Abstract

Polarization dependence of bend loss caused by the polymer coating layer for a standard singlemode fiber (SMF28) is investigated theoretically and experimentally. Bend loss for SMF28 for both the TE and TM mode is calculated separately. Normalized polarization dependent loss is proposed for the characterization of the polarization sensitivity of bend loss for different bend radii. Corresponding experimental tests are presented, which agree with the theoretical results. Both the theoretical and experimental results show that the polymer coating layer has a significant influence on the polarization dependence of bend loss.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. C. Gauthier and C. Ross, "Theoretical and experimental considerations for a singlemode fiber-optic bend-type sensor," Appl. Opt. 36, 6264-6273 (1997).
    [CrossRef]
  2. A. J. Harris, P. A. Shrubshall and P. F. Castle, "Wavelength demultiplexing using bends in a singlemode optical fiber," J. Lightwave Technol. 6, 80-86 (1988).
    [CrossRef]
  3. Q. Wang, G. Farrell, T. Freir, G. Rajan, and P. Wang, "Low-cost wavelength measurement based on a Macrobending Singlemode Fiber," Opt. Lett. 31, 1785-1787 (2006).
    [CrossRef] [PubMed]
  4. Q. Wang, G. Farrell, and T. Freir, "Theoretical and experimental investigations of macro-bend losses for standard single mode fibers," Opt. Express 13, 4476-4484(2005).
    [CrossRef] [PubMed]
  5. I. Valiente and C. Vassallo, "New formalism for bending losses in coated single-mode optical fibers," Electron. Lett. 25, 1544-1545(1989).
    [CrossRef]
  6. H. Renner, "Bending losses of coated singlemode fibers: a simple approach," J. Lightwave Technol. 10,544-551 (1992).
    [CrossRef]
  7. L. Faustini and G. Martini, "Bend loss in singlemode fibers," J. Lightwave Technol. 15, 671-679 (1997).
    [CrossRef]
  8. R. Scarmozzino, A. Gopinath, R. Pregla, and S. Helfert, "Numerical techniques for modelling guided-wave photonic devices," IEEE J. Sel. Top. Quantum Electron. 6, 150-162 (2000).
    [CrossRef]
  9. M. S. Stern, "Semivectorial polarized finite difference method for optical waveguides with arbitrary index profiles," IEE Proceedings 135, 56-63 (1988).
  10. W. W. Lui, C. -L. Xu, T. Hirono,  et al., "Full-vectorial wave propagation in semiconductor optical bending waveguides and equivalent straight waveguide approximations," J. Lightwave Technol. 15, 910-914 (1998).
    [CrossRef]
  11. W. Berglund and A. Gopinath, "WKB analysis of bend losses in optical waveguides," J. Lightwave Technol. 18, 1161-1166(2000).
    [CrossRef]

2006 (1)

2005 (1)

2000 (2)

R. Scarmozzino, A. Gopinath, R. Pregla, and S. Helfert, "Numerical techniques for modelling guided-wave photonic devices," IEEE J. Sel. Top. Quantum Electron. 6, 150-162 (2000).
[CrossRef]

W. Berglund and A. Gopinath, "WKB analysis of bend losses in optical waveguides," J. Lightwave Technol. 18, 1161-1166(2000).
[CrossRef]

1998 (1)

W. W. Lui, C. -L. Xu, T. Hirono,  et al., "Full-vectorial wave propagation in semiconductor optical bending waveguides and equivalent straight waveguide approximations," J. Lightwave Technol. 15, 910-914 (1998).
[CrossRef]

1997 (2)

1992 (1)

H. Renner, "Bending losses of coated singlemode fibers: a simple approach," J. Lightwave Technol. 10,544-551 (1992).
[CrossRef]

1989 (1)

I. Valiente and C. Vassallo, "New formalism for bending losses in coated single-mode optical fibers," Electron. Lett. 25, 1544-1545(1989).
[CrossRef]

1988 (2)

A. J. Harris, P. A. Shrubshall and P. F. Castle, "Wavelength demultiplexing using bends in a singlemode optical fiber," J. Lightwave Technol. 6, 80-86 (1988).
[CrossRef]

M. S. Stern, "Semivectorial polarized finite difference method for optical waveguides with arbitrary index profiles," IEE Proceedings 135, 56-63 (1988).

Berglund, W.

Castle, P. F.

A. J. Harris, P. A. Shrubshall and P. F. Castle, "Wavelength demultiplexing using bends in a singlemode optical fiber," J. Lightwave Technol. 6, 80-86 (1988).
[CrossRef]

Farrell, G.

Faustini, L.

L. Faustini and G. Martini, "Bend loss in singlemode fibers," J. Lightwave Technol. 15, 671-679 (1997).
[CrossRef]

Freir, T.

Gauthier, R. C.

Gopinath, A.

R. Scarmozzino, A. Gopinath, R. Pregla, and S. Helfert, "Numerical techniques for modelling guided-wave photonic devices," IEEE J. Sel. Top. Quantum Electron. 6, 150-162 (2000).
[CrossRef]

W. Berglund and A. Gopinath, "WKB analysis of bend losses in optical waveguides," J. Lightwave Technol. 18, 1161-1166(2000).
[CrossRef]

Harris, A. J.

A. J. Harris, P. A. Shrubshall and P. F. Castle, "Wavelength demultiplexing using bends in a singlemode optical fiber," J. Lightwave Technol. 6, 80-86 (1988).
[CrossRef]

Helfert, S.

R. Scarmozzino, A. Gopinath, R. Pregla, and S. Helfert, "Numerical techniques for modelling guided-wave photonic devices," IEEE J. Sel. Top. Quantum Electron. 6, 150-162 (2000).
[CrossRef]

Hirono, T.

W. W. Lui, C. -L. Xu, T. Hirono,  et al., "Full-vectorial wave propagation in semiconductor optical bending waveguides and equivalent straight waveguide approximations," J. Lightwave Technol. 15, 910-914 (1998).
[CrossRef]

Lui, W. W.

W. W. Lui, C. -L. Xu, T. Hirono,  et al., "Full-vectorial wave propagation in semiconductor optical bending waveguides and equivalent straight waveguide approximations," J. Lightwave Technol. 15, 910-914 (1998).
[CrossRef]

Martini, G.

L. Faustini and G. Martini, "Bend loss in singlemode fibers," J. Lightwave Technol. 15, 671-679 (1997).
[CrossRef]

Pregla, R.

R. Scarmozzino, A. Gopinath, R. Pregla, and S. Helfert, "Numerical techniques for modelling guided-wave photonic devices," IEEE J. Sel. Top. Quantum Electron. 6, 150-162 (2000).
[CrossRef]

Rajan, G.

Renner, H.

H. Renner, "Bending losses of coated singlemode fibers: a simple approach," J. Lightwave Technol. 10,544-551 (1992).
[CrossRef]

Ross, C.

Scarmozzino, R.

R. Scarmozzino, A. Gopinath, R. Pregla, and S. Helfert, "Numerical techniques for modelling guided-wave photonic devices," IEEE J. Sel. Top. Quantum Electron. 6, 150-162 (2000).
[CrossRef]

Shrubshall, P. A.

A. J. Harris, P. A. Shrubshall and P. F. Castle, "Wavelength demultiplexing using bends in a singlemode optical fiber," J. Lightwave Technol. 6, 80-86 (1988).
[CrossRef]

Stern, M. S.

M. S. Stern, "Semivectorial polarized finite difference method for optical waveguides with arbitrary index profiles," IEE Proceedings 135, 56-63 (1988).

Valiente, I.

I. Valiente and C. Vassallo, "New formalism for bending losses in coated single-mode optical fibers," Electron. Lett. 25, 1544-1545(1989).
[CrossRef]

Vassallo, C.

I. Valiente and C. Vassallo, "New formalism for bending losses in coated single-mode optical fibers," Electron. Lett. 25, 1544-1545(1989).
[CrossRef]

Wang, P.

Wang, Q.

Xu, C. -L.

W. W. Lui, C. -L. Xu, T. Hirono,  et al., "Full-vectorial wave propagation in semiconductor optical bending waveguides and equivalent straight waveguide approximations," J. Lightwave Technol. 15, 910-914 (1998).
[CrossRef]

Appl. Opt. (1)

Electron. Lett. (1)

I. Valiente and C. Vassallo, "New formalism for bending losses in coated single-mode optical fibers," Electron. Lett. 25, 1544-1545(1989).
[CrossRef]

IEE Proceedings (1)

M. S. Stern, "Semivectorial polarized finite difference method for optical waveguides with arbitrary index profiles," IEE Proceedings 135, 56-63 (1988).

IEEE J. Sel. Top. Quantum Electron. (1)

R. Scarmozzino, A. Gopinath, R. Pregla, and S. Helfert, "Numerical techniques for modelling guided-wave photonic devices," IEEE J. Sel. Top. Quantum Electron. 6, 150-162 (2000).
[CrossRef]

J. Lightwave Technol. (5)

W. W. Lui, C. -L. Xu, T. Hirono,  et al., "Full-vectorial wave propagation in semiconductor optical bending waveguides and equivalent straight waveguide approximations," J. Lightwave Technol. 15, 910-914 (1998).
[CrossRef]

W. Berglund and A. Gopinath, "WKB analysis of bend losses in optical waveguides," J. Lightwave Technol. 18, 1161-1166(2000).
[CrossRef]

H. Renner, "Bending losses of coated singlemode fibers: a simple approach," J. Lightwave Technol. 10,544-551 (1992).
[CrossRef]

L. Faustini and G. Martini, "Bend loss in singlemode fibers," J. Lightwave Technol. 15, 671-679 (1997).
[CrossRef]

A. J. Harris, P. A. Shrubshall and P. F. Castle, "Wavelength demultiplexing using bends in a singlemode optical fiber," J. Lightwave Technol. 6, 80-86 (1988).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig.1.
Fig.1.

(a). Schematic structure of a bending fiber consisting of core, cladding, coating and absorbing layer; b) squared effective index profile with conformal mapping of the bending fiber.

Fig. 2.
Fig. 2.

(a). Bend loss for TE and TM mode; (b). Polarization dependent loss for the bending fiber.

Fig. 3.
Fig. 3.

(a). Bend loss for TE and TM mode of a bending fiber with radius 10 mm and length of 20 turns and a bending fiber with radius of 10.5 mm and length of 10 turns; (b) corresponding polarization dependent losses.

Fig. 4.
Fig. 4.

Normalized polarization dependent loss for different bending radii.

Fig. 5.
Fig. 5.

Experimental setup for measuring polarization dependent loss.

Fig. 6.
Fig. 6.

(a). Measured bend loss of SMF28 at wavelength 1550 nm with a length of 10 turns; (b) normalized polarization dependent loss.

Fig. 7.
Fig. 7.

Measured polarization dependent losses for bending radius of 10 (20 turns) and 10.5 mm (10 turns).

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

t 2 ψ ( x , y ) + k 2 n eff 2 ( x , y ) β 2 ψ ( x , y ) = 0
ψ q ( x , y ) = 1 2 π + [ D q ( ζ ) B i ( X q ) + H q ( ζ ) A i ( X q ) ] exp ( iζy )
{ D 1 ( ζ ) B i [ X 1 ( b , ζ ) ] + H 1 ( ζ ) A i [ X 1 ( b , ζ ) ] = D 2 ( ζ ) B i [ X 2 ( b , ζ ) ] + H 2 ( ζ ) A i [ X 2 ( b , ζ ) ] D 1 ( ζ ) B i [ X 1 ( b , ζ ) ] + H 1 ( ζ ) A i [ X 1 ( b , ζ ) ] = D 2 ( ζ ) B i [ X 2 ( b , ζ ) ] + H 2 ( ζ ) A i [ X 2 ( b , ζ ) ] .
{ D 1 ( ζ ) B i [ X 1 ( b , ζ ) ] + H 1 ( ζ ) A i [ X 1 ( b , ζ ) ] = D 2 ( ζ ) B i [ X 2 ( b , ζ ) ] + H 2 ( ζ ) A i [ X 2 ( b , ζ ) ] 1 n 1 2 { D 1 ( ζ ) B i [ X 1 ( b , ζ ) ] + H 1 ( ζ ) A i [ X 1 ( b , ζ ) ] } = 1 n 2 2 { D 2 ( ζ ) B i [ X 2 ( b , ζ ) ] + H 2 ( ζ ) A i [ X 2 ( b , ζ ) ] }
PDL N = 2 L s TE L s TM L s TM + L s TE

Metrics