Abstract

We present a novel method for in situ refractive index measurement of scattering samples using a needle device. The device employs a fiber-based reflectance refractometer and coherence-gated detection of the reflected optical signal that eliminates scattering-dependent backreflection contributions. Additionally, birefringence changes induced by fiber movement are neutralized by randomizing the source polarizations and averaging the measured Fresnel reflection coefficients over many incident polarization states. Experimental measurements of Intralipid scattering solutions are presented and compared with Monte Carlo simulations.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Singh, “Refractive index measurement and its applications,” Physica Scripta 65, 167–180 (2002).
    [CrossRef]
  2. R. Barer and S. Joseph, “Refractometry of living cells,” Quarterly Journal of Microscopical Science 95, 399–423 (1955).
  3. J. Beuthan, O. Minet, J. Helfmann, M. Herrig, and G. Muller, “The spatial variation of the refractive index in biological cells,” Phys. Med. Biol. 41, 369–382 (1996).
    [CrossRef] [PubMed]
  4. A. Dunn and R. Richards-Kortum, “Three-dimensional computation of light scattering from cells,” IEEE Journal of Selected Topics in Quantum Electronics 2, 898–905 (1996).
    [CrossRef]
  5. A. M. Zysk, E. J. Chaney, and S. A. Boppart, “Refractive index of carcinogen-induced rat mammary tumours,” Phys. Med. Biol. 51, 2165–2177 (2006).
    [CrossRef] [PubMed]
  6. A. M. Zysk and S. A. Boppart, “Computational methods for analysis of human breast tumor tissue in optical coherence tomography images,” J. Biomed. Opt. 11, 054015 (2006).
    [CrossRef] [PubMed]
  7. H. A. Ferwerda, “The radiative transfer equation for scattering media with a spatially varying refractive index,” J. Opt. A 1, L1–L2 (1999).
    [CrossRef]
  8. L. Martí-López, J. Bouza-Domínguez, J. C. Hebden, S. R. Arridge, and R. A. Martínez-Celorio, “Validity conditions for the radiative transfer equation,” J. Opt. Soc. Am. A 20, 2046–2056 (2003).
    [CrossRef]
  9. J.-M. Tualle and E. Tinet, “Derivation of the radiative transfer equation for scattering media with a spatially varying refractive index,” Opt. Commun. 228, 33–38 (2003).
    [CrossRef]
  10. H. Dehghani, B. Brooksby, K. Vishwanath, B. W. Pogue, and K. D. Paulsen, “The effects of internal refractive index variation in near-infrared optical tomography: a finite element modelling approach,” Phys. Med. Biol. 48, 2713–2727 (2003).
    [CrossRef] [PubMed]
  11. H. Dehghani, B. A. Brooksby, B. W. Pogue, and K. D. Paulsen, “Effects of refractive index on near-infrared tomography of the breast,” Appl. Opt. 44, 1870–1878 (2005).
    [CrossRef] [PubMed]
  12. M. Ohmi, Y. Ohnishi, K. Yoden, and M. Haruna, “In vitro simultaneous measurement of refractive index and thickness of biological tissue by the low coherence interferometry,” IEEE Trans. Biomed. Eng. 47, 1266–1270 (2000).
    [CrossRef] [PubMed]
  13. W. V. Sorin and D. F. Gray, “Simultaneous thickness and group index measurement using optical low-coherence reflectometry,” IEEE Photon. Technol. Lett. 4, 105–107 (1992).
    [CrossRef]
  14. G. J. Tearney, M. E. Brezinski, J. F. Southern, B. E. Bouma, M. R. Hee, and J. G. Fujimoto, “Determination of the refractive index of highly scattering human tissue by optical coherence tomography,” Opt. Lett. 20, 2258–2260 (1995).
    [CrossRef] [PubMed]
  15. X. Wang, C. Zhang, L. Zhang, L. Xue, and J. Tian, “Simultaneous refractive index and thickness measurements of bio tissue by optical coherence tomography,” J. Biomed. Opt. 7, 628–632 (2002).
    [CrossRef] [PubMed]
  16. A. M. Zysk, J. J. Reynolds, D. L. Marks, P. S. Carney, and S. A. Boppart, “Projected index computed tomography,” Opt. Lett. 28, 701–703 (2003).
    [CrossRef] [PubMed]
  17. S. A. Alexandrov, A. V. Zvyagin, K. K. Silva, and D. D. Sampson, “Bifocal optical coherence refractometry of turbid media,” Opt. Lett. 28, 117–119 (2003).
    [CrossRef] [PubMed]
  18. A. V. Zvyagin, K. K. M. B. Dilusha Silva, S. A. Alexandrov, T. R. Hillman, J. J. Armstrong, T. Tsuzuki, and D. D. Sampson, “Refractive index tomography of turbid media by bifocal optical coherence refractometry,” Opt. Express 11, 3503–3517 (2003).
    [CrossRef] [PubMed]
  19. S. P. F. Humphreys-Owen, “Comparison of reflection methods for measuring optical constants without polametric analysis, and proposal for new methods based on the Brewster angle,” Proceedings of the Physical Society 77, 949–957 (1961).
    [CrossRef]
  20. G. H. Meeten and A. N. North, “Refractive index measurement of absorbing and turbid fluids by reflection near the critical angle,” Measurement Science and Technology 6, 214–221 (1995).
    [CrossRef]
  21. A. M. Zysk, S. G. Adie, J. J. Armstrong, M. S. Leigh, A. Paduch, D. D. Sampson, F. T. Nguyen, and S. A. Boppart, “Needle-based refractive index measurement using low coherence interferometry,” Opt. Lett. 32, 385–387 (2007).
    [CrossRef] [PubMed]
  22. W. A. Reed, M. F. Yan, and M. J. Schnitzer, “Gradient-index fiber-optic microprobes for minimally invasive in vivo low-coherence interferometry,” Opt. Lett. 27, 1794–1796 (2002).
    [CrossRef]
  23. H. Ding, J. Q. Lu, K. M. Jacobs, and X. H. Hu, “Determination of refractive indices of porcine skin tissues and intralipid at eight wavelengths between 325 and 1557 nm,” J. Opt. Soc. Am. A 22, 1151–1157 (2005).
    [CrossRef]
  24. G. M. Hale and M. R. Querry, “Optical constants of water in the 200-nm to 200-μm wavelength region,” Appl. Opt. 12, 555–563 (1973).
    [CrossRef] [PubMed]
  25. N. V. Iftimia, B. E. Bouma, M. B. Pitman, B. Goldberg, J. Bressner, and G. J. Tearney, “A portable, low coherence interferometry based instrument for fine needle aspiration biopsy guidance,” Rev. Sci. Instrum. 76, 064301 (2005).
    [CrossRef]
  26. M. Johns, C. A. Giller, D. C. German, and H. Liu, “Determination of reduced scattering coefficient of biological tissue from a needle-like probe,” Opt. Express 13, 4828–4842 (2005).
    [CrossRef] [PubMed]
  27. X. Li, C. Chudoba, T. Ko, C. Pitris, and J. G. Fujimoto, “Imaging needle for optical coherence tomography,” Opt. Lett. 25, 1520–1522 (2000).
    [CrossRef]
  28. G. J. Liese, W. Pong, and D. E. Brandt, “Fiber-optic stylet for needle tip localization,” Appl. Opt. 24, 3125–3127 (1985).
    [CrossRef] [PubMed]
  29. C. Zhu, G. M. Palmer, T. M. Breslin, F. Xu, and N. Ramanujam, “Use of a multiseparation fiber optic probe for the optical diagnosis of breast cancer,” J. Biomed. Opt. 10, 024032 (2005).
    [CrossRef] [PubMed]
  30. R. M. Pijnappel, M. van den Donk, R. Holland, W. P. T. M. Mali, J. L. Peterse, J. H. C. L. Hendriks, and P. H. M. Peeters, “Diagnostic accuracy for different strategies of image-guided breast intervention in cases of nonpalpable breast lesions,” Br. J. Cancer 90, 595–600 (2004).
    [CrossRef] [PubMed]

2007 (1)

2006 (2)

A. M. Zysk, E. J. Chaney, and S. A. Boppart, “Refractive index of carcinogen-induced rat mammary tumours,” Phys. Med. Biol. 51, 2165–2177 (2006).
[CrossRef] [PubMed]

A. M. Zysk and S. A. Boppart, “Computational methods for analysis of human breast tumor tissue in optical coherence tomography images,” J. Biomed. Opt. 11, 054015 (2006).
[CrossRef] [PubMed]

2005 (5)

2004 (1)

R. M. Pijnappel, M. van den Donk, R. Holland, W. P. T. M. Mali, J. L. Peterse, J. H. C. L. Hendriks, and P. H. M. Peeters, “Diagnostic accuracy for different strategies of image-guided breast intervention in cases of nonpalpable breast lesions,” Br. J. Cancer 90, 595–600 (2004).
[CrossRef] [PubMed]

2003 (6)

2002 (3)

W. A. Reed, M. F. Yan, and M. J. Schnitzer, “Gradient-index fiber-optic microprobes for minimally invasive in vivo low-coherence interferometry,” Opt. Lett. 27, 1794–1796 (2002).
[CrossRef]

S. Singh, “Refractive index measurement and its applications,” Physica Scripta 65, 167–180 (2002).
[CrossRef]

X. Wang, C. Zhang, L. Zhang, L. Xue, and J. Tian, “Simultaneous refractive index and thickness measurements of bio tissue by optical coherence tomography,” J. Biomed. Opt. 7, 628–632 (2002).
[CrossRef] [PubMed]

2000 (2)

M. Ohmi, Y. Ohnishi, K. Yoden, and M. Haruna, “In vitro simultaneous measurement of refractive index and thickness of biological tissue by the low coherence interferometry,” IEEE Trans. Biomed. Eng. 47, 1266–1270 (2000).
[CrossRef] [PubMed]

X. Li, C. Chudoba, T. Ko, C. Pitris, and J. G. Fujimoto, “Imaging needle for optical coherence tomography,” Opt. Lett. 25, 1520–1522 (2000).
[CrossRef]

1999 (1)

H. A. Ferwerda, “The radiative transfer equation for scattering media with a spatially varying refractive index,” J. Opt. A 1, L1–L2 (1999).
[CrossRef]

1996 (2)

J. Beuthan, O. Minet, J. Helfmann, M. Herrig, and G. Muller, “The spatial variation of the refractive index in biological cells,” Phys. Med. Biol. 41, 369–382 (1996).
[CrossRef] [PubMed]

A. Dunn and R. Richards-Kortum, “Three-dimensional computation of light scattering from cells,” IEEE Journal of Selected Topics in Quantum Electronics 2, 898–905 (1996).
[CrossRef]

1995 (2)

G. J. Tearney, M. E. Brezinski, J. F. Southern, B. E. Bouma, M. R. Hee, and J. G. Fujimoto, “Determination of the refractive index of highly scattering human tissue by optical coherence tomography,” Opt. Lett. 20, 2258–2260 (1995).
[CrossRef] [PubMed]

G. H. Meeten and A. N. North, “Refractive index measurement of absorbing and turbid fluids by reflection near the critical angle,” Measurement Science and Technology 6, 214–221 (1995).
[CrossRef]

1992 (1)

W. V. Sorin and D. F. Gray, “Simultaneous thickness and group index measurement using optical low-coherence reflectometry,” IEEE Photon. Technol. Lett. 4, 105–107 (1992).
[CrossRef]

1985 (1)

1973 (1)

1961 (1)

S. P. F. Humphreys-Owen, “Comparison of reflection methods for measuring optical constants without polametric analysis, and proposal for new methods based on the Brewster angle,” Proceedings of the Physical Society 77, 949–957 (1961).
[CrossRef]

1955 (1)

R. Barer and S. Joseph, “Refractometry of living cells,” Quarterly Journal of Microscopical Science 95, 399–423 (1955).

Adie, S. G.

Alexandrov, S. A.

Armstrong, J. J.

Arridge, S. R.

Barer, R.

R. Barer and S. Joseph, “Refractometry of living cells,” Quarterly Journal of Microscopical Science 95, 399–423 (1955).

Beuthan, J.

J. Beuthan, O. Minet, J. Helfmann, M. Herrig, and G. Muller, “The spatial variation of the refractive index in biological cells,” Phys. Med. Biol. 41, 369–382 (1996).
[CrossRef] [PubMed]

Boppart, S. A.

A. M. Zysk, S. G. Adie, J. J. Armstrong, M. S. Leigh, A. Paduch, D. D. Sampson, F. T. Nguyen, and S. A. Boppart, “Needle-based refractive index measurement using low coherence interferometry,” Opt. Lett. 32, 385–387 (2007).
[CrossRef] [PubMed]

A. M. Zysk and S. A. Boppart, “Computational methods for analysis of human breast tumor tissue in optical coherence tomography images,” J. Biomed. Opt. 11, 054015 (2006).
[CrossRef] [PubMed]

A. M. Zysk, E. J. Chaney, and S. A. Boppart, “Refractive index of carcinogen-induced rat mammary tumours,” Phys. Med. Biol. 51, 2165–2177 (2006).
[CrossRef] [PubMed]

A. M. Zysk, J. J. Reynolds, D. L. Marks, P. S. Carney, and S. A. Boppart, “Projected index computed tomography,” Opt. Lett. 28, 701–703 (2003).
[CrossRef] [PubMed]

Bouma, B. E.

N. V. Iftimia, B. E. Bouma, M. B. Pitman, B. Goldberg, J. Bressner, and G. J. Tearney, “A portable, low coherence interferometry based instrument for fine needle aspiration biopsy guidance,” Rev. Sci. Instrum. 76, 064301 (2005).
[CrossRef]

G. J. Tearney, M. E. Brezinski, J. F. Southern, B. E. Bouma, M. R. Hee, and J. G. Fujimoto, “Determination of the refractive index of highly scattering human tissue by optical coherence tomography,” Opt. Lett. 20, 2258–2260 (1995).
[CrossRef] [PubMed]

Bouza-Domínguez, J.

Brandt, D. E.

Breslin, T. M.

C. Zhu, G. M. Palmer, T. M. Breslin, F. Xu, and N. Ramanujam, “Use of a multiseparation fiber optic probe for the optical diagnosis of breast cancer,” J. Biomed. Opt. 10, 024032 (2005).
[CrossRef] [PubMed]

Bressner, J.

N. V. Iftimia, B. E. Bouma, M. B. Pitman, B. Goldberg, J. Bressner, and G. J. Tearney, “A portable, low coherence interferometry based instrument for fine needle aspiration biopsy guidance,” Rev. Sci. Instrum. 76, 064301 (2005).
[CrossRef]

Brezinski, M. E.

Brooksby, B.

H. Dehghani, B. Brooksby, K. Vishwanath, B. W. Pogue, and K. D. Paulsen, “The effects of internal refractive index variation in near-infrared optical tomography: a finite element modelling approach,” Phys. Med. Biol. 48, 2713–2727 (2003).
[CrossRef] [PubMed]

Brooksby, B. A.

Carney, P. S.

Chaney, E. J.

A. M. Zysk, E. J. Chaney, and S. A. Boppart, “Refractive index of carcinogen-induced rat mammary tumours,” Phys. Med. Biol. 51, 2165–2177 (2006).
[CrossRef] [PubMed]

Chudoba, C.

Dehghani, H.

H. Dehghani, B. A. Brooksby, B. W. Pogue, and K. D. Paulsen, “Effects of refractive index on near-infrared tomography of the breast,” Appl. Opt. 44, 1870–1878 (2005).
[CrossRef] [PubMed]

H. Dehghani, B. Brooksby, K. Vishwanath, B. W. Pogue, and K. D. Paulsen, “The effects of internal refractive index variation in near-infrared optical tomography: a finite element modelling approach,” Phys. Med. Biol. 48, 2713–2727 (2003).
[CrossRef] [PubMed]

Dilusha Silva, K. K. M. B.

Ding, H.

Dunn, A.

A. Dunn and R. Richards-Kortum, “Three-dimensional computation of light scattering from cells,” IEEE Journal of Selected Topics in Quantum Electronics 2, 898–905 (1996).
[CrossRef]

Ferwerda, H. A.

H. A. Ferwerda, “The radiative transfer equation for scattering media with a spatially varying refractive index,” J. Opt. A 1, L1–L2 (1999).
[CrossRef]

Fujimoto, J. G.

German, D. C.

Giller, C. A.

Goldberg, B.

N. V. Iftimia, B. E. Bouma, M. B. Pitman, B. Goldberg, J. Bressner, and G. J. Tearney, “A portable, low coherence interferometry based instrument for fine needle aspiration biopsy guidance,” Rev. Sci. Instrum. 76, 064301 (2005).
[CrossRef]

Gray, D. F.

W. V. Sorin and D. F. Gray, “Simultaneous thickness and group index measurement using optical low-coherence reflectometry,” IEEE Photon. Technol. Lett. 4, 105–107 (1992).
[CrossRef]

Hale, G. M.

Haruna, M.

M. Ohmi, Y. Ohnishi, K. Yoden, and M. Haruna, “In vitro simultaneous measurement of refractive index and thickness of biological tissue by the low coherence interferometry,” IEEE Trans. Biomed. Eng. 47, 1266–1270 (2000).
[CrossRef] [PubMed]

Hebden, J. C.

Hee, M. R.

Helfmann, J.

J. Beuthan, O. Minet, J. Helfmann, M. Herrig, and G. Muller, “The spatial variation of the refractive index in biological cells,” Phys. Med. Biol. 41, 369–382 (1996).
[CrossRef] [PubMed]

Hendriks, J. H. C. L.

R. M. Pijnappel, M. van den Donk, R. Holland, W. P. T. M. Mali, J. L. Peterse, J. H. C. L. Hendriks, and P. H. M. Peeters, “Diagnostic accuracy for different strategies of image-guided breast intervention in cases of nonpalpable breast lesions,” Br. J. Cancer 90, 595–600 (2004).
[CrossRef] [PubMed]

Herrig, M.

J. Beuthan, O. Minet, J. Helfmann, M. Herrig, and G. Muller, “The spatial variation of the refractive index in biological cells,” Phys. Med. Biol. 41, 369–382 (1996).
[CrossRef] [PubMed]

Hillman, T. R.

Holland, R.

R. M. Pijnappel, M. van den Donk, R. Holland, W. P. T. M. Mali, J. L. Peterse, J. H. C. L. Hendriks, and P. H. M. Peeters, “Diagnostic accuracy for different strategies of image-guided breast intervention in cases of nonpalpable breast lesions,” Br. J. Cancer 90, 595–600 (2004).
[CrossRef] [PubMed]

Hu, X. H.

Humphreys-Owen, S. P. F.

S. P. F. Humphreys-Owen, “Comparison of reflection methods for measuring optical constants without polametric analysis, and proposal for new methods based on the Brewster angle,” Proceedings of the Physical Society 77, 949–957 (1961).
[CrossRef]

Iftimia, N. V.

N. V. Iftimia, B. E. Bouma, M. B. Pitman, B. Goldberg, J. Bressner, and G. J. Tearney, “A portable, low coherence interferometry based instrument for fine needle aspiration biopsy guidance,” Rev. Sci. Instrum. 76, 064301 (2005).
[CrossRef]

Jacobs, K. M.

Johns, M.

Joseph, S.

R. Barer and S. Joseph, “Refractometry of living cells,” Quarterly Journal of Microscopical Science 95, 399–423 (1955).

Ko, T.

Leigh, M. S.

Li, X.

Liese, G. J.

Liu, H.

Lu, J. Q.

Mali, W. P. T. M.

R. M. Pijnappel, M. van den Donk, R. Holland, W. P. T. M. Mali, J. L. Peterse, J. H. C. L. Hendriks, and P. H. M. Peeters, “Diagnostic accuracy for different strategies of image-guided breast intervention in cases of nonpalpable breast lesions,” Br. J. Cancer 90, 595–600 (2004).
[CrossRef] [PubMed]

Marks, D. L.

Martí-López, L.

Martínez-Celorio, R. A.

Meeten, G. H.

G. H. Meeten and A. N. North, “Refractive index measurement of absorbing and turbid fluids by reflection near the critical angle,” Measurement Science and Technology 6, 214–221 (1995).
[CrossRef]

Minet, O.

J. Beuthan, O. Minet, J. Helfmann, M. Herrig, and G. Muller, “The spatial variation of the refractive index in biological cells,” Phys. Med. Biol. 41, 369–382 (1996).
[CrossRef] [PubMed]

Muller, G.

J. Beuthan, O. Minet, J. Helfmann, M. Herrig, and G. Muller, “The spatial variation of the refractive index in biological cells,” Phys. Med. Biol. 41, 369–382 (1996).
[CrossRef] [PubMed]

Nguyen, F. T.

North, A. N.

G. H. Meeten and A. N. North, “Refractive index measurement of absorbing and turbid fluids by reflection near the critical angle,” Measurement Science and Technology 6, 214–221 (1995).
[CrossRef]

Ohmi, M.

M. Ohmi, Y. Ohnishi, K. Yoden, and M. Haruna, “In vitro simultaneous measurement of refractive index and thickness of biological tissue by the low coherence interferometry,” IEEE Trans. Biomed. Eng. 47, 1266–1270 (2000).
[CrossRef] [PubMed]

Ohnishi, Y.

M. Ohmi, Y. Ohnishi, K. Yoden, and M. Haruna, “In vitro simultaneous measurement of refractive index and thickness of biological tissue by the low coherence interferometry,” IEEE Trans. Biomed. Eng. 47, 1266–1270 (2000).
[CrossRef] [PubMed]

Paduch, A.

Palmer, G. M.

C. Zhu, G. M. Palmer, T. M. Breslin, F. Xu, and N. Ramanujam, “Use of a multiseparation fiber optic probe for the optical diagnosis of breast cancer,” J. Biomed. Opt. 10, 024032 (2005).
[CrossRef] [PubMed]

Paulsen, K. D.

H. Dehghani, B. A. Brooksby, B. W. Pogue, and K. D. Paulsen, “Effects of refractive index on near-infrared tomography of the breast,” Appl. Opt. 44, 1870–1878 (2005).
[CrossRef] [PubMed]

H. Dehghani, B. Brooksby, K. Vishwanath, B. W. Pogue, and K. D. Paulsen, “The effects of internal refractive index variation in near-infrared optical tomography: a finite element modelling approach,” Phys. Med. Biol. 48, 2713–2727 (2003).
[CrossRef] [PubMed]

Peeters, P. H. M.

R. M. Pijnappel, M. van den Donk, R. Holland, W. P. T. M. Mali, J. L. Peterse, J. H. C. L. Hendriks, and P. H. M. Peeters, “Diagnostic accuracy for different strategies of image-guided breast intervention in cases of nonpalpable breast lesions,” Br. J. Cancer 90, 595–600 (2004).
[CrossRef] [PubMed]

Peterse, J. L.

R. M. Pijnappel, M. van den Donk, R. Holland, W. P. T. M. Mali, J. L. Peterse, J. H. C. L. Hendriks, and P. H. M. Peeters, “Diagnostic accuracy for different strategies of image-guided breast intervention in cases of nonpalpable breast lesions,” Br. J. Cancer 90, 595–600 (2004).
[CrossRef] [PubMed]

Pijnappel, R. M.

R. M. Pijnappel, M. van den Donk, R. Holland, W. P. T. M. Mali, J. L. Peterse, J. H. C. L. Hendriks, and P. H. M. Peeters, “Diagnostic accuracy for different strategies of image-guided breast intervention in cases of nonpalpable breast lesions,” Br. J. Cancer 90, 595–600 (2004).
[CrossRef] [PubMed]

Pitman, M. B.

N. V. Iftimia, B. E. Bouma, M. B. Pitman, B. Goldberg, J. Bressner, and G. J. Tearney, “A portable, low coherence interferometry based instrument for fine needle aspiration biopsy guidance,” Rev. Sci. Instrum. 76, 064301 (2005).
[CrossRef]

Pitris, C.

Pogue, B. W.

H. Dehghani, B. A. Brooksby, B. W. Pogue, and K. D. Paulsen, “Effects of refractive index on near-infrared tomography of the breast,” Appl. Opt. 44, 1870–1878 (2005).
[CrossRef] [PubMed]

H. Dehghani, B. Brooksby, K. Vishwanath, B. W. Pogue, and K. D. Paulsen, “The effects of internal refractive index variation in near-infrared optical tomography: a finite element modelling approach,” Phys. Med. Biol. 48, 2713–2727 (2003).
[CrossRef] [PubMed]

Pong, W.

Querry, M. R.

Ramanujam, N.

C. Zhu, G. M. Palmer, T. M. Breslin, F. Xu, and N. Ramanujam, “Use of a multiseparation fiber optic probe for the optical diagnosis of breast cancer,” J. Biomed. Opt. 10, 024032 (2005).
[CrossRef] [PubMed]

Reed, W. A.

Reynolds, J. J.

Richards-Kortum, R.

A. Dunn and R. Richards-Kortum, “Three-dimensional computation of light scattering from cells,” IEEE Journal of Selected Topics in Quantum Electronics 2, 898–905 (1996).
[CrossRef]

Sampson, D. D.

Schnitzer, M. J.

Silva, K. K.

Singh, S.

S. Singh, “Refractive index measurement and its applications,” Physica Scripta 65, 167–180 (2002).
[CrossRef]

Sorin, W. V.

W. V. Sorin and D. F. Gray, “Simultaneous thickness and group index measurement using optical low-coherence reflectometry,” IEEE Photon. Technol. Lett. 4, 105–107 (1992).
[CrossRef]

Southern, J. F.

Tearney, G. J.

N. V. Iftimia, B. E. Bouma, M. B. Pitman, B. Goldberg, J. Bressner, and G. J. Tearney, “A portable, low coherence interferometry based instrument for fine needle aspiration biopsy guidance,” Rev. Sci. Instrum. 76, 064301 (2005).
[CrossRef]

G. J. Tearney, M. E. Brezinski, J. F. Southern, B. E. Bouma, M. R. Hee, and J. G. Fujimoto, “Determination of the refractive index of highly scattering human tissue by optical coherence tomography,” Opt. Lett. 20, 2258–2260 (1995).
[CrossRef] [PubMed]

Tian, J.

X. Wang, C. Zhang, L. Zhang, L. Xue, and J. Tian, “Simultaneous refractive index and thickness measurements of bio tissue by optical coherence tomography,” J. Biomed. Opt. 7, 628–632 (2002).
[CrossRef] [PubMed]

Tinet, E.

J.-M. Tualle and E. Tinet, “Derivation of the radiative transfer equation for scattering media with a spatially varying refractive index,” Opt. Commun. 228, 33–38 (2003).
[CrossRef]

Tsuzuki, T.

Tualle, J.-M.

J.-M. Tualle and E. Tinet, “Derivation of the radiative transfer equation for scattering media with a spatially varying refractive index,” Opt. Commun. 228, 33–38 (2003).
[CrossRef]

van den Donk, M.

R. M. Pijnappel, M. van den Donk, R. Holland, W. P. T. M. Mali, J. L. Peterse, J. H. C. L. Hendriks, and P. H. M. Peeters, “Diagnostic accuracy for different strategies of image-guided breast intervention in cases of nonpalpable breast lesions,” Br. J. Cancer 90, 595–600 (2004).
[CrossRef] [PubMed]

Vishwanath, K.

H. Dehghani, B. Brooksby, K. Vishwanath, B. W. Pogue, and K. D. Paulsen, “The effects of internal refractive index variation in near-infrared optical tomography: a finite element modelling approach,” Phys. Med. Biol. 48, 2713–2727 (2003).
[CrossRef] [PubMed]

Wang, X.

X. Wang, C. Zhang, L. Zhang, L. Xue, and J. Tian, “Simultaneous refractive index and thickness measurements of bio tissue by optical coherence tomography,” J. Biomed. Opt. 7, 628–632 (2002).
[CrossRef] [PubMed]

Xu, F.

C. Zhu, G. M. Palmer, T. M. Breslin, F. Xu, and N. Ramanujam, “Use of a multiseparation fiber optic probe for the optical diagnosis of breast cancer,” J. Biomed. Opt. 10, 024032 (2005).
[CrossRef] [PubMed]

Xue, L.

X. Wang, C. Zhang, L. Zhang, L. Xue, and J. Tian, “Simultaneous refractive index and thickness measurements of bio tissue by optical coherence tomography,” J. Biomed. Opt. 7, 628–632 (2002).
[CrossRef] [PubMed]

Yan, M. F.

Yoden, K.

M. Ohmi, Y. Ohnishi, K. Yoden, and M. Haruna, “In vitro simultaneous measurement of refractive index and thickness of biological tissue by the low coherence interferometry,” IEEE Trans. Biomed. Eng. 47, 1266–1270 (2000).
[CrossRef] [PubMed]

Zhang, C.

X. Wang, C. Zhang, L. Zhang, L. Xue, and J. Tian, “Simultaneous refractive index and thickness measurements of bio tissue by optical coherence tomography,” J. Biomed. Opt. 7, 628–632 (2002).
[CrossRef] [PubMed]

Zhang, L.

X. Wang, C. Zhang, L. Zhang, L. Xue, and J. Tian, “Simultaneous refractive index and thickness measurements of bio tissue by optical coherence tomography,” J. Biomed. Opt. 7, 628–632 (2002).
[CrossRef] [PubMed]

Zhu, C.

C. Zhu, G. M. Palmer, T. M. Breslin, F. Xu, and N. Ramanujam, “Use of a multiseparation fiber optic probe for the optical diagnosis of breast cancer,” J. Biomed. Opt. 10, 024032 (2005).
[CrossRef] [PubMed]

Zvyagin, A. V.

Zysk, A. M.

A. M. Zysk, S. G. Adie, J. J. Armstrong, M. S. Leigh, A. Paduch, D. D. Sampson, F. T. Nguyen, and S. A. Boppart, “Needle-based refractive index measurement using low coherence interferometry,” Opt. Lett. 32, 385–387 (2007).
[CrossRef] [PubMed]

A. M. Zysk and S. A. Boppart, “Computational methods for analysis of human breast tumor tissue in optical coherence tomography images,” J. Biomed. Opt. 11, 054015 (2006).
[CrossRef] [PubMed]

A. M. Zysk, E. J. Chaney, and S. A. Boppart, “Refractive index of carcinogen-induced rat mammary tumours,” Phys. Med. Biol. 51, 2165–2177 (2006).
[CrossRef] [PubMed]

A. M. Zysk, J. J. Reynolds, D. L. Marks, P. S. Carney, and S. A. Boppart, “Projected index computed tomography,” Opt. Lett. 28, 701–703 (2003).
[CrossRef] [PubMed]

Appl. Opt. (3)

Br. J. Cancer (1)

R. M. Pijnappel, M. van den Donk, R. Holland, W. P. T. M. Mali, J. L. Peterse, J. H. C. L. Hendriks, and P. H. M. Peeters, “Diagnostic accuracy for different strategies of image-guided breast intervention in cases of nonpalpable breast lesions,” Br. J. Cancer 90, 595–600 (2004).
[CrossRef] [PubMed]

IEEE Journal of Selected Topics in Quantum Electronics (1)

A. Dunn and R. Richards-Kortum, “Three-dimensional computation of light scattering from cells,” IEEE Journal of Selected Topics in Quantum Electronics 2, 898–905 (1996).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

W. V. Sorin and D. F. Gray, “Simultaneous thickness and group index measurement using optical low-coherence reflectometry,” IEEE Photon. Technol. Lett. 4, 105–107 (1992).
[CrossRef]

IEEE Trans. Biomed. Eng. (1)

M. Ohmi, Y. Ohnishi, K. Yoden, and M. Haruna, “In vitro simultaneous measurement of refractive index and thickness of biological tissue by the low coherence interferometry,” IEEE Trans. Biomed. Eng. 47, 1266–1270 (2000).
[CrossRef] [PubMed]

J. Biomed. Opt. (3)

X. Wang, C. Zhang, L. Zhang, L. Xue, and J. Tian, “Simultaneous refractive index and thickness measurements of bio tissue by optical coherence tomography,” J. Biomed. Opt. 7, 628–632 (2002).
[CrossRef] [PubMed]

C. Zhu, G. M. Palmer, T. M. Breslin, F. Xu, and N. Ramanujam, “Use of a multiseparation fiber optic probe for the optical diagnosis of breast cancer,” J. Biomed. Opt. 10, 024032 (2005).
[CrossRef] [PubMed]

A. M. Zysk and S. A. Boppart, “Computational methods for analysis of human breast tumor tissue in optical coherence tomography images,” J. Biomed. Opt. 11, 054015 (2006).
[CrossRef] [PubMed]

J. Opt. A (1)

H. A. Ferwerda, “The radiative transfer equation for scattering media with a spatially varying refractive index,” J. Opt. A 1, L1–L2 (1999).
[CrossRef]

J. Opt. Soc. Am. A (2)

Measurement Science and Technology (1)

G. H. Meeten and A. N. North, “Refractive index measurement of absorbing and turbid fluids by reflection near the critical angle,” Measurement Science and Technology 6, 214–221 (1995).
[CrossRef]

Opt. Commun. (1)

J.-M. Tualle and E. Tinet, “Derivation of the radiative transfer equation for scattering media with a spatially varying refractive index,” Opt. Commun. 228, 33–38 (2003).
[CrossRef]

Opt. Express (2)

Opt. Lett. (6)

Phys. Med. Biol. (3)

H. Dehghani, B. Brooksby, K. Vishwanath, B. W. Pogue, and K. D. Paulsen, “The effects of internal refractive index variation in near-infrared optical tomography: a finite element modelling approach,” Phys. Med. Biol. 48, 2713–2727 (2003).
[CrossRef] [PubMed]

A. M. Zysk, E. J. Chaney, and S. A. Boppart, “Refractive index of carcinogen-induced rat mammary tumours,” Phys. Med. Biol. 51, 2165–2177 (2006).
[CrossRef] [PubMed]

J. Beuthan, O. Minet, J. Helfmann, M. Herrig, and G. Muller, “The spatial variation of the refractive index in biological cells,” Phys. Med. Biol. 41, 369–382 (1996).
[CrossRef] [PubMed]

Physica Scripta (1)

S. Singh, “Refractive index measurement and its applications,” Physica Scripta 65, 167–180 (2002).
[CrossRef]

Proceedings of the Physical Society (1)

S. P. F. Humphreys-Owen, “Comparison of reflection methods for measuring optical constants without polametric analysis, and proposal for new methods based on the Brewster angle,” Proceedings of the Physical Society 77, 949–957 (1961).
[CrossRef]

Quarterly Journal of Microscopical Science (1)

R. Barer and S. Joseph, “Refractometry of living cells,” Quarterly Journal of Microscopical Science 95, 399–423 (1955).

Rev. Sci. Instrum. (1)

N. V. Iftimia, B. E. Bouma, M. B. Pitman, B. Goldberg, J. Bressner, and G. J. Tearney, “A portable, low coherence interferometry based instrument for fine needle aspiration biopsy guidance,” Rev. Sci. Instrum. 76, 064301 (2005).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Light microscope images of the needle tip show (a) the angled cutting surface and (b) the tip sealed with optical cement. The device drawing (c) shows the single mode and gradient-index fibers, the optical cement used to secure them, and the cement-sample interface (arrow) where the reflection amplitude is measured. The drawing is not to scale.

Fig. 2.
Fig. 2.

Schematic of the PS-LCI system. Abbreviations: SLD, super luminescent diode; Pol., linear polarizer; Pol. Mod., polarization modulator; 90/10 and 50/50 fiber couplers; RSOD, rapid scanning optical delay; OC, optical circulator; P, polarization paddles; PBS, polarization beam splitter; P.D., photodetector.

Fig. 3.
Fig. 3.

Results of a Monte Carlo simulation of Eq. (2) with n1 = 1.53 over N = 1×106 polarization states. (a) The distribution of Fresnel reflection coefficients for n2 = 1.32. (b) The average Fresnel reflection coefficient for a range of n2 values.

Fig. 4.
Fig. 4.

Axial scan data from the needle probe averaged over 10 scan lines (25 ms acquisition time) while the probe tip is immersed in an Intralipid scattering solution with n 2 = 1.344. Dashed lines indicate the axial window of analysis.

Fig. 5.
Fig. 5.

Experimental measurements from scattering solutions. (a) The distribution of reflection amplitudes over N = 1×103 scan lines with incident light having a randomized polarization state. (b) Simulated Fresnel reflection coefficients averaged over N = 1×103 polarization states for a range of n2 values and the corresponding mean reflection intensities for N = 1×103 scan line measurements in scattering solutions.

Tables (1)

Tables Icon

Table 1. Refractive Indices of Measured Solutions

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

z 1 α cos ( λ n 1 r s n 0 N A ) ,
[ A 1 A 2 ] = [ cos θ sin θ sin θ cos θ ] [ 1 2 e i ϕ 2 1 2 e i ϕ 2 ] = 1 2 [ e i ϕ 2 cos θ e i ϕ 2 sin θ e i ϕ 2 sin θ + e i ϕ 2 cos θ ] ,
Γ = 1 2 e i ϕ 2 cos θ e i ϕ 2 sin θ 2 Γ 2 + 1 2 e i ϕ 2 sin θ + e i ϕ 2 cos θ 2 Γ 2 ,
Γ = n 2 cos φ i n 1 cos φ t n 2 cos φ i + n 1 cos φ t and
Γ = n 1 cos φ i n 2 cos φ t n 1 cos φ i + n 2 cos φ t .
φ t = Re [ sin 1 ( n 1 n 2 ) sin φ i ] .

Metrics