Abstract

Telecommunication carriers have to estimate the Raman parameters of the fibers installed on their optical transport networks in order to facilitate the design of the next generation of high bit-rate Raman amplified-based transmission systems. This paper reports a very complete characterization of the most popular modern transmission fibers in terms of Raman efficiency, noise figure and double Rayleigh backscattering crosstalk. Our experiment is based on an averaged power analysis, applied to a counter-pumped long-haul distributed fiber Raman amplifier. We evaluate as well at 40 Gb/s for these different fiber types the double Rayleigh backscattering impact in terms of Q-factor penalty for various Raman gains and RZ modulation formats with different duty cycles.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Bromage "Raman amplification for fiber communication systems," J. Lightwave Technol. 22, 79-93, (2004).
    [CrossRef]
  2. G. P Agrawal, Raman amplification in fiber optical communication systems C. Headley, ed., (Elsevier Academic Press, 2005).
  3. C. Rasmussen, T. Fjelde, J. Bennike, F. Liu, S. Dey, B. Mikkelsen, P. Mamyshev, P. Serbe, P. van der Wagt, Y. Akasaka, D. Harris, D. Gapontsev, V. Ivshin, and P. Reeves-Hall, "DWDM 40G transmission over trans-pacific distance (10 000 km) using CSRZ-DPSK, enhanced FEC, and all-Raman-amplified 100-km UltraWave fiber spans," J. Lightwave Technol. 22, 203-207 (2004).
    [CrossRef]
  4. P. Wan and J. Conradi, "Impact of double Rayleigh backscatter noise on digital and analog systems," J. Lightwave Technol. 14, 288-297 (1996).
    [CrossRef]
  5. J. Bromage, C.-H. Kim, P. J. Winzer, L. E. Nelson, R.-J. Essiambre, and R. M. Jopson, "Relative impact of multiple-path interference and amplified spontaneous emission noise on optical receiver performance," in Proc. Optical Fiber Communication Conf., (2002).
  6. 6. P. J. Winzer, R.-J. Essiambre, and J. Bromage, "Combined impact of double-Rayleigh backscatter and amplified spontaneous emission on receiver noise," in Proc. Optical Fiber Communications Conf., (2002);R. J. Essiambre, P. Winzer, J. Bromage, C. H. Kim, "Design of bidirectionally pumped fiber amplifiers generating double Rayleigh backscattering," IEEE Photon. Technol. Lett. 14, 914-916 (2002).
  7. M. Nissov, K. Rottwitt, H. D. Kidorf, and M. X. Ma, "Rayleigh crosstalk in long cascades of distributed unsaturated Raman amplifiers," Electron. Lett. 35, 997-998 (1999).
    [CrossRef]
  8. C. Dibon, F. Boubal, P. Le Roux, E. Brandon, "Experimental validation of DRS impact on transmission system at 2.5, 10 and 40 Gbit/s," in Proc. European Conference on Optical Communications, (2002).
  9. C. Fludger, A. Maroney, N. Jolley, R. Mears, "An analysis of the improvement in OSNR from distributed Raman amplifiers using modern transmission fibers," in Proc. Optical Fiber Communications Conf., 2000.
  10. F. Koch, S.A.E. Lewis, S. V. Chernikov, J. R. Taylor, "Broadband Raman gain characterization in various optical fibers," Electron. Lett. 37, 1437-1438 (2001).
    [CrossRef]
  11. J. Bromage, K. Rottwitt, and M. E. Lines, "A method to predict the Raman gain spectra of Germanosilicate fibers with arbitrary index profiles," IEEE Photon. Technol. Lett. 14, 24-26 (2002).
    [CrossRef]
  12. S. H. Chang, S. K. Kim, M. J. Chu, and J. H. Lee, "Limitations in fiber Raman amplifiers imposed by Rayleigh scattering of signals," Electron. Lett. 38, 865-866 (2002).
    [CrossRef]
  13. S. A. E. Lewis, S. V. Chernikov, and J. R. Taylor, "Characterization of double Rayleigh scatter noise in Raman amplifiers," IEEE Photon. Technol. Lett. 12, 528-530 (2000).
    [CrossRef]
  14. R. H. Stolen and E. P. Ippen, "Raman gain in glass optical waveguides," Appl. Phys. Lett. 22, 276-278 (1973).
    [CrossRef]
  15. M. O. Deventer, "Polarization properties of Rayleigh backscattering in single-mode fibers," J. Lightwave Technol. 11, 1895-1899 (1993).
    [CrossRef]
  16. N. A. Olson, "Lightwave systems with optical amplifiers," J. Lightwave Technol. 7, 1071-1082 (1989).
    [CrossRef]
  17. C. Martinelli, G. Charlet, L. Pierre, J. Antona, and D. Bayart, "System impairment of double-Rayleigh scattering and dependence on modulation format," in Proc. Optical Fiber Communications Conf., (2003).

2004 (2)

2002 (3)

6. P. J. Winzer, R.-J. Essiambre, and J. Bromage, "Combined impact of double-Rayleigh backscatter and amplified spontaneous emission on receiver noise," in Proc. Optical Fiber Communications Conf., (2002);R. J. Essiambre, P. Winzer, J. Bromage, C. H. Kim, "Design of bidirectionally pumped fiber amplifiers generating double Rayleigh backscattering," IEEE Photon. Technol. Lett. 14, 914-916 (2002).

6. P. J. Winzer, R.-J. Essiambre, and J. Bromage, "Combined impact of double-Rayleigh backscatter and amplified spontaneous emission on receiver noise," in Proc. Optical Fiber Communications Conf., (2002);R. J. Essiambre, P. Winzer, J. Bromage, C. H. Kim, "Design of bidirectionally pumped fiber amplifiers generating double Rayleigh backscattering," IEEE Photon. Technol. Lett. 14, 914-916 (2002).

J. Bromage, K. Rottwitt, and M. E. Lines, "A method to predict the Raman gain spectra of Germanosilicate fibers with arbitrary index profiles," IEEE Photon. Technol. Lett. 14, 24-26 (2002).
[CrossRef]

S. H. Chang, S. K. Kim, M. J. Chu, and J. H. Lee, "Limitations in fiber Raman amplifiers imposed by Rayleigh scattering of signals," Electron. Lett. 38, 865-866 (2002).
[CrossRef]

2001 (1)

F. Koch, S.A.E. Lewis, S. V. Chernikov, J. R. Taylor, "Broadband Raman gain characterization in various optical fibers," Electron. Lett. 37, 1437-1438 (2001).
[CrossRef]

2000 (1)

S. A. E. Lewis, S. V. Chernikov, and J. R. Taylor, "Characterization of double Rayleigh scatter noise in Raman amplifiers," IEEE Photon. Technol. Lett. 12, 528-530 (2000).
[CrossRef]

1999 (1)

M. Nissov, K. Rottwitt, H. D. Kidorf, and M. X. Ma, "Rayleigh crosstalk in long cascades of distributed unsaturated Raman amplifiers," Electron. Lett. 35, 997-998 (1999).
[CrossRef]

1996 (1)

P. Wan and J. Conradi, "Impact of double Rayleigh backscatter noise on digital and analog systems," J. Lightwave Technol. 14, 288-297 (1996).
[CrossRef]

1993 (1)

M. O. Deventer, "Polarization properties of Rayleigh backscattering in single-mode fibers," J. Lightwave Technol. 11, 1895-1899 (1993).
[CrossRef]

1989 (1)

N. A. Olson, "Lightwave systems with optical amplifiers," J. Lightwave Technol. 7, 1071-1082 (1989).
[CrossRef]

1973 (1)

R. H. Stolen and E. P. Ippen, "Raman gain in glass optical waveguides," Appl. Phys. Lett. 22, 276-278 (1973).
[CrossRef]

Akasaka, Y.

Bennike, J.

Bromage, J.

J. Bromage "Raman amplification for fiber communication systems," J. Lightwave Technol. 22, 79-93, (2004).
[CrossRef]

6. P. J. Winzer, R.-J. Essiambre, and J. Bromage, "Combined impact of double-Rayleigh backscatter and amplified spontaneous emission on receiver noise," in Proc. Optical Fiber Communications Conf., (2002);R. J. Essiambre, P. Winzer, J. Bromage, C. H. Kim, "Design of bidirectionally pumped fiber amplifiers generating double Rayleigh backscattering," IEEE Photon. Technol. Lett. 14, 914-916 (2002).

6. P. J. Winzer, R.-J. Essiambre, and J. Bromage, "Combined impact of double-Rayleigh backscatter and amplified spontaneous emission on receiver noise," in Proc. Optical Fiber Communications Conf., (2002);R. J. Essiambre, P. Winzer, J. Bromage, C. H. Kim, "Design of bidirectionally pumped fiber amplifiers generating double Rayleigh backscattering," IEEE Photon. Technol. Lett. 14, 914-916 (2002).

J. Bromage, K. Rottwitt, and M. E. Lines, "A method to predict the Raman gain spectra of Germanosilicate fibers with arbitrary index profiles," IEEE Photon. Technol. Lett. 14, 24-26 (2002).
[CrossRef]

Chang, S. H.

S. H. Chang, S. K. Kim, M. J. Chu, and J. H. Lee, "Limitations in fiber Raman amplifiers imposed by Rayleigh scattering of signals," Electron. Lett. 38, 865-866 (2002).
[CrossRef]

Chernikov, S. V.

F. Koch, S.A.E. Lewis, S. V. Chernikov, J. R. Taylor, "Broadband Raman gain characterization in various optical fibers," Electron. Lett. 37, 1437-1438 (2001).
[CrossRef]

S. A. E. Lewis, S. V. Chernikov, and J. R. Taylor, "Characterization of double Rayleigh scatter noise in Raman amplifiers," IEEE Photon. Technol. Lett. 12, 528-530 (2000).
[CrossRef]

Chu, M. J.

S. H. Chang, S. K. Kim, M. J. Chu, and J. H. Lee, "Limitations in fiber Raman amplifiers imposed by Rayleigh scattering of signals," Electron. Lett. 38, 865-866 (2002).
[CrossRef]

Conradi, J.

P. Wan and J. Conradi, "Impact of double Rayleigh backscatter noise on digital and analog systems," J. Lightwave Technol. 14, 288-297 (1996).
[CrossRef]

Deventer, M. O.

M. O. Deventer, "Polarization properties of Rayleigh backscattering in single-mode fibers," J. Lightwave Technol. 11, 1895-1899 (1993).
[CrossRef]

Dey, S.

Essiambre, R. J.

6. P. J. Winzer, R.-J. Essiambre, and J. Bromage, "Combined impact of double-Rayleigh backscatter and amplified spontaneous emission on receiver noise," in Proc. Optical Fiber Communications Conf., (2002);R. J. Essiambre, P. Winzer, J. Bromage, C. H. Kim, "Design of bidirectionally pumped fiber amplifiers generating double Rayleigh backscattering," IEEE Photon. Technol. Lett. 14, 914-916 (2002).

Essiambre, R.-J.

6. P. J. Winzer, R.-J. Essiambre, and J. Bromage, "Combined impact of double-Rayleigh backscatter and amplified spontaneous emission on receiver noise," in Proc. Optical Fiber Communications Conf., (2002);R. J. Essiambre, P. Winzer, J. Bromage, C. H. Kim, "Design of bidirectionally pumped fiber amplifiers generating double Rayleigh backscattering," IEEE Photon. Technol. Lett. 14, 914-916 (2002).

Fjelde, T.

Gapontsev, D.

Harris, D.

Ippen, E. P.

R. H. Stolen and E. P. Ippen, "Raman gain in glass optical waveguides," Appl. Phys. Lett. 22, 276-278 (1973).
[CrossRef]

Ivshin, V.

Kidorf, H. D.

M. Nissov, K. Rottwitt, H. D. Kidorf, and M. X. Ma, "Rayleigh crosstalk in long cascades of distributed unsaturated Raman amplifiers," Electron. Lett. 35, 997-998 (1999).
[CrossRef]

Kim, C. H.

6. P. J. Winzer, R.-J. Essiambre, and J. Bromage, "Combined impact of double-Rayleigh backscatter and amplified spontaneous emission on receiver noise," in Proc. Optical Fiber Communications Conf., (2002);R. J. Essiambre, P. Winzer, J. Bromage, C. H. Kim, "Design of bidirectionally pumped fiber amplifiers generating double Rayleigh backscattering," IEEE Photon. Technol. Lett. 14, 914-916 (2002).

Kim, S. K.

S. H. Chang, S. K. Kim, M. J. Chu, and J. H. Lee, "Limitations in fiber Raman amplifiers imposed by Rayleigh scattering of signals," Electron. Lett. 38, 865-866 (2002).
[CrossRef]

Koch, F.

F. Koch, S.A.E. Lewis, S. V. Chernikov, J. R. Taylor, "Broadband Raman gain characterization in various optical fibers," Electron. Lett. 37, 1437-1438 (2001).
[CrossRef]

Lee, J. H.

S. H. Chang, S. K. Kim, M. J. Chu, and J. H. Lee, "Limitations in fiber Raman amplifiers imposed by Rayleigh scattering of signals," Electron. Lett. 38, 865-866 (2002).
[CrossRef]

Lewis, S. A. E.

S. A. E. Lewis, S. V. Chernikov, and J. R. Taylor, "Characterization of double Rayleigh scatter noise in Raman amplifiers," IEEE Photon. Technol. Lett. 12, 528-530 (2000).
[CrossRef]

Lewis, S.A.E.

F. Koch, S.A.E. Lewis, S. V. Chernikov, J. R. Taylor, "Broadband Raman gain characterization in various optical fibers," Electron. Lett. 37, 1437-1438 (2001).
[CrossRef]

Lines, M. E.

J. Bromage, K. Rottwitt, and M. E. Lines, "A method to predict the Raman gain spectra of Germanosilicate fibers with arbitrary index profiles," IEEE Photon. Technol. Lett. 14, 24-26 (2002).
[CrossRef]

Liu, F.

Ma, M. X.

M. Nissov, K. Rottwitt, H. D. Kidorf, and M. X. Ma, "Rayleigh crosstalk in long cascades of distributed unsaturated Raman amplifiers," Electron. Lett. 35, 997-998 (1999).
[CrossRef]

Mamyshev, P.

Mikkelsen, B.

Nissov, M.

M. Nissov, K. Rottwitt, H. D. Kidorf, and M. X. Ma, "Rayleigh crosstalk in long cascades of distributed unsaturated Raman amplifiers," Electron. Lett. 35, 997-998 (1999).
[CrossRef]

Olson, N. A.

N. A. Olson, "Lightwave systems with optical amplifiers," J. Lightwave Technol. 7, 1071-1082 (1989).
[CrossRef]

Rasmussen, C.

Reeves-Hall, P.

Rottwitt, K.

J. Bromage, K. Rottwitt, and M. E. Lines, "A method to predict the Raman gain spectra of Germanosilicate fibers with arbitrary index profiles," IEEE Photon. Technol. Lett. 14, 24-26 (2002).
[CrossRef]

M. Nissov, K. Rottwitt, H. D. Kidorf, and M. X. Ma, "Rayleigh crosstalk in long cascades of distributed unsaturated Raman amplifiers," Electron. Lett. 35, 997-998 (1999).
[CrossRef]

Serbe, P.

Stolen, R. H.

R. H. Stolen and E. P. Ippen, "Raman gain in glass optical waveguides," Appl. Phys. Lett. 22, 276-278 (1973).
[CrossRef]

Taylor, J. R.

F. Koch, S.A.E. Lewis, S. V. Chernikov, J. R. Taylor, "Broadband Raman gain characterization in various optical fibers," Electron. Lett. 37, 1437-1438 (2001).
[CrossRef]

S. A. E. Lewis, S. V. Chernikov, and J. R. Taylor, "Characterization of double Rayleigh scatter noise in Raman amplifiers," IEEE Photon. Technol. Lett. 12, 528-530 (2000).
[CrossRef]

van der Wagt, P.

Wan, P.

P. Wan and J. Conradi, "Impact of double Rayleigh backscatter noise on digital and analog systems," J. Lightwave Technol. 14, 288-297 (1996).
[CrossRef]

Winzer, P.

6. P. J. Winzer, R.-J. Essiambre, and J. Bromage, "Combined impact of double-Rayleigh backscatter and amplified spontaneous emission on receiver noise," in Proc. Optical Fiber Communications Conf., (2002);R. J. Essiambre, P. Winzer, J. Bromage, C. H. Kim, "Design of bidirectionally pumped fiber amplifiers generating double Rayleigh backscattering," IEEE Photon. Technol. Lett. 14, 914-916 (2002).

Winzer, P. J.

6. P. J. Winzer, R.-J. Essiambre, and J. Bromage, "Combined impact of double-Rayleigh backscatter and amplified spontaneous emission on receiver noise," in Proc. Optical Fiber Communications Conf., (2002);R. J. Essiambre, P. Winzer, J. Bromage, C. H. Kim, "Design of bidirectionally pumped fiber amplifiers generating double Rayleigh backscattering," IEEE Photon. Technol. Lett. 14, 914-916 (2002).

Appl. Phys. Lett. (1)

R. H. Stolen and E. P. Ippen, "Raman gain in glass optical waveguides," Appl. Phys. Lett. 22, 276-278 (1973).
[CrossRef]

Electron. Lett. (3)

S. H. Chang, S. K. Kim, M. J. Chu, and J. H. Lee, "Limitations in fiber Raman amplifiers imposed by Rayleigh scattering of signals," Electron. Lett. 38, 865-866 (2002).
[CrossRef]

M. Nissov, K. Rottwitt, H. D. Kidorf, and M. X. Ma, "Rayleigh crosstalk in long cascades of distributed unsaturated Raman amplifiers," Electron. Lett. 35, 997-998 (1999).
[CrossRef]

F. Koch, S.A.E. Lewis, S. V. Chernikov, J. R. Taylor, "Broadband Raman gain characterization in various optical fibers," Electron. Lett. 37, 1437-1438 (2001).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

J. Bromage, K. Rottwitt, and M. E. Lines, "A method to predict the Raman gain spectra of Germanosilicate fibers with arbitrary index profiles," IEEE Photon. Technol. Lett. 14, 24-26 (2002).
[CrossRef]

S. A. E. Lewis, S. V. Chernikov, and J. R. Taylor, "Characterization of double Rayleigh scatter noise in Raman amplifiers," IEEE Photon. Technol. Lett. 12, 528-530 (2000).
[CrossRef]

6. P. J. Winzer, R.-J. Essiambre, and J. Bromage, "Combined impact of double-Rayleigh backscatter and amplified spontaneous emission on receiver noise," in Proc. Optical Fiber Communications Conf., (2002);R. J. Essiambre, P. Winzer, J. Bromage, C. H. Kim, "Design of bidirectionally pumped fiber amplifiers generating double Rayleigh backscattering," IEEE Photon. Technol. Lett. 14, 914-916 (2002).

J. Lightwave Technol. (5)

M. O. Deventer, "Polarization properties of Rayleigh backscattering in single-mode fibers," J. Lightwave Technol. 11, 1895-1899 (1993).
[CrossRef]

N. A. Olson, "Lightwave systems with optical amplifiers," J. Lightwave Technol. 7, 1071-1082 (1989).
[CrossRef]

J. Bromage "Raman amplification for fiber communication systems," J. Lightwave Technol. 22, 79-93, (2004).
[CrossRef]

C. Rasmussen, T. Fjelde, J. Bennike, F. Liu, S. Dey, B. Mikkelsen, P. Mamyshev, P. Serbe, P. van der Wagt, Y. Akasaka, D. Harris, D. Gapontsev, V. Ivshin, and P. Reeves-Hall, "DWDM 40G transmission over trans-pacific distance (10 000 km) using CSRZ-DPSK, enhanced FEC, and all-Raman-amplified 100-km UltraWave fiber spans," J. Lightwave Technol. 22, 203-207 (2004).
[CrossRef]

P. Wan and J. Conradi, "Impact of double Rayleigh backscatter noise on digital and analog systems," J. Lightwave Technol. 14, 288-297 (1996).
[CrossRef]

Other (5)

J. Bromage, C.-H. Kim, P. J. Winzer, L. E. Nelson, R.-J. Essiambre, and R. M. Jopson, "Relative impact of multiple-path interference and amplified spontaneous emission noise on optical receiver performance," in Proc. Optical Fiber Communication Conf., (2002).

G. P Agrawal, Raman amplification in fiber optical communication systems C. Headley, ed., (Elsevier Academic Press, 2005).

C. Dibon, F. Boubal, P. Le Roux, E. Brandon, "Experimental validation of DRS impact on transmission system at 2.5, 10 and 40 Gbit/s," in Proc. European Conference on Optical Communications, (2002).

C. Fludger, A. Maroney, N. Jolley, R. Mears, "An analysis of the improvement in OSNR from distributed Raman amplifiers using modern transmission fibers," in Proc. Optical Fiber Communications Conf., 2000.

C. Martinelli, G. Charlet, L. Pierre, J. Antona, and D. Bayart, "System impairment of double-Rayleigh scattering and dependence on modulation format," in Proc. Optical Fiber Communications Conf., (2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig 1.
Fig 1.

Experimental set-up.

Fig 2.
Fig 2.

G on/off and NFeq versus launched pump power at 1455 nm in the 100-km long FRAs under test (the input signal power at 1555 nm is 1 mW).

Fig 3.
Fig 3.

G on/off spectra of the 100-km long FRAs when the launched pump power at 1455 nm is fixed at 700 mW (the input signal power is 1 mW).

Fig 4.
Fig 4.

OSNRDRS spectra of the 100-km long FRAs when the launched pump power at 1455 nm is fixed at 700 mW (the input signal power is 1 mW).

Fig 5.
Fig 5.

OSNRDRBS versus G on/off at 1555 nm when the 100-km long FRAs are counter-pumped with a RFL at 1455 nm (the input signal power is still fixed at 1 mW).

Fig. 6.
Fig. 6.

(a). Q-factor penalties versus G on/off at 1555 nm for one 100-km long amplification span of the various fibers under test and 40 Gb/s RZ 50% Gaussian pulses; (b) Q-factor penalties versus G on/off at 1555 nm, for one 100-km long amplification span of Truewave-RSTM fiber and for 40 Gb/s RZ 3%,RZ 50% and RZ 66% Gaussian pulses.

Fig. 7.
Fig. 7.

σ2 s-ASE /σ2 s-DRS ratio evolution for RZ 33%, RZ 50% and RZ 66% Gaussian pulses: (a) versus Belec (at constant Belec ), (b) versus Bopt (at constant Belec ).

Tables (1)

Tables Icon

Table 1: Various physical parameters of the fibers under test at λsignal = 1555 nm when λpump = 1455 nm.

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

N F eq = 1 G on / off ( 1 + P ASE h ν s B OSA )
C R = a G on / off P pump L eff
OSNR DRS = 10 log ( k R 2 o L o z G 2 ( z ) G 2 ( y ) dy dz )
G ( z ) = exp [ C R P pump ( L ) e α pump L ( e α pump z 1 ) α pump α signal z ]
σ s ASE 2 = ( e h ν s ) 2 4 . P 1 . N ASE . B elec 1 + 2 B s 2 B opt 2 + 4 B elec 2 B opt 2 [ 1 + B s 2 B opt 2 ] 1 + B s 2 4 B elec 2 + B s 2 B opt 2
σ s DRS 2 = ( e h ν s ) 2 2 P 1 . P DRS∥ 1 + B s 2 B opt 2 1 + B s 2 B opt 2 + B s 2 2 B elec 2 1 + B s 2 B opt 2 + B s 2 4 B elec 2
σ s ASE 2 = ( e h ν s ) 2 . 4 . P 1 . N ASE . B elec
σ s DRS 2 = ( e h ν s ) 2 . 2 P 1 . P DRS∥
OSNR ASE = P s 2 N ASE . B OSA = R s . P 1 2 N ASE . 4 . B S . B OSA
OSNR DRS = P s P DRS TOTAL = R s . P 1 9 5 . P DRS∥ . 4 . B S
P s = R s . P 1 4 B s
P DRS∥ = 5 9 P DRS TOTAL
Q dB = 20 . log [ e h ν s . P 1 ( σ Schottky 2 + σ s ASE 2 + σ s DRS 2 ) 1 2 ]
B s = 1 Δ t s ln ( 2 ) π
B opt = 1 2 π ln ( 2 ) Δ ν opt
B elec = B s 2

Metrics