Abstract

We demonstrate a novel all-optical switch based on frequency upconversion. The switch features advantages for telecommunications: it is fast, transparent, frequency-multi-plexable and bias-free.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. P. VanDevender and P. G. Kwiat, "Quantum transduction via frequency up-conversion," J. Opt. Soc. Am. B 24, 295-299 (2007).
    [CrossRef]
  2. I. Yokohama, M. Asobe, A. Yokoo, H. Itoh, and T. Kaino, "All-optical switching by use of cascading of phasematched sum-frequency generation and difference-frequency generation processes." J. Opt. Soc. Am. B 14, 3368-3377 (1997).
    [CrossRef]
  3. G. S. Kanter, P. Kumar, K. R. Parameswaran, and M. M. Fejer, "Wavelength-selective pulsed all-optical switching based on cascaded second-order nonlinearity in a periodically poled lithium-niobate waveguide," IEEE Photonic. Tech. L. 13, 341-343 (2001).
    [CrossRef]
  4. E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, "A review of lithium niobate modulators for fiber-optic communications systems," IEEE J. Sel. Top. Quantum Electron. 6, 69-82 (2000).
    [CrossRef]
  5. Y. Baek, R. Schiek, and G. I. Stegeman, "All-optical switching in a hybrid Mach-Zehnder interferometer as a result of cascaded second-order nonlinearity," Opt. Lett. 20, 2168-2170 (1995).
    [CrossRef] [PubMed]
  6. M. Jinno and T. Matsumoto, "Nonlinear sagnac interferometer switch and its applications," IEEE J. Quantum Electron. 28, 875-882 (1992).
    [CrossRef]
  7. L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, W. R. Bosenberg, and J. W. Pierce, "Quasi-phase-matched optical parametric oscillators in bulk periodically poled LiNbO3," J. Opt. Soc. Am. B 12, 2102-2116 (1995).
    [CrossRef]
  8. D. Méchin, R. Provo, J. D. Harvey, and C. J. McKinstrie, "180-nm wavelength conversion based on Bragg scattering in an optical fiber," Opt. Express 14, 8995-8999 (2006).
    [CrossRef] [PubMed]
  9. A. H. Gnauck, R. M. Jopson, C. J. McKinstrie, and J. C. Centanni, "Demonstration of low-noise frequency conversion by Bragg scattering in a fiber," Opt. Express 14, 8989-8994 (2006).
    [CrossRef] [PubMed]
  10. C. Langrock, E. Diamanti, R. V. Roussev, Y. Yamamoto, and M. M. Fejer, "Highly efficient single-photon detection at communication wavelengths by use of upconversion in reverse-proton-exchanged periodically poled LiNbO3 waveguides," Opt. Lett. 30, 1725-1727 (2005).
    [CrossRef] [PubMed]

2007 (1)

2006 (2)

2005 (1)

2001 (1)

G. S. Kanter, P. Kumar, K. R. Parameswaran, and M. M. Fejer, "Wavelength-selective pulsed all-optical switching based on cascaded second-order nonlinearity in a periodically poled lithium-niobate waveguide," IEEE Photonic. Tech. L. 13, 341-343 (2001).
[CrossRef]

2000 (1)

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, "A review of lithium niobate modulators for fiber-optic communications systems," IEEE J. Sel. Top. Quantum Electron. 6, 69-82 (2000).
[CrossRef]

1997 (1)

1995 (2)

1992 (1)

M. Jinno and T. Matsumoto, "Nonlinear sagnac interferometer switch and its applications," IEEE J. Quantum Electron. 28, 875-882 (1992).
[CrossRef]

Asobe, M.

Attanasio, D. V.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, "A review of lithium niobate modulators for fiber-optic communications systems," IEEE J. Sel. Top. Quantum Electron. 6, 69-82 (2000).
[CrossRef]

Baek, Y.

Bosenberg, W. R.

Bossi, D. E.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, "A review of lithium niobate modulators for fiber-optic communications systems," IEEE J. Sel. Top. Quantum Electron. 6, 69-82 (2000).
[CrossRef]

Byer, R. L.

Centanni, J. C.

Diamanti, E.

Eckardt, R. C.

Fejer, M. M.

Fritz, D. J.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, "A review of lithium niobate modulators for fiber-optic communications systems," IEEE J. Sel. Top. Quantum Electron. 6, 69-82 (2000).
[CrossRef]

Gnauck, A. H.

Hallemeier, P. F.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, "A review of lithium niobate modulators for fiber-optic communications systems," IEEE J. Sel. Top. Quantum Electron. 6, 69-82 (2000).
[CrossRef]

Harvey, J. D.

Itoh, H.

Jinno, M.

M. Jinno and T. Matsumoto, "Nonlinear sagnac interferometer switch and its applications," IEEE J. Quantum Electron. 28, 875-882 (1992).
[CrossRef]

Jopson, R. M.

Kaino, T.

Kanter, G. S.

G. S. Kanter, P. Kumar, K. R. Parameswaran, and M. M. Fejer, "Wavelength-selective pulsed all-optical switching based on cascaded second-order nonlinearity in a periodically poled lithium-niobate waveguide," IEEE Photonic. Tech. L. 13, 341-343 (2001).
[CrossRef]

Kissa, K. M.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, "A review of lithium niobate modulators for fiber-optic communications systems," IEEE J. Sel. Top. Quantum Electron. 6, 69-82 (2000).
[CrossRef]

Kumar, P.

G. S. Kanter, P. Kumar, K. R. Parameswaran, and M. M. Fejer, "Wavelength-selective pulsed all-optical switching based on cascaded second-order nonlinearity in a periodically poled lithium-niobate waveguide," IEEE Photonic. Tech. L. 13, 341-343 (2001).
[CrossRef]

Kwiat, P. G.

Lafaw, D. A.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, "A review of lithium niobate modulators for fiber-optic communications systems," IEEE J. Sel. Top. Quantum Electron. 6, 69-82 (2000).
[CrossRef]

Langrock, C.

Maack, D.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, "A review of lithium niobate modulators for fiber-optic communications systems," IEEE J. Sel. Top. Quantum Electron. 6, 69-82 (2000).
[CrossRef]

Matsumoto, T.

M. Jinno and T. Matsumoto, "Nonlinear sagnac interferometer switch and its applications," IEEE J. Quantum Electron. 28, 875-882 (1992).
[CrossRef]

McBrien, G. J.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, "A review of lithium niobate modulators for fiber-optic communications systems," IEEE J. Sel. Top. Quantum Electron. 6, 69-82 (2000).
[CrossRef]

McKinstrie, C. J.

Méchin, D.

Murphy, E. J.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, "A review of lithium niobate modulators for fiber-optic communications systems," IEEE J. Sel. Top. Quantum Electron. 6, 69-82 (2000).
[CrossRef]

Myers, L. E.

Parameswaran, K. R.

G. S. Kanter, P. Kumar, K. R. Parameswaran, and M. M. Fejer, "Wavelength-selective pulsed all-optical switching based on cascaded second-order nonlinearity in a periodically poled lithium-niobate waveguide," IEEE Photonic. Tech. L. 13, 341-343 (2001).
[CrossRef]

Pierce, J. W.

Provo, R.

Roussev, R. V.

Schiek, R.

Stegeman, G. I.

VanDevender, A. P.

Wooten, E. L.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, "A review of lithium niobate modulators for fiber-optic communications systems," IEEE J. Sel. Top. Quantum Electron. 6, 69-82 (2000).
[CrossRef]

Yamamoto, Y.

Yi-Yan, A.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, "A review of lithium niobate modulators for fiber-optic communications systems," IEEE J. Sel. Top. Quantum Electron. 6, 69-82 (2000).
[CrossRef]

Yokohama, I.

Yokoo, A.

IEEE J. Quantum Electron. (1)

M. Jinno and T. Matsumoto, "Nonlinear sagnac interferometer switch and its applications," IEEE J. Quantum Electron. 28, 875-882 (1992).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, "A review of lithium niobate modulators for fiber-optic communications systems," IEEE J. Sel. Top. Quantum Electron. 6, 69-82 (2000).
[CrossRef]

IEEE Photonic. Tech. L. (1)

G. S. Kanter, P. Kumar, K. R. Parameswaran, and M. M. Fejer, "Wavelength-selective pulsed all-optical switching based on cascaded second-order nonlinearity in a periodically poled lithium-niobate waveguide," IEEE Photonic. Tech. L. 13, 341-343 (2001).
[CrossRef]

J. Opt. Soc. Am. B (3)

Opt. Express (2)

Opt. Lett. (2)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Proposed design of a basic upconversion switch using a Mach-Zehnder interferometer. A Signal laser is sent though a balanced interferometer with a non-linear crystal (e.g., PPLN) in one arm. When an escort beam is passed through the crystal, co-linearly with the signal, a π-phase shift is applied to the signal, switching it from Port 1 to Port 2.

Fig. 2.
Fig. 2.

Experimentally demonstrated polarization-based upconversion switch. A diagonally polarized signal is passed through a non-linear crystal phase-matched for upconversion with an escort laser. The signal is filtered, and then passed though two waveplates and a PBS so that it exits out Port 1. When the escort beam is turned on, a π-phase shift is applied to the vertical component of the signal, switching it from Port 1 to Port 2.

Fig. 3.
Fig. 3.

a) Graph of temporal escort profile along with a model the unswitched and switched light calculated from the measured escort profile. Switched and unswitched does not sum to unity because some light is left in the upconverted 630-nm state. The width of the switched pulse light closely matches the escort width, however the unswitched light is broader since the unswitched light is completely depleted when the escort is at 25% of its peak power. b) Data collected from the polarization-based upconversion switch. A 1544-nm signal was modulated with a 600-ps wide 1064-nm pulse in 4.5-cm PPLN crystal. The blue trace is Port 1 and the red trace is Port 2. The extinction is 12 dB and ~20 dB for Ports 1 and 2 and the intrinsic switching loss is about 30%. Each trace is a composite of 16 escort pulses to average out the noise on the photodetector.

Fig. 4.
Fig. 4.

Data showing the wavelength selectivity of the upconversion switch, which therefore allows for frequency multiplexing. The outputs of Port 1 and 2 are represented by the blue and red curves respectively. A 4.5-cm PPLN crystal and a 0.15-nm wide escort produce a 0.3-nm wide acceptance bandwidth. Nearby frequencies are unaltered. Transparency is limited to about 80% due to imperfect modematching between the escort and the signal. The excessive out-of-band output is due to the wide bandwidth of the passively Q-switched Nd:YAG escort laser used for conversion. Should this system be adapted for telecommunications applications, a narrow-band fiber-based escort laser would significantly reduce the out-of-band conversion efficiency, effectively suppressing the crosstalk in WDM configurations.

Fig. 5.
Fig. 5.

Proposed design of a bias-free upconversion switch using a Sagnac design. Since only the signal co-propagating with the escort beam acquires a phase, modulating the es-cort beam will shift the interference of the interferometer at the beam splitter and control whether the signal exits at Port 1 or Port 2.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

out = e i cos ( α z ) ω i + e i ( ϕ e + ϕ i + π 2 ) sin ( α z ) ω o ,
out = e i ω i ,
Δλ = 2 λΛ πL .

Metrics