Abstract

In this paper we present the first operation and power scaling of a modelocked Nd:YVO4 bounce laser oscillator at 1064nm. We obtain up to 16.7W of average output power from 38W of pump power, in a continuous-wave modelocked pulse train with 30ps pulses at a repetition rate of 78MHz. We then use a Master Oscillator Power Amplifier (MOPA) configuration utilising another bounce amplifier, to achieve 60W of modelocked output power.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. U. Keller et al, "Semiconductor Saturable Absorber Mirrors (SESAM’s) for Femtosecond to Nanosecond Pulse Generation in Solid-State Lasers," IEEE J. Sel. Top. Quantum Electron. 2, 435-453 (1996).
    [CrossRef]
  2. S. Tsuda et al, "Mode-Locking Ultrafast Solid-State Lasers with Saturable Bragg Reflectors," IEEE J. Sel. Top. Quantum Electron. 2, 454-464 (1996).
    [CrossRef]
  3. Jing-Liang He et al, "4-ps passively mode-locked Nd:Gd0.5Y0.5VO4 laser with a semiconductor saturable-absorber mirror," Opt. Lett. 29, 2803-2805 (2004).
    [CrossRef] [PubMed]
  4. Y. F. Chen et al, "Diode-end-pumped passively mode-locked high-power Nd:YVO4 laser with a relaxed saturable Bragg reflector," Opt. Lett. 26, 199-201 (2001).
    [CrossRef]
  5. J. Kong et al, "Diode-pumped passively mode-locked Nd:GdVO4 laser with a GaAs saturable absorber mirror," Appl. Phys. B 79, 203-206 (2004).
    [CrossRef]
  6. T. Graf et al, "Multi-Watt Nd:YVO4 laser, mode-locked by a semiconductor saturable absorber mirror and side-pumped by a diode-laser bar," Opt. Commun. 159, 84-87 (1999).
    [CrossRef]
  7. G. J. Spühler et al, "Diode-pumped passively mode-locked Nd:YAG laser with 10-W average power in a diffraction-limited beam," Opt. Lett. 24, 528-530 (1999).
    [CrossRef]
  8. A. Minassian et al, "Ultrahigh-efficiency TEM00 diode-side-pumped Nd:YVO4 laser," Appl. Phys. B 76, 341-343 (2003).
    [CrossRef]
  9. A. Minassian et al, "High-Power Scaling (>100 W) of a Diode-Pumped TEM00 Nd:GdVO4 Laser System," IEEE J. Sel. Top. Quantum Electron. 11, 621-625 (2005).
    [CrossRef]
  10. A. Minassian et al, "Ultrahigh repetition rate Q-switched 101W TEM00 Nd:GdVO4 laser system," in Proceedings of Conference on Lasers and Electro-Optics (CLEO) Europe, Munich, 2005, paper CA3-2-Tue.
  11. G. Smith et al, "High Power-Scaling of Self-Organising Adaptive Lasers with Gain Holography," in Proceedings of Conference on Lasers and Electro-Optics (CLEO), Long Beach, Calif., paper CFM-1-Fri.
  12. http://www.batop.de
  13. C. Hönninger et al, "Q-switching stability limits of continuous-wave passive mode locking," J. Opt. Soc. Am. B 16, 46-56 (1999).
    [CrossRef]
  14. A. Agnesi et al, "Amplification of a low-power picosecond Nd:YVO4 laser by a diode-laser, side-pumped, grazing-incidence slab amplifier," IEEE J. Quantum Elec.  42, 772-776 (2006).
    [CrossRef]
  15. Y. Ojima et al, "Over 10-watt pico-second diffraction-limited output from a Nd:YVO4 slab amplifier with a phase conjugate mirror," Opt. Express 13, 8993-8998 (2005).
    [CrossRef] [PubMed]

2006 (1)

A. Agnesi et al, "Amplification of a low-power picosecond Nd:YVO4 laser by a diode-laser, side-pumped, grazing-incidence slab amplifier," IEEE J. Quantum Elec.  42, 772-776 (2006).
[CrossRef]

2005 (2)

Y. Ojima et al, "Over 10-watt pico-second diffraction-limited output from a Nd:YVO4 slab amplifier with a phase conjugate mirror," Opt. Express 13, 8993-8998 (2005).
[CrossRef] [PubMed]

A. Minassian et al, "High-Power Scaling (>100 W) of a Diode-Pumped TEM00 Nd:GdVO4 Laser System," IEEE J. Sel. Top. Quantum Electron. 11, 621-625 (2005).
[CrossRef]

2004 (2)

J. Kong et al, "Diode-pumped passively mode-locked Nd:GdVO4 laser with a GaAs saturable absorber mirror," Appl. Phys. B 79, 203-206 (2004).
[CrossRef]

Jing-Liang He et al, "4-ps passively mode-locked Nd:Gd0.5Y0.5VO4 laser with a semiconductor saturable-absorber mirror," Opt. Lett. 29, 2803-2805 (2004).
[CrossRef] [PubMed]

2003 (1)

A. Minassian et al, "Ultrahigh-efficiency TEM00 diode-side-pumped Nd:YVO4 laser," Appl. Phys. B 76, 341-343 (2003).
[CrossRef]

2001 (1)

1999 (3)

1996 (2)

U. Keller et al, "Semiconductor Saturable Absorber Mirrors (SESAM’s) for Femtosecond to Nanosecond Pulse Generation in Solid-State Lasers," IEEE J. Sel. Top. Quantum Electron. 2, 435-453 (1996).
[CrossRef]

S. Tsuda et al, "Mode-Locking Ultrafast Solid-State Lasers with Saturable Bragg Reflectors," IEEE J. Sel. Top. Quantum Electron. 2, 454-464 (1996).
[CrossRef]

Agnesi, A.

A. Agnesi et al, "Amplification of a low-power picosecond Nd:YVO4 laser by a diode-laser, side-pumped, grazing-incidence slab amplifier," IEEE J. Quantum Elec.  42, 772-776 (2006).
[CrossRef]

Chen, Y. F.

Graf, T.

T. Graf et al, "Multi-Watt Nd:YVO4 laser, mode-locked by a semiconductor saturable absorber mirror and side-pumped by a diode-laser bar," Opt. Commun. 159, 84-87 (1999).
[CrossRef]

Hönninger, C.

Keller, U.

U. Keller et al, "Semiconductor Saturable Absorber Mirrors (SESAM’s) for Femtosecond to Nanosecond Pulse Generation in Solid-State Lasers," IEEE J. Sel. Top. Quantum Electron. 2, 435-453 (1996).
[CrossRef]

Kong, J.

J. Kong et al, "Diode-pumped passively mode-locked Nd:GdVO4 laser with a GaAs saturable absorber mirror," Appl. Phys. B 79, 203-206 (2004).
[CrossRef]

Minassian, A.

A. Minassian et al, "High-Power Scaling (>100 W) of a Diode-Pumped TEM00 Nd:GdVO4 Laser System," IEEE J. Sel. Top. Quantum Electron. 11, 621-625 (2005).
[CrossRef]

A. Minassian et al, "Ultrahigh-efficiency TEM00 diode-side-pumped Nd:YVO4 laser," Appl. Phys. B 76, 341-343 (2003).
[CrossRef]

Ojima, Y.

Spühler, G. J.

Tsuda, S.

S. Tsuda et al, "Mode-Locking Ultrafast Solid-State Lasers with Saturable Bragg Reflectors," IEEE J. Sel. Top. Quantum Electron. 2, 454-464 (1996).
[CrossRef]

Appl. Phys. B (2)

A. Minassian et al, "Ultrahigh-efficiency TEM00 diode-side-pumped Nd:YVO4 laser," Appl. Phys. B 76, 341-343 (2003).
[CrossRef]

J. Kong et al, "Diode-pumped passively mode-locked Nd:GdVO4 laser with a GaAs saturable absorber mirror," Appl. Phys. B 79, 203-206 (2004).
[CrossRef]

IEEE J. Quantum Elec. (1)

A. Agnesi et al, "Amplification of a low-power picosecond Nd:YVO4 laser by a diode-laser, side-pumped, grazing-incidence slab amplifier," IEEE J. Quantum Elec.  42, 772-776 (2006).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (3)

A. Minassian et al, "High-Power Scaling (>100 W) of a Diode-Pumped TEM00 Nd:GdVO4 Laser System," IEEE J. Sel. Top. Quantum Electron. 11, 621-625 (2005).
[CrossRef]

U. Keller et al, "Semiconductor Saturable Absorber Mirrors (SESAM’s) for Femtosecond to Nanosecond Pulse Generation in Solid-State Lasers," IEEE J. Sel. Top. Quantum Electron. 2, 435-453 (1996).
[CrossRef]

S. Tsuda et al, "Mode-Locking Ultrafast Solid-State Lasers with Saturable Bragg Reflectors," IEEE J. Sel. Top. Quantum Electron. 2, 454-464 (1996).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Commun. (1)

T. Graf et al, "Multi-Watt Nd:YVO4 laser, mode-locked by a semiconductor saturable absorber mirror and side-pumped by a diode-laser bar," Opt. Commun. 159, 84-87 (1999).
[CrossRef]

Opt. Express (1)

Opt. Lett. (3)

Other (3)

A. Minassian et al, "Ultrahigh repetition rate Q-switched 101W TEM00 Nd:GdVO4 laser system," in Proceedings of Conference on Lasers and Electro-Optics (CLEO) Europe, Munich, 2005, paper CA3-2-Tue.

G. Smith et al, "High Power-Scaling of Self-Organising Adaptive Lasers with Gain Holography," in Proceedings of Conference on Lasers and Electro-Optics (CLEO), Long Beach, Calif., paper CFM-1-Fri.

http://www.batop.de

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

The experimental set-up for the modelocked Nd:YVO4 bounce oscillator. The dotted box indicates the position of the back mirror when the cavity is operated in a compact, CW-running form.

Fig. 2.
Fig. 2.

The pulse train from the modelocked oscillator. On the left, a short timescale showing artefact-free pulses. On the right, a longer timescale showing no modulation in the pulse amplitude.

Fig. 3.
Fig. 3.

Average output power vs input pump power for the modelocked oscillator (red triangles), and the compact CW-running cavity (black squares).

Fig. 4.
Fig. 4.

Experimental set-up for modelocked MOPA

Fig. 5.
Fig. 5.

MOPA average output power vs amplifier pump power.

Metrics