Abstract

A core-pumped ytterbium-doped fiber laser is presented, tunable over 26 nm from 1017 nm to 1043 nm. A diffraction grating pair in Littman-Littrow configuration in the unidirectional ring-cavity provides the wavelength adjustment. The laser resonator with a free spectral range of 260 MHz supported stable single frequency operation with a maximum linear polarized output power of 31 mW.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, and J. M. Dawes, "Ytterbium-Doped Silica Fiber Lasers: Versatile Sources for 1-1.2 µm Region," IEEE J. Sel. Top. Quantum Electron. 1, 2-13 (1995).
    [CrossRef]
  2. D. C. Hanna, R. M. Percival, I. R. Perry, R. G. Smart, P. J. Suni, and A. C. Tropper, "Yb-doped monomode fiber laser: a broadly tunable operation from 1.010 µm to 1.162 µm and three level operation at 974 nm," J. Mod. Opt. 37, 329-331 (1987).
  3. M. Auerbach, P. Adel, D. Wandt, C. Fallnich, S. Unger, S. Jetschke, and H. R. Müller, "10 W widely tunable narrow linewidth double-clad fiber ring laser," Opt. Express 10, 139-144 (2002).
    [PubMed]
  4. S. Huang, G. Qin, A. Shirakawa, M. Musha, and K. Ueda, "Single frequency 1083 nm ytterbium doped fiber master oscillator power amplifier laser," Opt. Express 13, 7113-7117 (2005).
    [CrossRef] [PubMed]
  5. M. Ibsen, S. Y. Set, G. S. Goh, and K. Kikuchi, "Broad-Band Continuously Tunable All-Fiber DFB Lasers," IEEE Phot. Tech. Lett. 14, 21-23 (2002).
    [CrossRef]
  6. A. Wang, L. Feng, J. Huang, C. Gu, X. Lu, H. Ming, and J. Xie, "Tunable single-frequency ytterbium-doped fiber DBR laser," Chin. J. Quantum Electron. 22, 607-611 (2005)
  7. G. P. Agrawal, and M. Lax, "Analytic evaluation of interference effects on laser output in a Fabry-Perot resonator," J. Opt. Soc. Am. 71, 515-519 (1981).
    [CrossRef]
  8. D. Wandt, M. Laschek, A. Tünnermann, and H. Welling, "Continuously tunable external-cavity diode laser with a double-grating arrangement," Opt. Lett. 15, 390-392 (1997)
    [CrossRef]
  9. T. J. Kane, A. C. Nilsson, and R. L. Byer, "Frequency stability and offset locking of a laser-diode-pumped Nd:YAG monolithic nonplanar ring oscillator," Opt. Lett. 12, 175-177 (1987).
    [CrossRef] [PubMed]
  10. I. Shoshan, and U. P. Oppenheim, "The use of a diffraction grating as a beam expander in a dye laser cavity," Opt. Commun. 25, 375-378 (1978).
    [CrossRef]
  11. F. Fontana, M. Begotti, E. M. Pessina, and L. A. Lugiato, "Maxwell-Bloch modelocking instabilities in erbium-doped fiber lasers," Opt. Commun. 114, 89-94 (1995).
    [CrossRef]
  12. T. Voigt, M. O. Lenz, F. Mitschke, E. Roldan, and G. J. de Valcárcel, "Experimental investigation of Risken-Nummendal-Graham-Haken laser instability in fiber ring lasers," Appl. Phys. B 79, 175-183 (2004).
    [CrossRef]
  13. P. Burdack, M. Tröbs, M. Hunnekuhl, C. Fallnich, and I. Freitag, "Modulation free sub-Doppler laser frequency stabilization to molecular iodine with a common-path, two-color interferometer," Opt. Express 12, 644-650 (2004).
    [CrossRef] [PubMed]

2005 (2)

A. Wang, L. Feng, J. Huang, C. Gu, X. Lu, H. Ming, and J. Xie, "Tunable single-frequency ytterbium-doped fiber DBR laser," Chin. J. Quantum Electron. 22, 607-611 (2005)

S. Huang, G. Qin, A. Shirakawa, M. Musha, and K. Ueda, "Single frequency 1083 nm ytterbium doped fiber master oscillator power amplifier laser," Opt. Express 13, 7113-7117 (2005).
[CrossRef] [PubMed]

2004 (2)

P. Burdack, M. Tröbs, M. Hunnekuhl, C. Fallnich, and I. Freitag, "Modulation free sub-Doppler laser frequency stabilization to molecular iodine with a common-path, two-color interferometer," Opt. Express 12, 644-650 (2004).
[CrossRef] [PubMed]

T. Voigt, M. O. Lenz, F. Mitschke, E. Roldan, and G. J. de Valcárcel, "Experimental investigation of Risken-Nummendal-Graham-Haken laser instability in fiber ring lasers," Appl. Phys. B 79, 175-183 (2004).
[CrossRef]

2002 (2)

M. Ibsen, S. Y. Set, G. S. Goh, and K. Kikuchi, "Broad-Band Continuously Tunable All-Fiber DFB Lasers," IEEE Phot. Tech. Lett. 14, 21-23 (2002).
[CrossRef]

M. Auerbach, P. Adel, D. Wandt, C. Fallnich, S. Unger, S. Jetschke, and H. R. Müller, "10 W widely tunable narrow linewidth double-clad fiber ring laser," Opt. Express 10, 139-144 (2002).
[PubMed]

1997 (1)

1995 (2)

F. Fontana, M. Begotti, E. M. Pessina, and L. A. Lugiato, "Maxwell-Bloch modelocking instabilities in erbium-doped fiber lasers," Opt. Commun. 114, 89-94 (1995).
[CrossRef]

H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, and J. M. Dawes, "Ytterbium-Doped Silica Fiber Lasers: Versatile Sources for 1-1.2 µm Region," IEEE J. Sel. Top. Quantum Electron. 1, 2-13 (1995).
[CrossRef]

1987 (2)

D. C. Hanna, R. M. Percival, I. R. Perry, R. G. Smart, P. J. Suni, and A. C. Tropper, "Yb-doped monomode fiber laser: a broadly tunable operation from 1.010 µm to 1.162 µm and three level operation at 974 nm," J. Mod. Opt. 37, 329-331 (1987).

T. J. Kane, A. C. Nilsson, and R. L. Byer, "Frequency stability and offset locking of a laser-diode-pumped Nd:YAG monolithic nonplanar ring oscillator," Opt. Lett. 12, 175-177 (1987).
[CrossRef] [PubMed]

1981 (1)

1978 (1)

I. Shoshan, and U. P. Oppenheim, "The use of a diffraction grating as a beam expander in a dye laser cavity," Opt. Commun. 25, 375-378 (1978).
[CrossRef]

Adel, P.

Agrawal, G. P.

Auerbach, M.

Barber, P. R.

H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, and J. M. Dawes, "Ytterbium-Doped Silica Fiber Lasers: Versatile Sources for 1-1.2 µm Region," IEEE J. Sel. Top. Quantum Electron. 1, 2-13 (1995).
[CrossRef]

Begotti, M.

F. Fontana, M. Begotti, E. M. Pessina, and L. A. Lugiato, "Maxwell-Bloch modelocking instabilities in erbium-doped fiber lasers," Opt. Commun. 114, 89-94 (1995).
[CrossRef]

Burdack, P.

Byer, R. L.

Carman, R. J.

H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, and J. M. Dawes, "Ytterbium-Doped Silica Fiber Lasers: Versatile Sources for 1-1.2 µm Region," IEEE J. Sel. Top. Quantum Electron. 1, 2-13 (1995).
[CrossRef]

Dawes, J. M.

H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, and J. M. Dawes, "Ytterbium-Doped Silica Fiber Lasers: Versatile Sources for 1-1.2 µm Region," IEEE J. Sel. Top. Quantum Electron. 1, 2-13 (1995).
[CrossRef]

de Valcárcel, G. J.

T. Voigt, M. O. Lenz, F. Mitschke, E. Roldan, and G. J. de Valcárcel, "Experimental investigation of Risken-Nummendal-Graham-Haken laser instability in fiber ring lasers," Appl. Phys. B 79, 175-183 (2004).
[CrossRef]

Fallnich, C.

Feng, L.

A. Wang, L. Feng, J. Huang, C. Gu, X. Lu, H. Ming, and J. Xie, "Tunable single-frequency ytterbium-doped fiber DBR laser," Chin. J. Quantum Electron. 22, 607-611 (2005)

Fontana, F.

F. Fontana, M. Begotti, E. M. Pessina, and L. A. Lugiato, "Maxwell-Bloch modelocking instabilities in erbium-doped fiber lasers," Opt. Commun. 114, 89-94 (1995).
[CrossRef]

Freitag, I.

Goh, G. S.

M. Ibsen, S. Y. Set, G. S. Goh, and K. Kikuchi, "Broad-Band Continuously Tunable All-Fiber DFB Lasers," IEEE Phot. Tech. Lett. 14, 21-23 (2002).
[CrossRef]

Gu, C.

A. Wang, L. Feng, J. Huang, C. Gu, X. Lu, H. Ming, and J. Xie, "Tunable single-frequency ytterbium-doped fiber DBR laser," Chin. J. Quantum Electron. 22, 607-611 (2005)

Hanna, D. C.

H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, and J. M. Dawes, "Ytterbium-Doped Silica Fiber Lasers: Versatile Sources for 1-1.2 µm Region," IEEE J. Sel. Top. Quantum Electron. 1, 2-13 (1995).
[CrossRef]

D. C. Hanna, R. M. Percival, I. R. Perry, R. G. Smart, P. J. Suni, and A. C. Tropper, "Yb-doped monomode fiber laser: a broadly tunable operation from 1.010 µm to 1.162 µm and three level operation at 974 nm," J. Mod. Opt. 37, 329-331 (1987).

Huang, J.

A. Wang, L. Feng, J. Huang, C. Gu, X. Lu, H. Ming, and J. Xie, "Tunable single-frequency ytterbium-doped fiber DBR laser," Chin. J. Quantum Electron. 22, 607-611 (2005)

Huang, S.

Hunnekuhl, M.

Ibsen, M.

M. Ibsen, S. Y. Set, G. S. Goh, and K. Kikuchi, "Broad-Band Continuously Tunable All-Fiber DFB Lasers," IEEE Phot. Tech. Lett. 14, 21-23 (2002).
[CrossRef]

Jetschke, S.

Kane, T. J.

Kikuchi, K.

M. Ibsen, S. Y. Set, G. S. Goh, and K. Kikuchi, "Broad-Band Continuously Tunable All-Fiber DFB Lasers," IEEE Phot. Tech. Lett. 14, 21-23 (2002).
[CrossRef]

Laschek, M.

Lax, M.

Lenz, M. O.

T. Voigt, M. O. Lenz, F. Mitschke, E. Roldan, and G. J. de Valcárcel, "Experimental investigation of Risken-Nummendal-Graham-Haken laser instability in fiber ring lasers," Appl. Phys. B 79, 175-183 (2004).
[CrossRef]

Lu, X.

A. Wang, L. Feng, J. Huang, C. Gu, X. Lu, H. Ming, and J. Xie, "Tunable single-frequency ytterbium-doped fiber DBR laser," Chin. J. Quantum Electron. 22, 607-611 (2005)

Lugiato, L. A.

F. Fontana, M. Begotti, E. M. Pessina, and L. A. Lugiato, "Maxwell-Bloch modelocking instabilities in erbium-doped fiber lasers," Opt. Commun. 114, 89-94 (1995).
[CrossRef]

Mackechnie, C. J.

H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, and J. M. Dawes, "Ytterbium-Doped Silica Fiber Lasers: Versatile Sources for 1-1.2 µm Region," IEEE J. Sel. Top. Quantum Electron. 1, 2-13 (1995).
[CrossRef]

Ming, H.

A. Wang, L. Feng, J. Huang, C. Gu, X. Lu, H. Ming, and J. Xie, "Tunable single-frequency ytterbium-doped fiber DBR laser," Chin. J. Quantum Electron. 22, 607-611 (2005)

Mitschke, F.

T. Voigt, M. O. Lenz, F. Mitschke, E. Roldan, and G. J. de Valcárcel, "Experimental investigation of Risken-Nummendal-Graham-Haken laser instability in fiber ring lasers," Appl. Phys. B 79, 175-183 (2004).
[CrossRef]

Müller, H. R.

Musha, M.

Nilsson, A. C.

Oppenheim, U. P.

I. Shoshan, and U. P. Oppenheim, "The use of a diffraction grating as a beam expander in a dye laser cavity," Opt. Commun. 25, 375-378 (1978).
[CrossRef]

Pask, H. M.

H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, and J. M. Dawes, "Ytterbium-Doped Silica Fiber Lasers: Versatile Sources for 1-1.2 µm Region," IEEE J. Sel. Top. Quantum Electron. 1, 2-13 (1995).
[CrossRef]

Percival, R. M.

D. C. Hanna, R. M. Percival, I. R. Perry, R. G. Smart, P. J. Suni, and A. C. Tropper, "Yb-doped monomode fiber laser: a broadly tunable operation from 1.010 µm to 1.162 µm and three level operation at 974 nm," J. Mod. Opt. 37, 329-331 (1987).

Perry, I. R.

D. C. Hanna, R. M. Percival, I. R. Perry, R. G. Smart, P. J. Suni, and A. C. Tropper, "Yb-doped monomode fiber laser: a broadly tunable operation from 1.010 µm to 1.162 µm and three level operation at 974 nm," J. Mod. Opt. 37, 329-331 (1987).

Pessina, E. M.

F. Fontana, M. Begotti, E. M. Pessina, and L. A. Lugiato, "Maxwell-Bloch modelocking instabilities in erbium-doped fiber lasers," Opt. Commun. 114, 89-94 (1995).
[CrossRef]

Qin, G.

Roldan, E.

T. Voigt, M. O. Lenz, F. Mitschke, E. Roldan, and G. J. de Valcárcel, "Experimental investigation of Risken-Nummendal-Graham-Haken laser instability in fiber ring lasers," Appl. Phys. B 79, 175-183 (2004).
[CrossRef]

Set, S. Y.

M. Ibsen, S. Y. Set, G. S. Goh, and K. Kikuchi, "Broad-Band Continuously Tunable All-Fiber DFB Lasers," IEEE Phot. Tech. Lett. 14, 21-23 (2002).
[CrossRef]

Shirakawa, A.

Shoshan, I.

I. Shoshan, and U. P. Oppenheim, "The use of a diffraction grating as a beam expander in a dye laser cavity," Opt. Commun. 25, 375-378 (1978).
[CrossRef]

Smart, R. G.

D. C. Hanna, R. M. Percival, I. R. Perry, R. G. Smart, P. J. Suni, and A. C. Tropper, "Yb-doped monomode fiber laser: a broadly tunable operation from 1.010 µm to 1.162 µm and three level operation at 974 nm," J. Mod. Opt. 37, 329-331 (1987).

Suni, P. J.

D. C. Hanna, R. M. Percival, I. R. Perry, R. G. Smart, P. J. Suni, and A. C. Tropper, "Yb-doped monomode fiber laser: a broadly tunable operation from 1.010 µm to 1.162 µm and three level operation at 974 nm," J. Mod. Opt. 37, 329-331 (1987).

Tröbs, M.

Tropper, A. C.

H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, and J. M. Dawes, "Ytterbium-Doped Silica Fiber Lasers: Versatile Sources for 1-1.2 µm Region," IEEE J. Sel. Top. Quantum Electron. 1, 2-13 (1995).
[CrossRef]

D. C. Hanna, R. M. Percival, I. R. Perry, R. G. Smart, P. J. Suni, and A. C. Tropper, "Yb-doped monomode fiber laser: a broadly tunable operation from 1.010 µm to 1.162 µm and three level operation at 974 nm," J. Mod. Opt. 37, 329-331 (1987).

Tünnermann, A.

Ueda, K.

Unger, S.

Voigt, T.

T. Voigt, M. O. Lenz, F. Mitschke, E. Roldan, and G. J. de Valcárcel, "Experimental investigation of Risken-Nummendal-Graham-Haken laser instability in fiber ring lasers," Appl. Phys. B 79, 175-183 (2004).
[CrossRef]

Wandt, D.

Wang, A.

A. Wang, L. Feng, J. Huang, C. Gu, X. Lu, H. Ming, and J. Xie, "Tunable single-frequency ytterbium-doped fiber DBR laser," Chin. J. Quantum Electron. 22, 607-611 (2005)

Welling, H.

Xie, J.

A. Wang, L. Feng, J. Huang, C. Gu, X. Lu, H. Ming, and J. Xie, "Tunable single-frequency ytterbium-doped fiber DBR laser," Chin. J. Quantum Electron. 22, 607-611 (2005)

Appl. Phys. B (1)

T. Voigt, M. O. Lenz, F. Mitschke, E. Roldan, and G. J. de Valcárcel, "Experimental investigation of Risken-Nummendal-Graham-Haken laser instability in fiber ring lasers," Appl. Phys. B 79, 175-183 (2004).
[CrossRef]

Chin. J. Quantum Electron. (1)

A. Wang, L. Feng, J. Huang, C. Gu, X. Lu, H. Ming, and J. Xie, "Tunable single-frequency ytterbium-doped fiber DBR laser," Chin. J. Quantum Electron. 22, 607-611 (2005)

IEEE J. Sel. Top. Quantum Electron. (1)

H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, and J. M. Dawes, "Ytterbium-Doped Silica Fiber Lasers: Versatile Sources for 1-1.2 µm Region," IEEE J. Sel. Top. Quantum Electron. 1, 2-13 (1995).
[CrossRef]

IEEE Phot. Tech. Lett. (1)

M. Ibsen, S. Y. Set, G. S. Goh, and K. Kikuchi, "Broad-Band Continuously Tunable All-Fiber DFB Lasers," IEEE Phot. Tech. Lett. 14, 21-23 (2002).
[CrossRef]

J. Mod. Opt. (1)

D. C. Hanna, R. M. Percival, I. R. Perry, R. G. Smart, P. J. Suni, and A. C. Tropper, "Yb-doped monomode fiber laser: a broadly tunable operation from 1.010 µm to 1.162 µm and three level operation at 974 nm," J. Mod. Opt. 37, 329-331 (1987).

J. Opt. Soc. Am. (1)

Opt. Commun. (2)

I. Shoshan, and U. P. Oppenheim, "The use of a diffraction grating as a beam expander in a dye laser cavity," Opt. Commun. 25, 375-378 (1978).
[CrossRef]

F. Fontana, M. Begotti, E. M. Pessina, and L. A. Lugiato, "Maxwell-Bloch modelocking instabilities in erbium-doped fiber lasers," Opt. Commun. 114, 89-94 (1995).
[CrossRef]

Opt. Express (3)

Opt. Lett. (2)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Setup of the unidirectional ring cavity. HWP: zero order half wave plate, FR: Faraday rotator, DC: dichroic mirror; the arrow inside the active fiber indicates the operation direction of the laser.

Fig. 2.
Fig. 2.

Transmission of the complete free space part of the laser resonator.

Fig. 3.
Fig. 3.

Left: Spectra of the oscillator at different wavelengths (0.2 nm resolution of the spectrum analyzer) . Right: Output power and fraction of power within the linewidth of the laser versus wavelength.

Fig. 4.
Fig. 4.

Left: Fabry-Perot measurement of the laser at 1030 nm. The inset shows one peak in detail. Right: Temperature dependence of the frequency of the laser.

Fig. 5.
Fig. 5.

Long term measurements of the frequency drift. Left: Frequency drift at 1030 nm with modehops. Right: Modehop free operation of the laser at different wavelength over a time periode of 10 h.

Fig. 6.
Fig. 6.

Fine tuning characteristics. Left: Modehops measured with a 2 GHz Fabry-Perot cavity. Right: Frequency response of the laser at a slow triangular shaped fine tuning process.

Fig. 7.
Fig. 7.

Modehop free tuning by synchronization of temperature tuning and grating rotation. Displayed is the actual frequency of the laser and the temperature of the temperature controlled fiber part versus time.

Metrics