Abstract

In this paper, an all-optical nonlinear gate employing a folded tandem-SOA structure is proposed. With a partial reflection mirror for the amplified signal, we achieve a self-seeded gain modulation effect in the folded tandem-SOA, thus eliminating an external saturating source required for the conventional tandem-SOA optical gate. The performance analysis of the proposed device as a 2R regenerator / logic gates (NOR) shows excellent compatibility with the conventional structure, but in a highly integrated form with added benefit of wavelength transparency over wide spectral bandwidth (>100nm). Studies also have been carried out to investigate optimum operation condition of the device as a function of input wavelength and signal input power.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J.C. Simon, "All optical regeneration," ECOC, 469-467 (1998)
  2. O. Leclerc, B. Lavigne, E. Balmefrezol, P. Brindel, L. Pierre, D. Rouvillain, and F. Seguineau, "Optical Regeneration at 40 Gb/s and Beyond," IEEE J. Lightwave Technol. 21, 2779-2790 (2003)
    [CrossRef]
  3. A. Hamie, A. Sharaiha, M. Guegan, "Demonstration of an all-optical logic OR gate using gain saturation in an SOA," Micorwave Opt. Technol. Lett. 39, 39-42 (2003)
    [CrossRef]
  4. S.H. Kim, J.H. Kim, B.G. Yu, Y.T. Byun, Y.M. Jeon, S. Lee, D.H. Woo, "All-optical NAND gate using cross-gain modulation in semiconductor optical amplifiers," Electron. Lett. 41, 1027-1028 (2005)
    [CrossRef]
  5. G. Contestabile, R. Proietti, N. Calabretta, L. Giorgi and E. Ciaramella, "Evidence of noise compression by cross gain compression in SOAs," OFC, JThB29 (2006)
  6. A.D. Ellis, A.E. Kelly, D. Nesset, D. Pitcher, D.G. Moodie and R. Kashyap, "Error free 100Gbit/s wavelength conversion using grating assisted cross-gain modulation in 2mm long semiconductor amplifier," Electron Lett. 34, 1958-1959 (1998)
    [CrossRef]
  7. T. Durhuus, B. Mikkelsen, C. Joergensen, S. L. Danielsen, and K. E. Stubkjaer, "All-optical wavelength conversion by semiconductor optical amplifiers," IEEE J. Lightwave Technol.,  14, 942-954 (1996)
    [CrossRef]
  8. X. Zhang, Y. Wang, J. Sun, D. Liu, D. Huang, "All-optical AND gate at 10 Gbit/s based on cascaded single-port-coupled SOAs," Opt.Express,  12,361-366 (2004)
    [CrossRef] [PubMed]
  9. A. Hamié, A. Sharaiha, M. Guégan, and B. Pucel, "All-optical logic NOR gate using two-cascaded semiconductor optical amplifiers," IEEE Photonics Technol. Lett. 14, 1439-1441(2002)
    [CrossRef]
  10. G. Contestabile, R. Proietti, N. Calabretta, E. Ciaramella, "All optical regeneration by cross gain compression in semiconductor amplifiers," ECOC,  3, 415-416 (2005)
  11. Y. J. Jung, P. Kim, J. Park, N. Park, "Integral equation approach for the analysis of high-power semiconductor optical amplifiers," Opt. Express 14, 2398-2403 (2006)
    [CrossRef] [PubMed]
  12. M. G. Davis and R. F. O’Dowd, "A transfer matrix method based large-signal dynamic model for multielectrode DFB lasers," IEEE J. Quantum Electron. 30, 2458-2466 (1994)
    [CrossRef]
  13. H. Lee, H. Yoon, Y. Kim, and J. Jeong, "Theoretical study of frequency chirping and extinction ratio of wavelength-converted optical signals by XGM and XPM using SOA’s," IEEE J. Quantum Electron. 35, 1213-1219 (1999)
    [CrossRef]

2006

2005

S.H. Kim, J.H. Kim, B.G. Yu, Y.T. Byun, Y.M. Jeon, S. Lee, D.H. Woo, "All-optical NAND gate using cross-gain modulation in semiconductor optical amplifiers," Electron. Lett. 41, 1027-1028 (2005)
[CrossRef]

G. Contestabile, R. Proietti, N. Calabretta, E. Ciaramella, "All optical regeneration by cross gain compression in semiconductor amplifiers," ECOC,  3, 415-416 (2005)

2004

X. Zhang, Y. Wang, J. Sun, D. Liu, D. Huang, "All-optical AND gate at 10 Gbit/s based on cascaded single-port-coupled SOAs," Opt.Express,  12,361-366 (2004)
[CrossRef] [PubMed]

2003

O. Leclerc, B. Lavigne, E. Balmefrezol, P. Brindel, L. Pierre, D. Rouvillain, and F. Seguineau, "Optical Regeneration at 40 Gb/s and Beyond," IEEE J. Lightwave Technol. 21, 2779-2790 (2003)
[CrossRef]

A. Hamie, A. Sharaiha, M. Guegan, "Demonstration of an all-optical logic OR gate using gain saturation in an SOA," Micorwave Opt. Technol. Lett. 39, 39-42 (2003)
[CrossRef]

2002

A. Hamié, A. Sharaiha, M. Guégan, and B. Pucel, "All-optical logic NOR gate using two-cascaded semiconductor optical amplifiers," IEEE Photonics Technol. Lett. 14, 1439-1441(2002)
[CrossRef]

1999

H. Lee, H. Yoon, Y. Kim, and J. Jeong, "Theoretical study of frequency chirping and extinction ratio of wavelength-converted optical signals by XGM and XPM using SOA’s," IEEE J. Quantum Electron. 35, 1213-1219 (1999)
[CrossRef]

1998

A.D. Ellis, A.E. Kelly, D. Nesset, D. Pitcher, D.G. Moodie and R. Kashyap, "Error free 100Gbit/s wavelength conversion using grating assisted cross-gain modulation in 2mm long semiconductor amplifier," Electron Lett. 34, 1958-1959 (1998)
[CrossRef]

1996

T. Durhuus, B. Mikkelsen, C. Joergensen, S. L. Danielsen, and K. E. Stubkjaer, "All-optical wavelength conversion by semiconductor optical amplifiers," IEEE J. Lightwave Technol.,  14, 942-954 (1996)
[CrossRef]

1994

M. G. Davis and R. F. O’Dowd, "A transfer matrix method based large-signal dynamic model for multielectrode DFB lasers," IEEE J. Quantum Electron. 30, 2458-2466 (1994)
[CrossRef]

Balmefrezol, E.

O. Leclerc, B. Lavigne, E. Balmefrezol, P. Brindel, L. Pierre, D. Rouvillain, and F. Seguineau, "Optical Regeneration at 40 Gb/s and Beyond," IEEE J. Lightwave Technol. 21, 2779-2790 (2003)
[CrossRef]

Brindel, P.

O. Leclerc, B. Lavigne, E. Balmefrezol, P. Brindel, L. Pierre, D. Rouvillain, and F. Seguineau, "Optical Regeneration at 40 Gb/s and Beyond," IEEE J. Lightwave Technol. 21, 2779-2790 (2003)
[CrossRef]

Byun, Y.T.

S.H. Kim, J.H. Kim, B.G. Yu, Y.T. Byun, Y.M. Jeon, S. Lee, D.H. Woo, "All-optical NAND gate using cross-gain modulation in semiconductor optical amplifiers," Electron. Lett. 41, 1027-1028 (2005)
[CrossRef]

Calabretta, N.

G. Contestabile, R. Proietti, N. Calabretta, E. Ciaramella, "All optical regeneration by cross gain compression in semiconductor amplifiers," ECOC,  3, 415-416 (2005)

Ciaramella, E.

G. Contestabile, R. Proietti, N. Calabretta, E. Ciaramella, "All optical regeneration by cross gain compression in semiconductor amplifiers," ECOC,  3, 415-416 (2005)

Contestabile, G.

G. Contestabile, R. Proietti, N. Calabretta, E. Ciaramella, "All optical regeneration by cross gain compression in semiconductor amplifiers," ECOC,  3, 415-416 (2005)

Danielsen, S. L.

T. Durhuus, B. Mikkelsen, C. Joergensen, S. L. Danielsen, and K. E. Stubkjaer, "All-optical wavelength conversion by semiconductor optical amplifiers," IEEE J. Lightwave Technol.,  14, 942-954 (1996)
[CrossRef]

Davis, M. G.

M. G. Davis and R. F. O’Dowd, "A transfer matrix method based large-signal dynamic model for multielectrode DFB lasers," IEEE J. Quantum Electron. 30, 2458-2466 (1994)
[CrossRef]

Durhuus, T.

T. Durhuus, B. Mikkelsen, C. Joergensen, S. L. Danielsen, and K. E. Stubkjaer, "All-optical wavelength conversion by semiconductor optical amplifiers," IEEE J. Lightwave Technol.,  14, 942-954 (1996)
[CrossRef]

Ellis, A.D.

A.D. Ellis, A.E. Kelly, D. Nesset, D. Pitcher, D.G. Moodie and R. Kashyap, "Error free 100Gbit/s wavelength conversion using grating assisted cross-gain modulation in 2mm long semiconductor amplifier," Electron Lett. 34, 1958-1959 (1998)
[CrossRef]

Guegan, M.

A. Hamie, A. Sharaiha, M. Guegan, "Demonstration of an all-optical logic OR gate using gain saturation in an SOA," Micorwave Opt. Technol. Lett. 39, 39-42 (2003)
[CrossRef]

Guégan, M.

A. Hamié, A. Sharaiha, M. Guégan, and B. Pucel, "All-optical logic NOR gate using two-cascaded semiconductor optical amplifiers," IEEE Photonics Technol. Lett. 14, 1439-1441(2002)
[CrossRef]

Hamie, A.

A. Hamie, A. Sharaiha, M. Guegan, "Demonstration of an all-optical logic OR gate using gain saturation in an SOA," Micorwave Opt. Technol. Lett. 39, 39-42 (2003)
[CrossRef]

Hamié, A.

A. Hamié, A. Sharaiha, M. Guégan, and B. Pucel, "All-optical logic NOR gate using two-cascaded semiconductor optical amplifiers," IEEE Photonics Technol. Lett. 14, 1439-1441(2002)
[CrossRef]

Huang, D.

X. Zhang, Y. Wang, J. Sun, D. Liu, D. Huang, "All-optical AND gate at 10 Gbit/s based on cascaded single-port-coupled SOAs," Opt.Express,  12,361-366 (2004)
[CrossRef] [PubMed]

Jeon, Y.M.

S.H. Kim, J.H. Kim, B.G. Yu, Y.T. Byun, Y.M. Jeon, S. Lee, D.H. Woo, "All-optical NAND gate using cross-gain modulation in semiconductor optical amplifiers," Electron. Lett. 41, 1027-1028 (2005)
[CrossRef]

Jeong, J.

H. Lee, H. Yoon, Y. Kim, and J. Jeong, "Theoretical study of frequency chirping and extinction ratio of wavelength-converted optical signals by XGM and XPM using SOA’s," IEEE J. Quantum Electron. 35, 1213-1219 (1999)
[CrossRef]

Joergensen, C.

T. Durhuus, B. Mikkelsen, C. Joergensen, S. L. Danielsen, and K. E. Stubkjaer, "All-optical wavelength conversion by semiconductor optical amplifiers," IEEE J. Lightwave Technol.,  14, 942-954 (1996)
[CrossRef]

Jung, Y. J.

Kashyap, R.

A.D. Ellis, A.E. Kelly, D. Nesset, D. Pitcher, D.G. Moodie and R. Kashyap, "Error free 100Gbit/s wavelength conversion using grating assisted cross-gain modulation in 2mm long semiconductor amplifier," Electron Lett. 34, 1958-1959 (1998)
[CrossRef]

Kelly, A.E.

A.D. Ellis, A.E. Kelly, D. Nesset, D. Pitcher, D.G. Moodie and R. Kashyap, "Error free 100Gbit/s wavelength conversion using grating assisted cross-gain modulation in 2mm long semiconductor amplifier," Electron Lett. 34, 1958-1959 (1998)
[CrossRef]

Kim, J.H.

S.H. Kim, J.H. Kim, B.G. Yu, Y.T. Byun, Y.M. Jeon, S. Lee, D.H. Woo, "All-optical NAND gate using cross-gain modulation in semiconductor optical amplifiers," Electron. Lett. 41, 1027-1028 (2005)
[CrossRef]

Kim, P.

Kim, S.H.

S.H. Kim, J.H. Kim, B.G. Yu, Y.T. Byun, Y.M. Jeon, S. Lee, D.H. Woo, "All-optical NAND gate using cross-gain modulation in semiconductor optical amplifiers," Electron. Lett. 41, 1027-1028 (2005)
[CrossRef]

Kim, Y.

H. Lee, H. Yoon, Y. Kim, and J. Jeong, "Theoretical study of frequency chirping and extinction ratio of wavelength-converted optical signals by XGM and XPM using SOA’s," IEEE J. Quantum Electron. 35, 1213-1219 (1999)
[CrossRef]

Lavigne, B.

O. Leclerc, B. Lavigne, E. Balmefrezol, P. Brindel, L. Pierre, D. Rouvillain, and F. Seguineau, "Optical Regeneration at 40 Gb/s and Beyond," IEEE J. Lightwave Technol. 21, 2779-2790 (2003)
[CrossRef]

Leclerc, O.

O. Leclerc, B. Lavigne, E. Balmefrezol, P. Brindel, L. Pierre, D. Rouvillain, and F. Seguineau, "Optical Regeneration at 40 Gb/s and Beyond," IEEE J. Lightwave Technol. 21, 2779-2790 (2003)
[CrossRef]

Lee, H.

H. Lee, H. Yoon, Y. Kim, and J. Jeong, "Theoretical study of frequency chirping and extinction ratio of wavelength-converted optical signals by XGM and XPM using SOA’s," IEEE J. Quantum Electron. 35, 1213-1219 (1999)
[CrossRef]

Lee, S.

S.H. Kim, J.H. Kim, B.G. Yu, Y.T. Byun, Y.M. Jeon, S. Lee, D.H. Woo, "All-optical NAND gate using cross-gain modulation in semiconductor optical amplifiers," Electron. Lett. 41, 1027-1028 (2005)
[CrossRef]

Liu, D.

X. Zhang, Y. Wang, J. Sun, D. Liu, D. Huang, "All-optical AND gate at 10 Gbit/s based on cascaded single-port-coupled SOAs," Opt.Express,  12,361-366 (2004)
[CrossRef] [PubMed]

Mikkelsen, B.

T. Durhuus, B. Mikkelsen, C. Joergensen, S. L. Danielsen, and K. E. Stubkjaer, "All-optical wavelength conversion by semiconductor optical amplifiers," IEEE J. Lightwave Technol.,  14, 942-954 (1996)
[CrossRef]

Moodie, D.G.

A.D. Ellis, A.E. Kelly, D. Nesset, D. Pitcher, D.G. Moodie and R. Kashyap, "Error free 100Gbit/s wavelength conversion using grating assisted cross-gain modulation in 2mm long semiconductor amplifier," Electron Lett. 34, 1958-1959 (1998)
[CrossRef]

Nesset, D.

A.D. Ellis, A.E. Kelly, D. Nesset, D. Pitcher, D.G. Moodie and R. Kashyap, "Error free 100Gbit/s wavelength conversion using grating assisted cross-gain modulation in 2mm long semiconductor amplifier," Electron Lett. 34, 1958-1959 (1998)
[CrossRef]

O’Dowd, R. F.

M. G. Davis and R. F. O’Dowd, "A transfer matrix method based large-signal dynamic model for multielectrode DFB lasers," IEEE J. Quantum Electron. 30, 2458-2466 (1994)
[CrossRef]

Park, J.

Park, N.

Pierre, L.

O. Leclerc, B. Lavigne, E. Balmefrezol, P. Brindel, L. Pierre, D. Rouvillain, and F. Seguineau, "Optical Regeneration at 40 Gb/s and Beyond," IEEE J. Lightwave Technol. 21, 2779-2790 (2003)
[CrossRef]

Pitcher, D.

A.D. Ellis, A.E. Kelly, D. Nesset, D. Pitcher, D.G. Moodie and R. Kashyap, "Error free 100Gbit/s wavelength conversion using grating assisted cross-gain modulation in 2mm long semiconductor amplifier," Electron Lett. 34, 1958-1959 (1998)
[CrossRef]

Proietti, R.

G. Contestabile, R. Proietti, N. Calabretta, E. Ciaramella, "All optical regeneration by cross gain compression in semiconductor amplifiers," ECOC,  3, 415-416 (2005)

Pucel, B.

A. Hamié, A. Sharaiha, M. Guégan, and B. Pucel, "All-optical logic NOR gate using two-cascaded semiconductor optical amplifiers," IEEE Photonics Technol. Lett. 14, 1439-1441(2002)
[CrossRef]

Rouvillain, D.

O. Leclerc, B. Lavigne, E. Balmefrezol, P. Brindel, L. Pierre, D. Rouvillain, and F. Seguineau, "Optical Regeneration at 40 Gb/s and Beyond," IEEE J. Lightwave Technol. 21, 2779-2790 (2003)
[CrossRef]

Seguineau, F.

O. Leclerc, B. Lavigne, E. Balmefrezol, P. Brindel, L. Pierre, D. Rouvillain, and F. Seguineau, "Optical Regeneration at 40 Gb/s and Beyond," IEEE J. Lightwave Technol. 21, 2779-2790 (2003)
[CrossRef]

Sharaiha, A.

A. Hamie, A. Sharaiha, M. Guegan, "Demonstration of an all-optical logic OR gate using gain saturation in an SOA," Micorwave Opt. Technol. Lett. 39, 39-42 (2003)
[CrossRef]

A. Hamié, A. Sharaiha, M. Guégan, and B. Pucel, "All-optical logic NOR gate using two-cascaded semiconductor optical amplifiers," IEEE Photonics Technol. Lett. 14, 1439-1441(2002)
[CrossRef]

Stubkjaer, K. E.

T. Durhuus, B. Mikkelsen, C. Joergensen, S. L. Danielsen, and K. E. Stubkjaer, "All-optical wavelength conversion by semiconductor optical amplifiers," IEEE J. Lightwave Technol.,  14, 942-954 (1996)
[CrossRef]

Sun, J.

X. Zhang, Y. Wang, J. Sun, D. Liu, D. Huang, "All-optical AND gate at 10 Gbit/s based on cascaded single-port-coupled SOAs," Opt.Express,  12,361-366 (2004)
[CrossRef] [PubMed]

Wang, Y.

X. Zhang, Y. Wang, J. Sun, D. Liu, D. Huang, "All-optical AND gate at 10 Gbit/s based on cascaded single-port-coupled SOAs," Opt.Express,  12,361-366 (2004)
[CrossRef] [PubMed]

Woo, D.H.

S.H. Kim, J.H. Kim, B.G. Yu, Y.T. Byun, Y.M. Jeon, S. Lee, D.H. Woo, "All-optical NAND gate using cross-gain modulation in semiconductor optical amplifiers," Electron. Lett. 41, 1027-1028 (2005)
[CrossRef]

Yoon, H.

H. Lee, H. Yoon, Y. Kim, and J. Jeong, "Theoretical study of frequency chirping and extinction ratio of wavelength-converted optical signals by XGM and XPM using SOA’s," IEEE J. Quantum Electron. 35, 1213-1219 (1999)
[CrossRef]

Yu, B.G.

S.H. Kim, J.H. Kim, B.G. Yu, Y.T. Byun, Y.M. Jeon, S. Lee, D.H. Woo, "All-optical NAND gate using cross-gain modulation in semiconductor optical amplifiers," Electron. Lett. 41, 1027-1028 (2005)
[CrossRef]

Zhang, X.

X. Zhang, Y. Wang, J. Sun, D. Liu, D. Huang, "All-optical AND gate at 10 Gbit/s based on cascaded single-port-coupled SOAs," Opt.Express,  12,361-366 (2004)
[CrossRef] [PubMed]

ECOC

G. Contestabile, R. Proietti, N. Calabretta, E. Ciaramella, "All optical regeneration by cross gain compression in semiconductor amplifiers," ECOC,  3, 415-416 (2005)

Electron Lett.

A.D. Ellis, A.E. Kelly, D. Nesset, D. Pitcher, D.G. Moodie and R. Kashyap, "Error free 100Gbit/s wavelength conversion using grating assisted cross-gain modulation in 2mm long semiconductor amplifier," Electron Lett. 34, 1958-1959 (1998)
[CrossRef]

Electron. Lett.

S.H. Kim, J.H. Kim, B.G. Yu, Y.T. Byun, Y.M. Jeon, S. Lee, D.H. Woo, "All-optical NAND gate using cross-gain modulation in semiconductor optical amplifiers," Electron. Lett. 41, 1027-1028 (2005)
[CrossRef]

IEEE J. Lightwave Technol.

O. Leclerc, B. Lavigne, E. Balmefrezol, P. Brindel, L. Pierre, D. Rouvillain, and F. Seguineau, "Optical Regeneration at 40 Gb/s and Beyond," IEEE J. Lightwave Technol. 21, 2779-2790 (2003)
[CrossRef]

T. Durhuus, B. Mikkelsen, C. Joergensen, S. L. Danielsen, and K. E. Stubkjaer, "All-optical wavelength conversion by semiconductor optical amplifiers," IEEE J. Lightwave Technol.,  14, 942-954 (1996)
[CrossRef]

IEEE J. Quantum Electron.

M. G. Davis and R. F. O’Dowd, "A transfer matrix method based large-signal dynamic model for multielectrode DFB lasers," IEEE J. Quantum Electron. 30, 2458-2466 (1994)
[CrossRef]

H. Lee, H. Yoon, Y. Kim, and J. Jeong, "Theoretical study of frequency chirping and extinction ratio of wavelength-converted optical signals by XGM and XPM using SOA’s," IEEE J. Quantum Electron. 35, 1213-1219 (1999)
[CrossRef]

IEEE Photonics Technol. Lett.

A. Hamié, A. Sharaiha, M. Guégan, and B. Pucel, "All-optical logic NOR gate using two-cascaded semiconductor optical amplifiers," IEEE Photonics Technol. Lett. 14, 1439-1441(2002)
[CrossRef]

Micorwave Opt. Technol. Lett.

A. Hamie, A. Sharaiha, M. Guegan, "Demonstration of an all-optical logic OR gate using gain saturation in an SOA," Micorwave Opt. Technol. Lett. 39, 39-42 (2003)
[CrossRef]

Opt. Express

Opt.Express

X. Zhang, Y. Wang, J. Sun, D. Liu, D. Huang, "All-optical AND gate at 10 Gbit/s based on cascaded single-port-coupled SOAs," Opt.Express,  12,361-366 (2004)
[CrossRef] [PubMed]

Other

J.C. Simon, "All optical regeneration," ECOC, 469-467 (1998)

G. Contestabile, R. Proietti, N. Calabretta, L. Giorgi and E. Ciaramella, "Evidence of noise compression by cross gain compression in SOAs," OFC, JThB29 (2006)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Schematics of CW-assisted tandem-SOA optical gate (case A) schematics of folded tandem-SOA optical gate (case B)

Fig. 2.
Fig. 2.

Power distributions in the folded tandem-SOA, at different input signal (-6dBm, -2dBm, and 2dBm). Note that, the injected input signal propagates from right to left, and the output signal is extracted by a 3dB-coupler located in the middle. At the end of SOA2 (z=0), the amplified signal is reflected from the mirror (starting from -5 ∼ 0dBm range in the Fig.)

Fig. 3.
Fig. 3.

Comparison of Po1 , Po2 as a function of Pin : Open symbols; CW-assisted tandem-SOA. Filled symbols; folded tandem-SOA. ER values / ER enhancement can be read from the graph near the deflection point, where dPo1 / dPin is maximum.

Fig. 4.
Fig. 4.

Wavelength dependency of output curve at fixed input power (left Fig. mirror reflectivity optimized for best ER enhancement). Gain spectrum of SOA (right. Input 0dBm)

Fig. 5.
Fig. 5.

Transient responses of; CW-assisted tandem SOA (solid) and folded tandem SOA (dash). Pin magnified by 10 times

Fig. 6.
Fig. 6.

Eye-diagram of 10Gbps signal, before (a) and after (b, c, d with Pin = -1, 1.5, 4dBm) the 2R regeneration. Q in = 6)

Fig. 7.
Fig. 7.

Q factors after the regeneration, plotted as a function of Pin at different input signal qualities (Q in = 4, 5, 6)

Fig. 8.
Fig. 8.

10Gbps NOR gate operation of the device

Metrics