Abstract

A nonlinear signal processing method is applied to the design of strongly scattering objects to realize a defined angular response. Investigated as the complement of inverse scattering problems, k-space design methods are combined with cepstral filtering to obtain a permittivity distribution that scatters with the desired response. Starting with the rigorously computed angular spectrum of the scattering amplitude of an object of simple geometric shape, the corresponding k-space is modified to provide the desired scattering behavior. In order to account for strong scattering, cepstral filtering is applied to map the associated distribution of secondary sources to a unique permittivity distribution. The inversion process results in a structure that exhibits the desired properties and which can be interpreted as a perturbation of the initial structure. Simulation results are presented which illustrate the usefulness of this method. In particular, objects are modified to enhance forward scattering and suppress scattering in all other direction. Results are verified using a rigorous finite-difference frequency-domain scheme to simulate scattering. The method is demonstrated as a novel means for designing invisible objects that act as electromagnetic cloaks.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. N. Mait, “Understanding diffractive optic design in the scalar domain,” J. Opt. Soc. Am. A 12, 2145–2158 (1995).
    [Crossref]
  2. S. K. Case and W. J. Dallas, “Volume holograms constructed from computer-generated masks,” Appl. Opt. 17, 2537–2540 (1978).
    [PubMed]
  3. D. Peri and A. A. Friesem, “Image restoration using volume diffraction gratings,” Opt. Lett. 17, 124 – 126 (1978).
    [Crossref]
  4. D. M. Chambers and G. P. Nordin, “Stratified volume diffractive optical elements as high efficiency gratings,” J. Opt. Soc. Am. A 16, 1184 – 1193 (1999).
    [Crossref]
  5. M. Testorf and U. Gibson, “Design of thin-film-coated diffractive optical elements with frequency variant transmission functions,” SPIE Proc. Vol. 5515, 158 – 169 (2004).
    [Crossref]
  6. Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, “A dielectric omnidirectional reflector,” Science 282, 1679 – 1682 (1998).
    [Crossref] [PubMed]
  7. A. Alú and N. Engheta, “Optical nanotransmission lines: synthesis of planar left-handed metamaterials in the infrared and visible regimes,” J. Opt. Soc. Am. B 23, 571 – 583 (2006).
    [Crossref]
  8. R. C. Rumpf and E. G. Johnson, “Fully three-dimensional modeling of the fabrication and behavior of photonic crystals formed by holographic lithography,” J. Opt. Soc. Am. A 21, 1703 – 1713 (2004).
    [Crossref]
  9. R. Rumpf and E. G. Johnson, “Comprehensive modeling of near-field nano-patterning,” Opt. Express 13, 7198 – 7208 (2005).
    [Crossref] [PubMed]
  10. A. Mehta, R. C. Rumpf, Z. Roth, and E. G. Johnson, “Nanofabrication of a space-variant optical transmission filter,” Opt. Lett. 31, 2903 – 2905 (2006).
    [Crossref] [PubMed]
  11. L. Fatone, M.C. Recchioni, and F. Zirilli, “A method to solve an acoustic inverse scattering problem involving smart obstacles,” Waves in Random and Complex Media 16, 433–455 (2006).
    [Crossref]
  12. U. Leonhardt, “Optical Conformal Mapping”, Science 312, 1777 – 1780 (2006).
    [Crossref] [PubMed]
  13. U. Leonhardt, “Notes on Conformal Invisibility Devices”, New. J. Phys. 8, 118 (2006).
    [Crossref]
  14. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science Express Manuscript Number113362 (2006).
  15. D. Schurig, J. B. Pendry, and D. R. Smith, “Calculation of material properties and ray tracing in transformation media,” Opt. Express 14, 9794 (2006).
    [Crossref] [PubMed]
  16. S. A. Cummer, B.-I. Popa, D. Schurig, D. R. Smith, and J. B. Pendry, “Full-wave simulations of electromagnetic cloaking structures,” Phys. Rev. E 74, 036621 (2006).
    [Crossref]
  17. J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780 (2006).
    [Crossref] [PubMed]
  18. E. Wolf and T. Habashy, “Invisible bodies and uniqueness of the inverse scattering problem,” J. Mod. Opt. 40, 785 – 792 (1993).
    [Crossref]
  19. G. Gbur, “Nonradiating sources and other ‘invisible’ objects,” in E. Wolf (ed.), Progress in Optics Vol. 45 (Elsevier, Amsterdam, 2003), pp. 273 – 315.
  20. M. A. Fiddy, “Inversion of Optical Scattered Field Data.” J. Phys. D 19, pp. 301–317, 1986.
    [Crossref]
  21. U. Shahid, M. Testorf, and M. A. Fiddy, “Minimum-phase-based inverse scattering algorithm applied to Institute Fresnel data,” Inverse Problems 21, S153 – 164 (2005).
    [Crossref]
  22. M. A. Fiddy and M. Testorf, “Inverse scattering method applied to the synthesis of strongly scattering structures,” Opt. Express 14, 2037 – 2046, (2006).
    [Crossref] [PubMed]
  23. K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antennas Propag. 14, pp. 302–307, 1966..
    [Crossref]
  24. A. Taflove and S. C. Hagness, Computational Electrodynamics the Finite-Difference Time-Domain Method, 3rd ed, Artech House, 2005.
    [PubMed]
  25. R. C. Rumpf, “Design and optimization of nano-optical elements by coupling fabrication to optical behavior,” PhD dissertation, University of Central Florida, pp. 60–81, 2006.

2006 (9)

A. Alú and N. Engheta, “Optical nanotransmission lines: synthesis of planar left-handed metamaterials in the infrared and visible regimes,” J. Opt. Soc. Am. B 23, 571 – 583 (2006).
[Crossref]

A. Mehta, R. C. Rumpf, Z. Roth, and E. G. Johnson, “Nanofabrication of a space-variant optical transmission filter,” Opt. Lett. 31, 2903 – 2905 (2006).
[Crossref] [PubMed]

L. Fatone, M.C. Recchioni, and F. Zirilli, “A method to solve an acoustic inverse scattering problem involving smart obstacles,” Waves in Random and Complex Media 16, 433–455 (2006).
[Crossref]

U. Leonhardt, “Optical Conformal Mapping”, Science 312, 1777 – 1780 (2006).
[Crossref] [PubMed]

U. Leonhardt, “Notes on Conformal Invisibility Devices”, New. J. Phys. 8, 118 (2006).
[Crossref]

D. Schurig, J. B. Pendry, and D. R. Smith, “Calculation of material properties and ray tracing in transformation media,” Opt. Express 14, 9794 (2006).
[Crossref] [PubMed]

S. A. Cummer, B.-I. Popa, D. Schurig, D. R. Smith, and J. B. Pendry, “Full-wave simulations of electromagnetic cloaking structures,” Phys. Rev. E 74, 036621 (2006).
[Crossref]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780 (2006).
[Crossref] [PubMed]

M. A. Fiddy and M. Testorf, “Inverse scattering method applied to the synthesis of strongly scattering structures,” Opt. Express 14, 2037 – 2046, (2006).
[Crossref] [PubMed]

2005 (2)

U. Shahid, M. Testorf, and M. A. Fiddy, “Minimum-phase-based inverse scattering algorithm applied to Institute Fresnel data,” Inverse Problems 21, S153 – 164 (2005).
[Crossref]

R. Rumpf and E. G. Johnson, “Comprehensive modeling of near-field nano-patterning,” Opt. Express 13, 7198 – 7208 (2005).
[Crossref] [PubMed]

2004 (2)

R. C. Rumpf and E. G. Johnson, “Fully three-dimensional modeling of the fabrication and behavior of photonic crystals formed by holographic lithography,” J. Opt. Soc. Am. A 21, 1703 – 1713 (2004).
[Crossref]

M. Testorf and U. Gibson, “Design of thin-film-coated diffractive optical elements with frequency variant transmission functions,” SPIE Proc. Vol. 5515, 158 – 169 (2004).
[Crossref]

1999 (1)

1998 (1)

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, “A dielectric omnidirectional reflector,” Science 282, 1679 – 1682 (1998).
[Crossref] [PubMed]

1995 (1)

1993 (1)

E. Wolf and T. Habashy, “Invisible bodies and uniqueness of the inverse scattering problem,” J. Mod. Opt. 40, 785 – 792 (1993).
[Crossref]

1986 (1)

M. A. Fiddy, “Inversion of Optical Scattered Field Data.” J. Phys. D 19, pp. 301–317, 1986.
[Crossref]

1978 (2)

1966 (1)

K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antennas Propag. 14, pp. 302–307, 1966..
[Crossref]

Alú, A.

Case, S. K.

Chambers, D. M.

Chen, C.

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, “A dielectric omnidirectional reflector,” Science 282, 1679 – 1682 (1998).
[Crossref] [PubMed]

Cummer, S. A.

S. A. Cummer, B.-I. Popa, D. Schurig, D. R. Smith, and J. B. Pendry, “Full-wave simulations of electromagnetic cloaking structures,” Phys. Rev. E 74, 036621 (2006).
[Crossref]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science Express Manuscript Number113362 (2006).

Dallas, W. J.

Engheta, N.

Fan, S.

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, “A dielectric omnidirectional reflector,” Science 282, 1679 – 1682 (1998).
[Crossref] [PubMed]

Fatone, L.

L. Fatone, M.C. Recchioni, and F. Zirilli, “A method to solve an acoustic inverse scattering problem involving smart obstacles,” Waves in Random and Complex Media 16, 433–455 (2006).
[Crossref]

Fiddy, M. A.

M. A. Fiddy and M. Testorf, “Inverse scattering method applied to the synthesis of strongly scattering structures,” Opt. Express 14, 2037 – 2046, (2006).
[Crossref] [PubMed]

U. Shahid, M. Testorf, and M. A. Fiddy, “Minimum-phase-based inverse scattering algorithm applied to Institute Fresnel data,” Inverse Problems 21, S153 – 164 (2005).
[Crossref]

M. A. Fiddy, “Inversion of Optical Scattered Field Data.” J. Phys. D 19, pp. 301–317, 1986.
[Crossref]

Fink, Y.

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, “A dielectric omnidirectional reflector,” Science 282, 1679 – 1682 (1998).
[Crossref] [PubMed]

Friesem, A. A.

Gibson, U.

M. Testorf and U. Gibson, “Design of thin-film-coated diffractive optical elements with frequency variant transmission functions,” SPIE Proc. Vol. 5515, 158 – 169 (2004).
[Crossref]

Habashy, T.

E. Wolf and T. Habashy, “Invisible bodies and uniqueness of the inverse scattering problem,” J. Mod. Opt. 40, 785 – 792 (1993).
[Crossref]

Joannopoulos, J. D.

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, “A dielectric omnidirectional reflector,” Science 282, 1679 – 1682 (1998).
[Crossref] [PubMed]

Johnson, E. G.

Justice, B. J.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science Express Manuscript Number113362 (2006).

Leonhardt, U.

U. Leonhardt, “Optical Conformal Mapping”, Science 312, 1777 – 1780 (2006).
[Crossref] [PubMed]

U. Leonhardt, “Notes on Conformal Invisibility Devices”, New. J. Phys. 8, 118 (2006).
[Crossref]

Mait, J. N.

Mehta, A.

Michel, J.

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, “A dielectric omnidirectional reflector,” Science 282, 1679 – 1682 (1998).
[Crossref] [PubMed]

Mock, J. J.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science Express Manuscript Number113362 (2006).

Nordin, G. P.

Pendry, J. B.

D. Schurig, J. B. Pendry, and D. R. Smith, “Calculation of material properties and ray tracing in transformation media,” Opt. Express 14, 9794 (2006).
[Crossref] [PubMed]

S. A. Cummer, B.-I. Popa, D. Schurig, D. R. Smith, and J. B. Pendry, “Full-wave simulations of electromagnetic cloaking structures,” Phys. Rev. E 74, 036621 (2006).
[Crossref]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780 (2006).
[Crossref] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science Express Manuscript Number113362 (2006).

Peri, D.

Popa, B.-I.

S. A. Cummer, B.-I. Popa, D. Schurig, D. R. Smith, and J. B. Pendry, “Full-wave simulations of electromagnetic cloaking structures,” Phys. Rev. E 74, 036621 (2006).
[Crossref]

Recchioni, M.C.

L. Fatone, M.C. Recchioni, and F. Zirilli, “A method to solve an acoustic inverse scattering problem involving smart obstacles,” Waves in Random and Complex Media 16, 433–455 (2006).
[Crossref]

Roth, Z.

Rumpf, R.

Rumpf, R. C.

Schurig, D.

S. A. Cummer, B.-I. Popa, D. Schurig, D. R. Smith, and J. B. Pendry, “Full-wave simulations of electromagnetic cloaking structures,” Phys. Rev. E 74, 036621 (2006).
[Crossref]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780 (2006).
[Crossref] [PubMed]

D. Schurig, J. B. Pendry, and D. R. Smith, “Calculation of material properties and ray tracing in transformation media,” Opt. Express 14, 9794 (2006).
[Crossref] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science Express Manuscript Number113362 (2006).

Shahid, U.

U. Shahid, M. Testorf, and M. A. Fiddy, “Minimum-phase-based inverse scattering algorithm applied to Institute Fresnel data,” Inverse Problems 21, S153 – 164 (2005).
[Crossref]

Smith, D. R.

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780 (2006).
[Crossref] [PubMed]

S. A. Cummer, B.-I. Popa, D. Schurig, D. R. Smith, and J. B. Pendry, “Full-wave simulations of electromagnetic cloaking structures,” Phys. Rev. E 74, 036621 (2006).
[Crossref]

D. Schurig, J. B. Pendry, and D. R. Smith, “Calculation of material properties and ray tracing in transformation media,” Opt. Express 14, 9794 (2006).
[Crossref] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science Express Manuscript Number113362 (2006).

Starr, A. F.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science Express Manuscript Number113362 (2006).

Testorf, M.

M. A. Fiddy and M. Testorf, “Inverse scattering method applied to the synthesis of strongly scattering structures,” Opt. Express 14, 2037 – 2046, (2006).
[Crossref] [PubMed]

U. Shahid, M. Testorf, and M. A. Fiddy, “Minimum-phase-based inverse scattering algorithm applied to Institute Fresnel data,” Inverse Problems 21, S153 – 164 (2005).
[Crossref]

M. Testorf and U. Gibson, “Design of thin-film-coated diffractive optical elements with frequency variant transmission functions,” SPIE Proc. Vol. 5515, 158 – 169 (2004).
[Crossref]

Thomas, E. L.

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, “A dielectric omnidirectional reflector,” Science 282, 1679 – 1682 (1998).
[Crossref] [PubMed]

Winn, J. N.

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, “A dielectric omnidirectional reflector,” Science 282, 1679 – 1682 (1998).
[Crossref] [PubMed]

Wolf, E.

E. Wolf and T. Habashy, “Invisible bodies and uniqueness of the inverse scattering problem,” J. Mod. Opt. 40, 785 – 792 (1993).
[Crossref]

Yee, K. S.

K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antennas Propag. 14, pp. 302–307, 1966..
[Crossref]

Zirilli, F.

L. Fatone, M.C. Recchioni, and F. Zirilli, “A method to solve an acoustic inverse scattering problem involving smart obstacles,” Waves in Random and Complex Media 16, 433–455 (2006).
[Crossref]

Appl. Opt. (1)

IEEE Trans. Antennas Propag. (1)

K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antennas Propag. 14, pp. 302–307, 1966..
[Crossref]

Inverse Problems (1)

U. Shahid, M. Testorf, and M. A. Fiddy, “Minimum-phase-based inverse scattering algorithm applied to Institute Fresnel data,” Inverse Problems 21, S153 – 164 (2005).
[Crossref]

J. Mod. Opt. (1)

E. Wolf and T. Habashy, “Invisible bodies and uniqueness of the inverse scattering problem,” J. Mod. Opt. 40, 785 – 792 (1993).
[Crossref]

J. Opt. Soc. Am. A (3)

J. Opt. Soc. Am. B (1)

J. Phys. D (1)

M. A. Fiddy, “Inversion of Optical Scattered Field Data.” J. Phys. D 19, pp. 301–317, 1986.
[Crossref]

New. J. Phys. (1)

U. Leonhardt, “Notes on Conformal Invisibility Devices”, New. J. Phys. 8, 118 (2006).
[Crossref]

Opt. Express (3)

Opt. Lett. (2)

Phys. Rev. E (1)

S. A. Cummer, B.-I. Popa, D. Schurig, D. R. Smith, and J. B. Pendry, “Full-wave simulations of electromagnetic cloaking structures,” Phys. Rev. E 74, 036621 (2006).
[Crossref]

Science (3)

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780 (2006).
[Crossref] [PubMed]

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, “A dielectric omnidirectional reflector,” Science 282, 1679 – 1682 (1998).
[Crossref] [PubMed]

U. Leonhardt, “Optical Conformal Mapping”, Science 312, 1777 – 1780 (2006).
[Crossref] [PubMed]

SPIE Proc. Vol. (1)

M. Testorf and U. Gibson, “Design of thin-film-coated diffractive optical elements with frequency variant transmission functions,” SPIE Proc. Vol. 5515, 158 – 169 (2004).
[Crossref]

Waves in Random and Complex Media (1)

L. Fatone, M.C. Recchioni, and F. Zirilli, “A method to solve an acoustic inverse scattering problem involving smart obstacles,” Waves in Random and Complex Media 16, 433–455 (2006).
[Crossref]

Other (4)

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science Express Manuscript Number113362 (2006).

A. Taflove and S. C. Hagness, Computational Electrodynamics the Finite-Difference Time-Domain Method, 3rd ed, Artech House, 2005.
[PubMed]

R. C. Rumpf, “Design and optimization of nano-optical elements by coupling fabrication to optical behavior,” PhD dissertation, University of Central Florida, pp. 60–81, 2006.

G. Gbur, “Nonradiating sources and other ‘invisible’ objects,” in E. Wolf (ed.), Progress in Optics Vol. 45 (Elsevier, Amsterdam, 2003), pp. 273 – 315.

Supplementary Material (2)

» Media 1: AVI (2403 KB)     
» Media 2: AVI (2219 KB)     

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

k-space interpretation of scattering in the first order Born approximation: (a) geometry for plane wave scattering of a permittivity distribution; (b) k-space representation of the incident wave and one scattered plane wave component. The scattering amplitude is proportional to the object spectrum at the Ewald circle.

Fig. 2.
Fig. 2.

(a) Rigorous solution of plane wave scattering off a homogeneous cylinder, (b) k-space constructed from the far field for a set of different incident field directions.

Fig. 3.
Fig. 3.

Magnitude of the inverse Fourier transform of the k-space distribution shown in Fig. 2(b).

Fig. 4.
Fig. 4.

(a) Reconstruction of object permittivity contrast based on (a) cepstral filtering, and (b) spectral filtering.

Fig. 5.
Fig. 5.

Reconstruction of object permittivity contrast after k-space engineering based on (a) cepstral filtering, and (b) spectral filtering.

Fig. 6.
Fig. 6.

(a) Refractive index distribution of scattering object. Here the object is a perfect cylinder with n=2.0. (b) (Movie 2403kb) Total-field computed by FDFD simulation. [Media 1] (c) Scattered-field computed by FDFD simulation. (d) Pattern of energy scattered from object. Lobes correspond to preferred directions of scattering.

Fig. 7.
Fig. 7.

(a) Refractive index distribution of filtered scattering object. (b) (Movie 2219kb) Total-field computed by FDFD simulation. [Media 2] (c) Scattered-field computed by FDFD simulation. (d) Pattern of energy scattered from object. Lobes correspond to preferred directions of scattering.

Fig. 8.
Fig. 8.

Angular spread of the far field for plane wave. The finite simulation window for the near field in (a) results in a finite angular spread of the far field pattern predicted by the numerical diffraction model.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Ψ s r k r ̂ 0 = exp ( ik r ) 8 πk r D V ( r ' ) Ψ ( r , k r ̂ 0 ) exp ( ik r r ̂ 0 ) d r 2
V B r k r ̂ 0 V ( r ) Ψ r k r ̂ 0 Ψ 0 r k r ̂ 0
log ( V Ψ ) = log V + log Ψ + i [ arg ( V ) + arg ( Ψ ) ] ,

Metrics