power are 170 (o), 115 (.) and 4.6 (+) mW. The continuous line is a guide-to-the-eye. Inset: optical density per millimeter of rhodamine with (7×1011 spheres/L) and without spheres.

Metrics