Abstract

We demonstrate an alternative light source for CARS microspectroscopy based on a fiber laser and a photonic-crystal fiber. The light source simultaneously delivers a near-transform-limited picosecond pump pulse at 1033.5 nm and a frequency-shifted, near-transform-limited femtosecond Stokes pulse, tunable from 1033.5 nm to 1400 nm. This corresponds to a range 0 - 2500 cm-1, so that Raman-active vibrations in this frequency range can be probed. The spectral resolution is 5 cm-1, given by the spectral width of the pump pulse. The frequency range that can be probed simultaneously is 200 cm-1-wide, given by the spectral width of the Stokes pulse. The achievable average powers are 50 mW for the pump and 2 mW for the Stokes pulse. The repetition rate is 35 MHz. We demonstrate the capability of this light source by performing CARS microspectroscopy and comparing CARS spectra with Raman spectra.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Zumbusch, G. R. Holtom, and X. S. Xie, "Three-dimensional vibrational imaging by Coherent Anti-Stokes Raman Scattering," Phys. Rev. Lett. 82, 4142-4145 (1999).
    [CrossRef]
  2. E. O. Potma, D. J. Jones, J.-X. Cheng, X. S. Xie, and J. Ye, "High-sensitivity coherent anti-Stokes Raman scattering microscopy with two tightly synchronized picosecond lasers," Opt. Lett. 27, 1168-1170 (2002).
    [CrossRef]
  3. M. Müller and J. M. Schins, "Imaging the thermodynamic state of Lipid membranes with Multiplex CARS Microscopy," J. Phys. Chem. B 106, 3715-3723 (2002).
    [CrossRef]
  4. J.-X. Cheng and X. S. Xie, "Coherent anti-stokes Raman Scattering Microscopy: Instrumentation, Theory, and Applications," J. Phys. Chem. 108, 827-840 (2004).
    [CrossRef]
  5. F. Ganikhanov, S. Carrasco, X. S. Xie, M. Katz, W. Seitz, and D. Kopf, "Broadly tunable dual-wavelength light source for coherent anti-Stokes Raman scattering microscopy," Opt. Lett. 31, 1292-1294 (2006).
    [CrossRef] [PubMed]
  6. T. Hellerer, A. M. K. Enejder, and A. Zumbusch, Appl. Phys. Lett. 85, 25-27 (2004).
    [CrossRef]
  7. N. Dudovich, D. Oron, and Y. Silberberg, "Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy," Nature 418, 512-514 (2002).
    [CrossRef] [PubMed]
  8. H. N. Paulsen, K. M. Hilligsøe, J. Thøgersen, S R Keiding, and J. J. Larsen, "Coherent anti-Stokes Raman scattering microscopy with a photonic crystal fiber based light source," Opt. Lett. 28, 1123-1125 (2003).
    [CrossRef] [PubMed]
  9. T. W. Kee and M. T. Cicerone, "Simple approach to one-laser, broadband coherent anti-Stokes Raman scattering microscopy," Opt. Lett. 29, 2701-2703 (2004).
    [CrossRef] [PubMed]
  10. H. Lim, J. Buckley, A. Chong, and F. W. Wise, "Fibre-based source of femtosecond pulses tunable from 1.0 to 1.3 μm," Electron. Lett. 40, 1523-1525 (2004).
    [CrossRef]
  11. J. Takayanagi, T. Sugiura, M. Yoshida, and N. Nishizawa, "1.0-1.7- μm wavelength-tunable ultrashort-pulse generation using Femtosecond Yb-Doped Fiber Laser and Photonic Crystal Fiber," IEEE Photon. Technol. Lett. 18, 2284-2286 (2006).
    [CrossRef]
  12. R. Herda and O. G. Okhotnikov, "Dispersion compensation-free fiber laser mode-locked and stabilized by highcontrast saturable absorber mirror," IEEE J. Quantum Electron. 40, 893-899 (2004).
    [CrossRef]
  13. T. Schreiber, T. V. Andersen, D. Schimpf, J. Limpert, and A. Tünnermann, "Supercontinuum generation by femtosecond single and dual wavelength pumping in photonic crystal fibers with two zero dispersion wavelengths," Opt. Express 13, 9556-9569 (2005).
    [CrossRef] [PubMed]
  14. F. M. Mitschke and L. F. Mollenauer, "Discovery of the soliton self-frequency shift," Opt. Lett. 11, 659-661 (1986).
    [CrossRef] [PubMed]
  15. J. P. Gordon, "Theory of the soliton self-frequency shift," Opt. Lett. 11, 662-664 (1986).
    [CrossRef] [PubMed]
  16. M. D. Levenson and S. S. Kano, Introduction to nonlinear laser spectroscopy (Academic Press, inc. 1987).
  17. L. A. Gomes, L. Orsila, T. Jouhti, and O. G. Okhotnikov, "Picosecond SESAM-Based Ytterbium Mode-Locked Fiber Lasers," IEEE J. Quantum Electron. 10, 129-136 (2004).
    [CrossRef]
  18. J. Limpert, N. Deguil-Robin, I. Manek-Hönninger, F. Salin, T. Schreiber, A. Liem, F. Röser, H. Zellmer, A. T nnerman, A. Courjaud, C. Hönninger, and E. Mottay, "High-power picosecond fiber amplifier based on nonlinear spectral compression," Opt. Lett. 30, 714-716 (2005).
    [CrossRef] [PubMed]
  19. D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, J. Silcox, K.W. Koch, and A. L. Gaeta, "Generation of Megawatt Optical Solitons in Hollow-Core Photonic Band-Gap Fibers," Science 301, 1702-1704 (2003).
    [CrossRef] [PubMed]

2006 (2)

F. Ganikhanov, S. Carrasco, X. S. Xie, M. Katz, W. Seitz, and D. Kopf, "Broadly tunable dual-wavelength light source for coherent anti-Stokes Raman scattering microscopy," Opt. Lett. 31, 1292-1294 (2006).
[CrossRef] [PubMed]

J. Takayanagi, T. Sugiura, M. Yoshida, and N. Nishizawa, "1.0-1.7- μm wavelength-tunable ultrashort-pulse generation using Femtosecond Yb-Doped Fiber Laser and Photonic Crystal Fiber," IEEE Photon. Technol. Lett. 18, 2284-2286 (2006).
[CrossRef]

2005 (2)

2004 (6)

L. A. Gomes, L. Orsila, T. Jouhti, and O. G. Okhotnikov, "Picosecond SESAM-Based Ytterbium Mode-Locked Fiber Lasers," IEEE J. Quantum Electron. 10, 129-136 (2004).
[CrossRef]

R. Herda and O. G. Okhotnikov, "Dispersion compensation-free fiber laser mode-locked and stabilized by highcontrast saturable absorber mirror," IEEE J. Quantum Electron. 40, 893-899 (2004).
[CrossRef]

T. Hellerer, A. M. K. Enejder, and A. Zumbusch, Appl. Phys. Lett. 85, 25-27 (2004).
[CrossRef]

T. W. Kee and M. T. Cicerone, "Simple approach to one-laser, broadband coherent anti-Stokes Raman scattering microscopy," Opt. Lett. 29, 2701-2703 (2004).
[CrossRef] [PubMed]

H. Lim, J. Buckley, A. Chong, and F. W. Wise, "Fibre-based source of femtosecond pulses tunable from 1.0 to 1.3 μm," Electron. Lett. 40, 1523-1525 (2004).
[CrossRef]

J.-X. Cheng and X. S. Xie, "Coherent anti-stokes Raman Scattering Microscopy: Instrumentation, Theory, and Applications," J. Phys. Chem. 108, 827-840 (2004).
[CrossRef]

2003 (2)

H. N. Paulsen, K. M. Hilligsøe, J. Thøgersen, S R Keiding, and J. J. Larsen, "Coherent anti-Stokes Raman scattering microscopy with a photonic crystal fiber based light source," Opt. Lett. 28, 1123-1125 (2003).
[CrossRef] [PubMed]

D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, J. Silcox, K.W. Koch, and A. L. Gaeta, "Generation of Megawatt Optical Solitons in Hollow-Core Photonic Band-Gap Fibers," Science 301, 1702-1704 (2003).
[CrossRef] [PubMed]

2002 (3)

E. O. Potma, D. J. Jones, J.-X. Cheng, X. S. Xie, and J. Ye, "High-sensitivity coherent anti-Stokes Raman scattering microscopy with two tightly synchronized picosecond lasers," Opt. Lett. 27, 1168-1170 (2002).
[CrossRef]

M. Müller and J. M. Schins, "Imaging the thermodynamic state of Lipid membranes with Multiplex CARS Microscopy," J. Phys. Chem. B 106, 3715-3723 (2002).
[CrossRef]

N. Dudovich, D. Oron, and Y. Silberberg, "Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy," Nature 418, 512-514 (2002).
[CrossRef] [PubMed]

1999 (1)

A. Zumbusch, G. R. Holtom, and X. S. Xie, "Three-dimensional vibrational imaging by Coherent Anti-Stokes Raman Scattering," Phys. Rev. Lett. 82, 4142-4145 (1999).
[CrossRef]

1986 (2)

Ahmad, F. R.

D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, J. Silcox, K.W. Koch, and A. L. Gaeta, "Generation of Megawatt Optical Solitons in Hollow-Core Photonic Band-Gap Fibers," Science 301, 1702-1704 (2003).
[CrossRef] [PubMed]

Andersen, T. V.

Buckley, J.

H. Lim, J. Buckley, A. Chong, and F. W. Wise, "Fibre-based source of femtosecond pulses tunable from 1.0 to 1.3 μm," Electron. Lett. 40, 1523-1525 (2004).
[CrossRef]

Carrasco, S.

Cheng, J.-X.

J.-X. Cheng and X. S. Xie, "Coherent anti-stokes Raman Scattering Microscopy: Instrumentation, Theory, and Applications," J. Phys. Chem. 108, 827-840 (2004).
[CrossRef]

E. O. Potma, D. J. Jones, J.-X. Cheng, X. S. Xie, and J. Ye, "High-sensitivity coherent anti-Stokes Raman scattering microscopy with two tightly synchronized picosecond lasers," Opt. Lett. 27, 1168-1170 (2002).
[CrossRef]

Chong, A.

H. Lim, J. Buckley, A. Chong, and F. W. Wise, "Fibre-based source of femtosecond pulses tunable from 1.0 to 1.3 μm," Electron. Lett. 40, 1523-1525 (2004).
[CrossRef]

Cicerone, M. T.

Deguil-Robin, N.

Dudovich, N.

N. Dudovich, D. Oron, and Y. Silberberg, "Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy," Nature 418, 512-514 (2002).
[CrossRef] [PubMed]

Enejder, A. M. K.

T. Hellerer, A. M. K. Enejder, and A. Zumbusch, Appl. Phys. Lett. 85, 25-27 (2004).
[CrossRef]

Gaeta, A. L.

D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, J. Silcox, K.W. Koch, and A. L. Gaeta, "Generation of Megawatt Optical Solitons in Hollow-Core Photonic Band-Gap Fibers," Science 301, 1702-1704 (2003).
[CrossRef] [PubMed]

Ganikhanov, F.

Gomes, L. A.

L. A. Gomes, L. Orsila, T. Jouhti, and O. G. Okhotnikov, "Picosecond SESAM-Based Ytterbium Mode-Locked Fiber Lasers," IEEE J. Quantum Electron. 10, 129-136 (2004).
[CrossRef]

Gordon, J. P.

Hellerer, T.

T. Hellerer, A. M. K. Enejder, and A. Zumbusch, Appl. Phys. Lett. 85, 25-27 (2004).
[CrossRef]

Herda, R.

R. Herda and O. G. Okhotnikov, "Dispersion compensation-free fiber laser mode-locked and stabilized by highcontrast saturable absorber mirror," IEEE J. Quantum Electron. 40, 893-899 (2004).
[CrossRef]

Hilligsøe, K. M.

Holtom, G. R.

A. Zumbusch, G. R. Holtom, and X. S. Xie, "Three-dimensional vibrational imaging by Coherent Anti-Stokes Raman Scattering," Phys. Rev. Lett. 82, 4142-4145 (1999).
[CrossRef]

Jones, D. J.

Jouhti, T.

L. A. Gomes, L. Orsila, T. Jouhti, and O. G. Okhotnikov, "Picosecond SESAM-Based Ytterbium Mode-Locked Fiber Lasers," IEEE J. Quantum Electron. 10, 129-136 (2004).
[CrossRef]

Katz, M.

Kee, T. W.

Keiding, S R

Koch, K.W.

D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, J. Silcox, K.W. Koch, and A. L. Gaeta, "Generation of Megawatt Optical Solitons in Hollow-Core Photonic Band-Gap Fibers," Science 301, 1702-1704 (2003).
[CrossRef] [PubMed]

Kopf, D.

Larsen, J. J.

Liem, A.

Lim, H.

H. Lim, J. Buckley, A. Chong, and F. W. Wise, "Fibre-based source of femtosecond pulses tunable from 1.0 to 1.3 μm," Electron. Lett. 40, 1523-1525 (2004).
[CrossRef]

Limpert, J.

Manek-Hönninger, I.

Mitschke, F. M.

Mollenauer, L. F.

Müller, D.

D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, J. Silcox, K.W. Koch, and A. L. Gaeta, "Generation of Megawatt Optical Solitons in Hollow-Core Photonic Band-Gap Fibers," Science 301, 1702-1704 (2003).
[CrossRef] [PubMed]

Müller, M.

M. Müller and J. M. Schins, "Imaging the thermodynamic state of Lipid membranes with Multiplex CARS Microscopy," J. Phys. Chem. B 106, 3715-3723 (2002).
[CrossRef]

Nishizawa, N.

J. Takayanagi, T. Sugiura, M. Yoshida, and N. Nishizawa, "1.0-1.7- μm wavelength-tunable ultrashort-pulse generation using Femtosecond Yb-Doped Fiber Laser and Photonic Crystal Fiber," IEEE Photon. Technol. Lett. 18, 2284-2286 (2006).
[CrossRef]

Okhotnikov, O. G.

R. Herda and O. G. Okhotnikov, "Dispersion compensation-free fiber laser mode-locked and stabilized by highcontrast saturable absorber mirror," IEEE J. Quantum Electron. 40, 893-899 (2004).
[CrossRef]

L. A. Gomes, L. Orsila, T. Jouhti, and O. G. Okhotnikov, "Picosecond SESAM-Based Ytterbium Mode-Locked Fiber Lasers," IEEE J. Quantum Electron. 10, 129-136 (2004).
[CrossRef]

Oron, D.

N. Dudovich, D. Oron, and Y. Silberberg, "Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy," Nature 418, 512-514 (2002).
[CrossRef] [PubMed]

Orsila, L.

L. A. Gomes, L. Orsila, T. Jouhti, and O. G. Okhotnikov, "Picosecond SESAM-Based Ytterbium Mode-Locked Fiber Lasers," IEEE J. Quantum Electron. 10, 129-136 (2004).
[CrossRef]

Ouzounov, D. G.

D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, J. Silcox, K.W. Koch, and A. L. Gaeta, "Generation of Megawatt Optical Solitons in Hollow-Core Photonic Band-Gap Fibers," Science 301, 1702-1704 (2003).
[CrossRef] [PubMed]

Paulsen, H. N.

Potma, E. O.

Röser, F.

Salin, F.

Schimpf, D.

Schins, J. M.

M. Müller and J. M. Schins, "Imaging the thermodynamic state of Lipid membranes with Multiplex CARS Microscopy," J. Phys. Chem. B 106, 3715-3723 (2002).
[CrossRef]

Schreiber, T.

Seitz, W.

Silberberg, Y.

N. Dudovich, D. Oron, and Y. Silberberg, "Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy," Nature 418, 512-514 (2002).
[CrossRef] [PubMed]

Silcox, J.

D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, J. Silcox, K.W. Koch, and A. L. Gaeta, "Generation of Megawatt Optical Solitons in Hollow-Core Photonic Band-Gap Fibers," Science 301, 1702-1704 (2003).
[CrossRef] [PubMed]

Sugiura, T.

J. Takayanagi, T. Sugiura, M. Yoshida, and N. Nishizawa, "1.0-1.7- μm wavelength-tunable ultrashort-pulse generation using Femtosecond Yb-Doped Fiber Laser and Photonic Crystal Fiber," IEEE Photon. Technol. Lett. 18, 2284-2286 (2006).
[CrossRef]

Takayanagi, J.

J. Takayanagi, T. Sugiura, M. Yoshida, and N. Nishizawa, "1.0-1.7- μm wavelength-tunable ultrashort-pulse generation using Femtosecond Yb-Doped Fiber Laser and Photonic Crystal Fiber," IEEE Photon. Technol. Lett. 18, 2284-2286 (2006).
[CrossRef]

Thøgersen, J.

Tünnermann, A.

Venkataraman, N.

D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, J. Silcox, K.W. Koch, and A. L. Gaeta, "Generation of Megawatt Optical Solitons in Hollow-Core Photonic Band-Gap Fibers," Science 301, 1702-1704 (2003).
[CrossRef] [PubMed]

Wise, F. W.

H. Lim, J. Buckley, A. Chong, and F. W. Wise, "Fibre-based source of femtosecond pulses tunable from 1.0 to 1.3 μm," Electron. Lett. 40, 1523-1525 (2004).
[CrossRef]

Xie, X. S.

F. Ganikhanov, S. Carrasco, X. S. Xie, M. Katz, W. Seitz, and D. Kopf, "Broadly tunable dual-wavelength light source for coherent anti-Stokes Raman scattering microscopy," Opt. Lett. 31, 1292-1294 (2006).
[CrossRef] [PubMed]

J.-X. Cheng and X. S. Xie, "Coherent anti-stokes Raman Scattering Microscopy: Instrumentation, Theory, and Applications," J. Phys. Chem. 108, 827-840 (2004).
[CrossRef]

E. O. Potma, D. J. Jones, J.-X. Cheng, X. S. Xie, and J. Ye, "High-sensitivity coherent anti-Stokes Raman scattering microscopy with two tightly synchronized picosecond lasers," Opt. Lett. 27, 1168-1170 (2002).
[CrossRef]

A. Zumbusch, G. R. Holtom, and X. S. Xie, "Three-dimensional vibrational imaging by Coherent Anti-Stokes Raman Scattering," Phys. Rev. Lett. 82, 4142-4145 (1999).
[CrossRef]

Ye, J.

Yoshida, M.

J. Takayanagi, T. Sugiura, M. Yoshida, and N. Nishizawa, "1.0-1.7- μm wavelength-tunable ultrashort-pulse generation using Femtosecond Yb-Doped Fiber Laser and Photonic Crystal Fiber," IEEE Photon. Technol. Lett. 18, 2284-2286 (2006).
[CrossRef]

Zellmer, H.

Zumbusch, A.

T. Hellerer, A. M. K. Enejder, and A. Zumbusch, Appl. Phys. Lett. 85, 25-27 (2004).
[CrossRef]

A. Zumbusch, G. R. Holtom, and X. S. Xie, "Three-dimensional vibrational imaging by Coherent Anti-Stokes Raman Scattering," Phys. Rev. Lett. 82, 4142-4145 (1999).
[CrossRef]

Appl. Phys. Lett. (1)

T. Hellerer, A. M. K. Enejder, and A. Zumbusch, Appl. Phys. Lett. 85, 25-27 (2004).
[CrossRef]

Electron. Lett. (1)

H. Lim, J. Buckley, A. Chong, and F. W. Wise, "Fibre-based source of femtosecond pulses tunable from 1.0 to 1.3 μm," Electron. Lett. 40, 1523-1525 (2004).
[CrossRef]

IEEE J. Quantum Electron. (2)

R. Herda and O. G. Okhotnikov, "Dispersion compensation-free fiber laser mode-locked and stabilized by highcontrast saturable absorber mirror," IEEE J. Quantum Electron. 40, 893-899 (2004).
[CrossRef]

L. A. Gomes, L. Orsila, T. Jouhti, and O. G. Okhotnikov, "Picosecond SESAM-Based Ytterbium Mode-Locked Fiber Lasers," IEEE J. Quantum Electron. 10, 129-136 (2004).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

J. Takayanagi, T. Sugiura, M. Yoshida, and N. Nishizawa, "1.0-1.7- μm wavelength-tunable ultrashort-pulse generation using Femtosecond Yb-Doped Fiber Laser and Photonic Crystal Fiber," IEEE Photon. Technol. Lett. 18, 2284-2286 (2006).
[CrossRef]

J. Phys. Chem. (1)

J.-X. Cheng and X. S. Xie, "Coherent anti-stokes Raman Scattering Microscopy: Instrumentation, Theory, and Applications," J. Phys. Chem. 108, 827-840 (2004).
[CrossRef]

J. Phys. Chem. B (1)

M. Müller and J. M. Schins, "Imaging the thermodynamic state of Lipid membranes with Multiplex CARS Microscopy," J. Phys. Chem. B 106, 3715-3723 (2002).
[CrossRef]

Nature (1)

N. Dudovich, D. Oron, and Y. Silberberg, "Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy," Nature 418, 512-514 (2002).
[CrossRef] [PubMed]

Opt. Express (1)

Opt. Lett. (7)

Phys. Rev. Lett. (1)

A. Zumbusch, G. R. Holtom, and X. S. Xie, "Three-dimensional vibrational imaging by Coherent Anti-Stokes Raman Scattering," Phys. Rev. Lett. 82, 4142-4145 (1999).
[CrossRef]

Science (1)

D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, J. Silcox, K.W. Koch, and A. L. Gaeta, "Generation of Megawatt Optical Solitons in Hollow-Core Photonic Band-Gap Fibers," Science 301, 1702-1704 (2003).
[CrossRef] [PubMed]

Other (1)

M. D. Levenson and S. S. Kano, Introduction to nonlinear laser spectroscopy (Academic Press, inc. 1987).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Diagram of the light source for CARS microspectroscopy. FBG: Fiber Bragg grating; ND: Variable neutral-density filter; SMF: Single-mode fiber; Yb+: Yb-doped fiber; WDM: Filter wavelength-division multiplexer; PCF: Photonic Crystal Fiber; SESAM: Semiconductor saturable-absorber mirror; “20:80”: 20:80 polarizing tap coupler; output 1 is from the lower part of the coupler, output 2 from the upper part.

Fig. 2.
Fig. 2.

Interferometric autocorrellation of output 1 after undergoing SPM and temporal compression. The inset shows the spectrum.

Fig. 3.
Fig. 3.

(a). Example output spectra of the PCF for different powers. The labels denote the total output power. (b). Second-order autocorrelation trace of the Stokes pulse at 1240 nm. The pulse is slightly chirped due to the presence of glass in the beam path.

Fig. 4.
Fig. 4.

Redshifted soliton wavelength (crosses) and power (dots) versus input power.

Fig. 5.
Fig. 5.

Second-order autocorrellation trace of laser output 2. The inset shows the spectrum. The sidebands are caused by imperfections in the fiber Bragg grating.

Fig. 6.
Fig. 6.

The setup for CARS microspectroscopy. The pump and Stokes pulses are derived from Fig. 1. DC: Dichroic mirror; S: Sample; F1: 1000 nm-longpass filter; F2: 900 nm shortpass filter; MO1: 40x 0.65 NA objective; MO2: 20x 0.5 NA objective; P: Polychro-mator; CCD: CCD camera.

Fig. 7.
Fig. 7.

CARS microspectroscopy on benzonitrile. a) shows the CARS signal from benzonitrile (thin line) and the nonresonant background recorded as the CARS signal from a glass plate (thick line). The inset shows a CARS spectrum at the same frequency acquired in 1 s. b) shows the normalized CARS spectrum along with a fit. The inset shows the Raman spectrum and fit. Pump and Stokes powers at the sample were 15 mW and 1 mW.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

σ ( τ S ) = 1.87 ps mW σ ( P )
σ ( λ S ) = 31.8 ps mW σ ( P ) .
E CARS = E r + E n r
= χ r ( 3 ) E P 2 E S + χ n r ( 3 ) E P 2 E S
= ( χ r ( 3 ) χ n r ( 3 ) + 1 ) E n r ,
I CARS = E CARS 2 = ( χ r ( 3 ) 2 ( χ n r ( 3 ) ) 2 + 2 Re [ χ r ( 3 ) ] χ n r ( 3 ) + 1 ) I n r .
I CARS I n r I n r = χ r ( 3 ) 2 ( χ n r ( 3 ) ) 2 + 2 Re [ χ r ( 3 ) ] χ n r ( 3 ) .
χ r ( 3 ) = j A j v j v i Γ j .

Metrics