Abstract

The effective nonlinear coefficient and temperature acceptance bandwidth of three Lu and Sc co-doped GdCa4O(BO3)3 type nonlinear crystals were measured. NCPM for SHG in to the blue-UV spectral region can be obtained by controlling the co-dopant concentration. Measurements were based on intra-cavity SHG of a CW Ti:Sapphire laser, and the effective nonlinear coefficients were found to be in the range of 0.5 to 0.6 pm/V for the three crystals used. The FWHM temperature acceptance bandwidth was measured to be more than 35°C using a 6 mm long Gd0.871Lu0.129Ca4O(BO3)3 crystal. A maximum of 115 mW at 407.3 nm in a single direction was measured using a 6.5 mm long Gd0.96Sc0.04Ca4O(BO3)3 crystal.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Zimmermann, V. Vuletic, A. Hemmerich, and T. W. Hänsch, “All solid state laser source for tunable blue and ultraviolet radiation,” Appl. Phys. Lett. 66, 2318–2320 (1995).
    [Crossref]
  2. C. Schwedes, E. Peik, J. V. Zanthier, A. Y. Nevsky, and H. Walther, “Narrow-bandwidth diode-laser-based blue and ultraviolet light source,” Appl. Phys. B 76, 143–147 (2003).
    [Crossref]
  3. A. Friedenauer, F. Markert, H. Schmitz, L. Petersen, S. Kahra, M. Herrmann, T. Udem, T. W. Hänsch, and T. Schtz, “High power all solid state laser system near 280 nm,” Appl. Phys. B 84, 371–373 (2006).
    [Crossref]
  4. S. Bourzeix, B. de Beauvoir, F. Nez, F. de Tomasi, L. Julien, and F. Biraben, “Ultra-violet light generation at 205 nm by two frequency doubling steps of a cw titanium-sapphire laser,” Opt. Commun. 133, 239–244 (1997).
    [Crossref]
  5. S. Makio, T Miyai, M. Sato, and T. Sasaki, “67-mW Continuous-Wave Blue Light Generation by Intracavity Frequency Doubling of a Diode Pumped Cr:LiSrAlF6 Laser,” Jpn. J. Appl. Phys. 39, 6539–6541 (2000).
    [Crossref]
  6. Y. Chen, H. Peng, W. Hou, Q. Peng, A. Geng, L. Guo, D. Cui, and Z. Xu, “3.8 W of cw blue light generated by intracavity frequency doubling of a 946-nm Nd:YAG laser with LBO,” Appl. Phys. B 83, 241–243 (2006).
    [Crossref]
  7. M. Thorhauge, J.L. Mortensen, P. Tidemand-Licthenberg, and P. Buchhave, “Tunable intra-cavity SHG of CW Ti:Sapphire lasers around 785 nm and 810 nm in BiBO-crystals,” Opt. Express 14, 2283–2286 (2006). http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-6-2283
    [Crossref] [PubMed]
  8. T. Schmitt, A. Deninger, F. Lison, and W. Keanders, “Recent advances in non-linear frequency conversion of high-power, single-mode diode lasers,” Proceedings of. SPIE,  5707, 16–22 (2005).
    [Crossref]
  9. J. E. Hastie, L. G. Morton, A. J. Kemp, M. D. Dawson, A. B. Krysa, and J. S. Roberts, “Tunable ultraviolet output from an intracavity frequency-doubled red vertical-external-cavity surface-emmitting laser,” Appl. Phys. Lett. 89, 0611141–0611143 (2006).
    [Crossref]
  10. H. Hellwig, J. Liebertz, and L. Bohat, “Exceptional large nonlinear optical coefficients in the monoclinic bismuth borate BiB3O6 (BiBO),” Solid State Commun. 109, 249–251 (1999).
    [Crossref]
  11. C. Czeranowsky, E. Heumann, and G. Huber, “All-solid-state continuous-wave frequency-doubled Nd:YAG-BiBO laser with 2.8-W output power at 473 nm,” Opt. Lett. 28432–434 (2003).
    [Crossref] [PubMed]
  12. L. Gheorghe, V. Lupei, P. Loiseau, G. Aka, and T. Taira, “Second-harmonic generations of blue light in nonlinear optical crystals of Gd1-XLuXCa4O(BO3)3 and Gd1-XScXCa4O(BO3)3 through noncritical phase matching,” J. Opt. Soc. Am. B 23, 1630–1634 (2006).
    [Crossref]
  13. Z. Wang, X. Xu, K. Fu, R. Song, J. Wang, J. Wei, Y. Liu, and Z. Shao, “Non-critical phase matching of Gd1-XYXCa4O(BO3)3(Gd1-XYXCOB) crystal,” Solid State Commun. 120, 397–400 (2001).
    [Crossref]
  14. G. D. Boyd and D. A. Kleinman, “Parametric Interaction of Focused Light Beams,” J. Appl. Phys. 39, 3597–3639 (1968).
    [Crossref]

2006 (5)

A. Friedenauer, F. Markert, H. Schmitz, L. Petersen, S. Kahra, M. Herrmann, T. Udem, T. W. Hänsch, and T. Schtz, “High power all solid state laser system near 280 nm,” Appl. Phys. B 84, 371–373 (2006).
[Crossref]

Y. Chen, H. Peng, W. Hou, Q. Peng, A. Geng, L. Guo, D. Cui, and Z. Xu, “3.8 W of cw blue light generated by intracavity frequency doubling of a 946-nm Nd:YAG laser with LBO,” Appl. Phys. B 83, 241–243 (2006).
[Crossref]

M. Thorhauge, J.L. Mortensen, P. Tidemand-Licthenberg, and P. Buchhave, “Tunable intra-cavity SHG of CW Ti:Sapphire lasers around 785 nm and 810 nm in BiBO-crystals,” Opt. Express 14, 2283–2286 (2006). http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-6-2283
[Crossref] [PubMed]

J. E. Hastie, L. G. Morton, A. J. Kemp, M. D. Dawson, A. B. Krysa, and J. S. Roberts, “Tunable ultraviolet output from an intracavity frequency-doubled red vertical-external-cavity surface-emmitting laser,” Appl. Phys. Lett. 89, 0611141–0611143 (2006).
[Crossref]

L. Gheorghe, V. Lupei, P. Loiseau, G. Aka, and T. Taira, “Second-harmonic generations of blue light in nonlinear optical crystals of Gd1-XLuXCa4O(BO3)3 and Gd1-XScXCa4O(BO3)3 through noncritical phase matching,” J. Opt. Soc. Am. B 23, 1630–1634 (2006).
[Crossref]

2005 (1)

T. Schmitt, A. Deninger, F. Lison, and W. Keanders, “Recent advances in non-linear frequency conversion of high-power, single-mode diode lasers,” Proceedings of. SPIE,  5707, 16–22 (2005).
[Crossref]

2003 (2)

C. Schwedes, E. Peik, J. V. Zanthier, A. Y. Nevsky, and H. Walther, “Narrow-bandwidth diode-laser-based blue and ultraviolet light source,” Appl. Phys. B 76, 143–147 (2003).
[Crossref]

C. Czeranowsky, E. Heumann, and G. Huber, “All-solid-state continuous-wave frequency-doubled Nd:YAG-BiBO laser with 2.8-W output power at 473 nm,” Opt. Lett. 28432–434 (2003).
[Crossref] [PubMed]

2001 (1)

Z. Wang, X. Xu, K. Fu, R. Song, J. Wang, J. Wei, Y. Liu, and Z. Shao, “Non-critical phase matching of Gd1-XYXCa4O(BO3)3(Gd1-XYXCOB) crystal,” Solid State Commun. 120, 397–400 (2001).
[Crossref]

2000 (1)

S. Makio, T Miyai, M. Sato, and T. Sasaki, “67-mW Continuous-Wave Blue Light Generation by Intracavity Frequency Doubling of a Diode Pumped Cr:LiSrAlF6 Laser,” Jpn. J. Appl. Phys. 39, 6539–6541 (2000).
[Crossref]

1999 (1)

H. Hellwig, J. Liebertz, and L. Bohat, “Exceptional large nonlinear optical coefficients in the monoclinic bismuth borate BiB3O6 (BiBO),” Solid State Commun. 109, 249–251 (1999).
[Crossref]

1997 (1)

S. Bourzeix, B. de Beauvoir, F. Nez, F. de Tomasi, L. Julien, and F. Biraben, “Ultra-violet light generation at 205 nm by two frequency doubling steps of a cw titanium-sapphire laser,” Opt. Commun. 133, 239–244 (1997).
[Crossref]

1995 (1)

C. Zimmermann, V. Vuletic, A. Hemmerich, and T. W. Hänsch, “All solid state laser source for tunable blue and ultraviolet radiation,” Appl. Phys. Lett. 66, 2318–2320 (1995).
[Crossref]

1968 (1)

G. D. Boyd and D. A. Kleinman, “Parametric Interaction of Focused Light Beams,” J. Appl. Phys. 39, 3597–3639 (1968).
[Crossref]

Aka, G.

Beauvoir, B. de

S. Bourzeix, B. de Beauvoir, F. Nez, F. de Tomasi, L. Julien, and F. Biraben, “Ultra-violet light generation at 205 nm by two frequency doubling steps of a cw titanium-sapphire laser,” Opt. Commun. 133, 239–244 (1997).
[Crossref]

Biraben, F.

S. Bourzeix, B. de Beauvoir, F. Nez, F. de Tomasi, L. Julien, and F. Biraben, “Ultra-violet light generation at 205 nm by two frequency doubling steps of a cw titanium-sapphire laser,” Opt. Commun. 133, 239–244 (1997).
[Crossref]

Bohat, L.

H. Hellwig, J. Liebertz, and L. Bohat, “Exceptional large nonlinear optical coefficients in the monoclinic bismuth borate BiB3O6 (BiBO),” Solid State Commun. 109, 249–251 (1999).
[Crossref]

Bourzeix, S.

S. Bourzeix, B. de Beauvoir, F. Nez, F. de Tomasi, L. Julien, and F. Biraben, “Ultra-violet light generation at 205 nm by two frequency doubling steps of a cw titanium-sapphire laser,” Opt. Commun. 133, 239–244 (1997).
[Crossref]

Boyd, G. D.

G. D. Boyd and D. A. Kleinman, “Parametric Interaction of Focused Light Beams,” J. Appl. Phys. 39, 3597–3639 (1968).
[Crossref]

Buchhave, P.

Chen, Y.

Y. Chen, H. Peng, W. Hou, Q. Peng, A. Geng, L. Guo, D. Cui, and Z. Xu, “3.8 W of cw blue light generated by intracavity frequency doubling of a 946-nm Nd:YAG laser with LBO,” Appl. Phys. B 83, 241–243 (2006).
[Crossref]

Cui, D.

Y. Chen, H. Peng, W. Hou, Q. Peng, A. Geng, L. Guo, D. Cui, and Z. Xu, “3.8 W of cw blue light generated by intracavity frequency doubling of a 946-nm Nd:YAG laser with LBO,” Appl. Phys. B 83, 241–243 (2006).
[Crossref]

Czeranowsky, C.

Dawson, M. D.

J. E. Hastie, L. G. Morton, A. J. Kemp, M. D. Dawson, A. B. Krysa, and J. S. Roberts, “Tunable ultraviolet output from an intracavity frequency-doubled red vertical-external-cavity surface-emmitting laser,” Appl. Phys. Lett. 89, 0611141–0611143 (2006).
[Crossref]

Deninger, A.

T. Schmitt, A. Deninger, F. Lison, and W. Keanders, “Recent advances in non-linear frequency conversion of high-power, single-mode diode lasers,” Proceedings of. SPIE,  5707, 16–22 (2005).
[Crossref]

Friedenauer, A.

A. Friedenauer, F. Markert, H. Schmitz, L. Petersen, S. Kahra, M. Herrmann, T. Udem, T. W. Hänsch, and T. Schtz, “High power all solid state laser system near 280 nm,” Appl. Phys. B 84, 371–373 (2006).
[Crossref]

Fu, K.

Z. Wang, X. Xu, K. Fu, R. Song, J. Wang, J. Wei, Y. Liu, and Z. Shao, “Non-critical phase matching of Gd1-XYXCa4O(BO3)3(Gd1-XYXCOB) crystal,” Solid State Commun. 120, 397–400 (2001).
[Crossref]

Geng, A.

Y. Chen, H. Peng, W. Hou, Q. Peng, A. Geng, L. Guo, D. Cui, and Z. Xu, “3.8 W of cw blue light generated by intracavity frequency doubling of a 946-nm Nd:YAG laser with LBO,” Appl. Phys. B 83, 241–243 (2006).
[Crossref]

Gheorghe, L.

Guo, L.

Y. Chen, H. Peng, W. Hou, Q. Peng, A. Geng, L. Guo, D. Cui, and Z. Xu, “3.8 W of cw blue light generated by intracavity frequency doubling of a 946-nm Nd:YAG laser with LBO,” Appl. Phys. B 83, 241–243 (2006).
[Crossref]

Hänsch, T. W.

A. Friedenauer, F. Markert, H. Schmitz, L. Petersen, S. Kahra, M. Herrmann, T. Udem, T. W. Hänsch, and T. Schtz, “High power all solid state laser system near 280 nm,” Appl. Phys. B 84, 371–373 (2006).
[Crossref]

C. Zimmermann, V. Vuletic, A. Hemmerich, and T. W. Hänsch, “All solid state laser source for tunable blue and ultraviolet radiation,” Appl. Phys. Lett. 66, 2318–2320 (1995).
[Crossref]

Hastie, J. E.

J. E. Hastie, L. G. Morton, A. J. Kemp, M. D. Dawson, A. B. Krysa, and J. S. Roberts, “Tunable ultraviolet output from an intracavity frequency-doubled red vertical-external-cavity surface-emmitting laser,” Appl. Phys. Lett. 89, 0611141–0611143 (2006).
[Crossref]

Hellwig, H.

H. Hellwig, J. Liebertz, and L. Bohat, “Exceptional large nonlinear optical coefficients in the monoclinic bismuth borate BiB3O6 (BiBO),” Solid State Commun. 109, 249–251 (1999).
[Crossref]

Hemmerich, A.

C. Zimmermann, V. Vuletic, A. Hemmerich, and T. W. Hänsch, “All solid state laser source for tunable blue and ultraviolet radiation,” Appl. Phys. Lett. 66, 2318–2320 (1995).
[Crossref]

Herrmann, M.

A. Friedenauer, F. Markert, H. Schmitz, L. Petersen, S. Kahra, M. Herrmann, T. Udem, T. W. Hänsch, and T. Schtz, “High power all solid state laser system near 280 nm,” Appl. Phys. B 84, 371–373 (2006).
[Crossref]

Heumann, E.

Hou, W.

Y. Chen, H. Peng, W. Hou, Q. Peng, A. Geng, L. Guo, D. Cui, and Z. Xu, “3.8 W of cw blue light generated by intracavity frequency doubling of a 946-nm Nd:YAG laser with LBO,” Appl. Phys. B 83, 241–243 (2006).
[Crossref]

Huber, G.

Julien, L.

S. Bourzeix, B. de Beauvoir, F. Nez, F. de Tomasi, L. Julien, and F. Biraben, “Ultra-violet light generation at 205 nm by two frequency doubling steps of a cw titanium-sapphire laser,” Opt. Commun. 133, 239–244 (1997).
[Crossref]

Kahra, S.

A. Friedenauer, F. Markert, H. Schmitz, L. Petersen, S. Kahra, M. Herrmann, T. Udem, T. W. Hänsch, and T. Schtz, “High power all solid state laser system near 280 nm,” Appl. Phys. B 84, 371–373 (2006).
[Crossref]

Keanders, W.

T. Schmitt, A. Deninger, F. Lison, and W. Keanders, “Recent advances in non-linear frequency conversion of high-power, single-mode diode lasers,” Proceedings of. SPIE,  5707, 16–22 (2005).
[Crossref]

Kemp, A. J.

J. E. Hastie, L. G. Morton, A. J. Kemp, M. D. Dawson, A. B. Krysa, and J. S. Roberts, “Tunable ultraviolet output from an intracavity frequency-doubled red vertical-external-cavity surface-emmitting laser,” Appl. Phys. Lett. 89, 0611141–0611143 (2006).
[Crossref]

Kleinman, D. A.

G. D. Boyd and D. A. Kleinman, “Parametric Interaction of Focused Light Beams,” J. Appl. Phys. 39, 3597–3639 (1968).
[Crossref]

Krysa, A. B.

J. E. Hastie, L. G. Morton, A. J. Kemp, M. D. Dawson, A. B. Krysa, and J. S. Roberts, “Tunable ultraviolet output from an intracavity frequency-doubled red vertical-external-cavity surface-emmitting laser,” Appl. Phys. Lett. 89, 0611141–0611143 (2006).
[Crossref]

Liebertz, J.

H. Hellwig, J. Liebertz, and L. Bohat, “Exceptional large nonlinear optical coefficients in the monoclinic bismuth borate BiB3O6 (BiBO),” Solid State Commun. 109, 249–251 (1999).
[Crossref]

Lison, F.

T. Schmitt, A. Deninger, F. Lison, and W. Keanders, “Recent advances in non-linear frequency conversion of high-power, single-mode diode lasers,” Proceedings of. SPIE,  5707, 16–22 (2005).
[Crossref]

Liu, Y.

Z. Wang, X. Xu, K. Fu, R. Song, J. Wang, J. Wei, Y. Liu, and Z. Shao, “Non-critical phase matching of Gd1-XYXCa4O(BO3)3(Gd1-XYXCOB) crystal,” Solid State Commun. 120, 397–400 (2001).
[Crossref]

Loiseau, P.

Lupei, V.

Makio, S.

S. Makio, T Miyai, M. Sato, and T. Sasaki, “67-mW Continuous-Wave Blue Light Generation by Intracavity Frequency Doubling of a Diode Pumped Cr:LiSrAlF6 Laser,” Jpn. J. Appl. Phys. 39, 6539–6541 (2000).
[Crossref]

Markert, F.

A. Friedenauer, F. Markert, H. Schmitz, L. Petersen, S. Kahra, M. Herrmann, T. Udem, T. W. Hänsch, and T. Schtz, “High power all solid state laser system near 280 nm,” Appl. Phys. B 84, 371–373 (2006).
[Crossref]

Miyai, T

S. Makio, T Miyai, M. Sato, and T. Sasaki, “67-mW Continuous-Wave Blue Light Generation by Intracavity Frequency Doubling of a Diode Pumped Cr:LiSrAlF6 Laser,” Jpn. J. Appl. Phys. 39, 6539–6541 (2000).
[Crossref]

Mortensen, J.L.

Morton, L. G.

J. E. Hastie, L. G. Morton, A. J. Kemp, M. D. Dawson, A. B. Krysa, and J. S. Roberts, “Tunable ultraviolet output from an intracavity frequency-doubled red vertical-external-cavity surface-emmitting laser,” Appl. Phys. Lett. 89, 0611141–0611143 (2006).
[Crossref]

Nevsky, A. Y.

C. Schwedes, E. Peik, J. V. Zanthier, A. Y. Nevsky, and H. Walther, “Narrow-bandwidth diode-laser-based blue and ultraviolet light source,” Appl. Phys. B 76, 143–147 (2003).
[Crossref]

Nez, F.

S. Bourzeix, B. de Beauvoir, F. Nez, F. de Tomasi, L. Julien, and F. Biraben, “Ultra-violet light generation at 205 nm by two frequency doubling steps of a cw titanium-sapphire laser,” Opt. Commun. 133, 239–244 (1997).
[Crossref]

Peik, E.

C. Schwedes, E. Peik, J. V. Zanthier, A. Y. Nevsky, and H. Walther, “Narrow-bandwidth diode-laser-based blue and ultraviolet light source,” Appl. Phys. B 76, 143–147 (2003).
[Crossref]

Peng, H.

Y. Chen, H. Peng, W. Hou, Q. Peng, A. Geng, L. Guo, D. Cui, and Z. Xu, “3.8 W of cw blue light generated by intracavity frequency doubling of a 946-nm Nd:YAG laser with LBO,” Appl. Phys. B 83, 241–243 (2006).
[Crossref]

Peng, Q.

Y. Chen, H. Peng, W. Hou, Q. Peng, A. Geng, L. Guo, D. Cui, and Z. Xu, “3.8 W of cw blue light generated by intracavity frequency doubling of a 946-nm Nd:YAG laser with LBO,” Appl. Phys. B 83, 241–243 (2006).
[Crossref]

Petersen, L.

A. Friedenauer, F. Markert, H. Schmitz, L. Petersen, S. Kahra, M. Herrmann, T. Udem, T. W. Hänsch, and T. Schtz, “High power all solid state laser system near 280 nm,” Appl. Phys. B 84, 371–373 (2006).
[Crossref]

Roberts, J. S.

J. E. Hastie, L. G. Morton, A. J. Kemp, M. D. Dawson, A. B. Krysa, and J. S. Roberts, “Tunable ultraviolet output from an intracavity frequency-doubled red vertical-external-cavity surface-emmitting laser,” Appl. Phys. Lett. 89, 0611141–0611143 (2006).
[Crossref]

Sasaki, T.

S. Makio, T Miyai, M. Sato, and T. Sasaki, “67-mW Continuous-Wave Blue Light Generation by Intracavity Frequency Doubling of a Diode Pumped Cr:LiSrAlF6 Laser,” Jpn. J. Appl. Phys. 39, 6539–6541 (2000).
[Crossref]

Sato, M.

S. Makio, T Miyai, M. Sato, and T. Sasaki, “67-mW Continuous-Wave Blue Light Generation by Intracavity Frequency Doubling of a Diode Pumped Cr:LiSrAlF6 Laser,” Jpn. J. Appl. Phys. 39, 6539–6541 (2000).
[Crossref]

Schmitt, T.

T. Schmitt, A. Deninger, F. Lison, and W. Keanders, “Recent advances in non-linear frequency conversion of high-power, single-mode diode lasers,” Proceedings of. SPIE,  5707, 16–22 (2005).
[Crossref]

Schmitz, H.

A. Friedenauer, F. Markert, H. Schmitz, L. Petersen, S. Kahra, M. Herrmann, T. Udem, T. W. Hänsch, and T. Schtz, “High power all solid state laser system near 280 nm,” Appl. Phys. B 84, 371–373 (2006).
[Crossref]

Schtz, T.

A. Friedenauer, F. Markert, H. Schmitz, L. Petersen, S. Kahra, M. Herrmann, T. Udem, T. W. Hänsch, and T. Schtz, “High power all solid state laser system near 280 nm,” Appl. Phys. B 84, 371–373 (2006).
[Crossref]

Schwedes, C.

C. Schwedes, E. Peik, J. V. Zanthier, A. Y. Nevsky, and H. Walther, “Narrow-bandwidth diode-laser-based blue and ultraviolet light source,” Appl. Phys. B 76, 143–147 (2003).
[Crossref]

Shao, Z.

Z. Wang, X. Xu, K. Fu, R. Song, J. Wang, J. Wei, Y. Liu, and Z. Shao, “Non-critical phase matching of Gd1-XYXCa4O(BO3)3(Gd1-XYXCOB) crystal,” Solid State Commun. 120, 397–400 (2001).
[Crossref]

Song, R.

Z. Wang, X. Xu, K. Fu, R. Song, J. Wang, J. Wei, Y. Liu, and Z. Shao, “Non-critical phase matching of Gd1-XYXCa4O(BO3)3(Gd1-XYXCOB) crystal,” Solid State Commun. 120, 397–400 (2001).
[Crossref]

Taira, T.

Thorhauge, M.

Tidemand-Licthenberg, P.

Tomasi, F. de

S. Bourzeix, B. de Beauvoir, F. Nez, F. de Tomasi, L. Julien, and F. Biraben, “Ultra-violet light generation at 205 nm by two frequency doubling steps of a cw titanium-sapphire laser,” Opt. Commun. 133, 239–244 (1997).
[Crossref]

Udem, T.

A. Friedenauer, F. Markert, H. Schmitz, L. Petersen, S. Kahra, M. Herrmann, T. Udem, T. W. Hänsch, and T. Schtz, “High power all solid state laser system near 280 nm,” Appl. Phys. B 84, 371–373 (2006).
[Crossref]

Vuletic, V.

C. Zimmermann, V. Vuletic, A. Hemmerich, and T. W. Hänsch, “All solid state laser source for tunable blue and ultraviolet radiation,” Appl. Phys. Lett. 66, 2318–2320 (1995).
[Crossref]

Walther, H.

C. Schwedes, E. Peik, J. V. Zanthier, A. Y. Nevsky, and H. Walther, “Narrow-bandwidth diode-laser-based blue and ultraviolet light source,” Appl. Phys. B 76, 143–147 (2003).
[Crossref]

Wang, J.

Z. Wang, X. Xu, K. Fu, R. Song, J. Wang, J. Wei, Y. Liu, and Z. Shao, “Non-critical phase matching of Gd1-XYXCa4O(BO3)3(Gd1-XYXCOB) crystal,” Solid State Commun. 120, 397–400 (2001).
[Crossref]

Wang, Z.

Z. Wang, X. Xu, K. Fu, R. Song, J. Wang, J. Wei, Y. Liu, and Z. Shao, “Non-critical phase matching of Gd1-XYXCa4O(BO3)3(Gd1-XYXCOB) crystal,” Solid State Commun. 120, 397–400 (2001).
[Crossref]

Wei, J.

Z. Wang, X. Xu, K. Fu, R. Song, J. Wang, J. Wei, Y. Liu, and Z. Shao, “Non-critical phase matching of Gd1-XYXCa4O(BO3)3(Gd1-XYXCOB) crystal,” Solid State Commun. 120, 397–400 (2001).
[Crossref]

Xu, X.

Z. Wang, X. Xu, K. Fu, R. Song, J. Wang, J. Wei, Y. Liu, and Z. Shao, “Non-critical phase matching of Gd1-XYXCa4O(BO3)3(Gd1-XYXCOB) crystal,” Solid State Commun. 120, 397–400 (2001).
[Crossref]

Xu, Z.

Y. Chen, H. Peng, W. Hou, Q. Peng, A. Geng, L. Guo, D. Cui, and Z. Xu, “3.8 W of cw blue light generated by intracavity frequency doubling of a 946-nm Nd:YAG laser with LBO,” Appl. Phys. B 83, 241–243 (2006).
[Crossref]

Zanthier, J. V.

C. Schwedes, E. Peik, J. V. Zanthier, A. Y. Nevsky, and H. Walther, “Narrow-bandwidth diode-laser-based blue and ultraviolet light source,” Appl. Phys. B 76, 143–147 (2003).
[Crossref]

Zimmermann, C.

C. Zimmermann, V. Vuletic, A. Hemmerich, and T. W. Hänsch, “All solid state laser source for tunable blue and ultraviolet radiation,” Appl. Phys. Lett. 66, 2318–2320 (1995).
[Crossref]

Appl. Phys. B (3)

C. Schwedes, E. Peik, J. V. Zanthier, A. Y. Nevsky, and H. Walther, “Narrow-bandwidth diode-laser-based blue and ultraviolet light source,” Appl. Phys. B 76, 143–147 (2003).
[Crossref]

A. Friedenauer, F. Markert, H. Schmitz, L. Petersen, S. Kahra, M. Herrmann, T. Udem, T. W. Hänsch, and T. Schtz, “High power all solid state laser system near 280 nm,” Appl. Phys. B 84, 371–373 (2006).
[Crossref]

Y. Chen, H. Peng, W. Hou, Q. Peng, A. Geng, L. Guo, D. Cui, and Z. Xu, “3.8 W of cw blue light generated by intracavity frequency doubling of a 946-nm Nd:YAG laser with LBO,” Appl. Phys. B 83, 241–243 (2006).
[Crossref]

Appl. Phys. Lett. (2)

J. E. Hastie, L. G. Morton, A. J. Kemp, M. D. Dawson, A. B. Krysa, and J. S. Roberts, “Tunable ultraviolet output from an intracavity frequency-doubled red vertical-external-cavity surface-emmitting laser,” Appl. Phys. Lett. 89, 0611141–0611143 (2006).
[Crossref]

C. Zimmermann, V. Vuletic, A. Hemmerich, and T. W. Hänsch, “All solid state laser source for tunable blue and ultraviolet radiation,” Appl. Phys. Lett. 66, 2318–2320 (1995).
[Crossref]

J. Appl. Phys. (1)

G. D. Boyd and D. A. Kleinman, “Parametric Interaction of Focused Light Beams,” J. Appl. Phys. 39, 3597–3639 (1968).
[Crossref]

J. Opt. Soc. Am. B (1)

Jpn. J. Appl. Phys. (1)

S. Makio, T Miyai, M. Sato, and T. Sasaki, “67-mW Continuous-Wave Blue Light Generation by Intracavity Frequency Doubling of a Diode Pumped Cr:LiSrAlF6 Laser,” Jpn. J. Appl. Phys. 39, 6539–6541 (2000).
[Crossref]

Opt. Commun. (1)

S. Bourzeix, B. de Beauvoir, F. Nez, F. de Tomasi, L. Julien, and F. Biraben, “Ultra-violet light generation at 205 nm by two frequency doubling steps of a cw titanium-sapphire laser,” Opt. Commun. 133, 239–244 (1997).
[Crossref]

Opt. Express (1)

Opt. Lett. (1)

Proceedings of. SPIE (1)

T. Schmitt, A. Deninger, F. Lison, and W. Keanders, “Recent advances in non-linear frequency conversion of high-power, single-mode diode lasers,” Proceedings of. SPIE,  5707, 16–22 (2005).
[Crossref]

Solid State Commun. (2)

H. Hellwig, J. Liebertz, and L. Bohat, “Exceptional large nonlinear optical coefficients in the monoclinic bismuth borate BiB3O6 (BiBO),” Solid State Commun. 109, 249–251 (1999).
[Crossref]

Z. Wang, X. Xu, K. Fu, R. Song, J. Wang, J. Wei, Y. Liu, and Z. Shao, “Non-critical phase matching of Gd1-XYXCa4O(BO3)3(Gd1-XYXCOB) crystal,” Solid State Commun. 120, 397–400 (2001).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

The Ti:S laser setup: The NLC was placed in the circular beam waist formed between M4 and M5.

Fig. 2.
Fig. 2.

Measured spectrum of the Ti:S laser. The FHWM of the spectrum was measured to 31 pm centered around 811.98 nm.

Fig. 3.
Fig. 3.

The dimensions of the used crystal: (left) Gd0.871Lu0.129Ca4O(BO3)3, (center) Gd0.93Lu0.07Ca4O(BO3)3 and s(right) Gd0.96Sc0.04Ca4O(BO3)3

Fig. 4.
Fig. 4.

Temperature acceptance bandwidth for the Gd0.871Lu0.129Ca4O(BO3)3 crystal measured at a fundamental wavelength of 799 nm. The optimum temperature was found to 41.5 ± 1 °C, and the FWHM temperature bandwidth was measured to 38.1 °C

Fig. 5.
Fig. 5.

Measured temperature acceptance bandwidth and temperature dependence for: (left) Gd0.93Lu0.07Ca4O(BO3)3 at a fundamental wavelength of 812.0 nm. (right) Gd0.96Sc0.04Ca4O(BO3)3 at a fundamental wavelength of 814.8 nm.

Fig. 6.
Fig. 6.

Generated intra-cavity 399.50 nm light for the Gd0.871Lu0.129Ca4O(BO3)3 crystal. (left) As function of pump power in a high finesse cavity. (right) as function of the inter-cavity field squared with a 1% output coupler.

Fig. 7.
Fig. 7.

Generated intra-cavity 405.60 nm light for the Gd0.93Lu0.07Ca4O(BO3)3 crystal. (left) As function of pump power in a high finesse cavity. (right) as function of the inter-cavity field squared with a 1% output coupler.

Fig. 8.
Fig. 8.

Generated intra-cavity 407.40 nm light for the Gd0.96Sc0.004Ca4O(BO3)3 crystal. (left) As function of pump power in a high finesse cavity. (right) as function of the inter-cavity field squared with a 1% output coupler.

Tables (3)

Tables Icon

Table 1. Calculated NCPM fundamental wavelength and FWHM wavelength acceptance bandwidth of the used nonlinear crystals.

Tables Icon

Table 2. Measured and calculated NCPM fundamental wavelength and FWHM temperature acceptance bandwidth of the used nonlinear materials.

Tables Icon

Table 3. Summary of the parameters used for calculation of the effective nonlinear coefficients of the nonlinear materials

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

d eff = P 2 n 2 n 1 2 π w 0 2 4 ε 0 2 P 1 2 ω 2 μ 0 3 c 3 h ( B , ξ ) ,

Metrics