Abstract

We theoretically and experimentally demonstrate an ultrasensitive two-dimensional photonic crystal microcavity biosensor. The device is fabricated on a silicon-on-insulator wafer and operates near its resonance at 1.58 μm. Coating the sensor internal surface with proteins of different sizes produces a different amount of resonance redshift. The present device can detect a molecule monolayer with a total mass as small as 2.5 fg. The device performance is verified by measuring the redshift corresponding to the binding of glutaraldehyde and bovine serum albumin (BSA). The experimental results are in good agreement with theory and with ellipsometric measurements performed on a flat oxidized silicon wafer surface.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Liedberg, I. Lundstrom, and E. Stenberg, "Principles of biosensing with an extended coupling matrix and surface plasmon resonance," Sens. Actuators B 11, 63-72 (1993).
    [CrossRef]
  2. J. J. Saarinen, S. M. Weiss, P. M. Fauchet, and J. E. Sipe, "Optical sensor based on resonant porous silicon structures," Opt. Express 13, 3754-3764 (2005).
    [CrossRef] [PubMed]
  3. V. S.-Y. Lin, K. Motesharei, K. Motesharei, K.-P. S. Dancil, M. J. Sailor, and M. R. Ghadir, "A porous silicon-based optical interferometric biosensor," Science 278, 840-843 (1997).
    [CrossRef] [PubMed]
  4. F. Cunin, T. A. Schmedake, J. R. Link, Y. Y. Li, J. Koh, S. N. Bhatia and M. J. Sailor, "Biomolecular screening with encoded porous-silicon photonic crystals," Nat. Mater. 1, 39-41 (2002).
    [CrossRef]
  5. S. Chan, P. M. Fauchet, Y. Li, L. J. Rothberg, and B. L. Miller, "Porous silicon microcavities for biosensing applications," Phys. Stat. Sol. A. 182, 541-546 (2000).
    [CrossRef]
  6. S. Chan, S. R. Horner, P. M. Fauchet, and B. L. Miller, "Identification of gram negative bacteria using nanoscale silicon microcavities," J. Am. Chem. Soc. 123, 11797-11798 (2001).
    [CrossRef] [PubMed]
  7. H. Ouyang, M. Christophersen, R. Viard, B. L. Miller and P. M. Fauchet, "Macroporous silicon microcavity for macromolecule detection," Adv. Funct. Mater. 15, 1851-1859 (2005).
    [CrossRef]
  8. B. T. Cunningham, P. Li, B. Lin, and J. Pepper, "Colorimetric resonant reflection as a direct biochemical assay technique," Sens. Actuators B 81, 316-328 (2002).
    [CrossRef]
  9. I. D. Block, L. L. Chan and B. T. Cunningham, "Photonic crystal optical biosensor incorporating structured low-index porous dielectric," Sens. Actuators B 120, 187-193 (2006).
    [CrossRef]
  10. G. J. Sonek, "Integrated photonic crystal waveguides for micro-bioanalytical devices" in Proceedings of IEEE Conference on Microtechnologies in Medicine and Biology (IEEE, 2005), pp. 333-335.
  11. K. Srinivasan and O. Painter, "Momentum space design of high-Q photonic crystal optical cavities," Opt. Express 10, 670-684 (2002).
    [PubMed]
  12. Y. Akahane, T. Asano, B. Song, and S. Noda, "High-Q photonic nanocavity in a two-dimensional photonic crystal," Nature 425, 944-947 (2003).
    [CrossRef] [PubMed]
  13. B. Schmidt, V. Almeida, C. Manolatou, S. Preble, and M. Lipson, "Nanocavity in a silicon waveguide for ultrasensitive nanoparticle detection," Appl. Phys. Lett. 85, 4854-4856 (2004).
    [CrossRef]
  14. E. Chow, A. Grot, L. W. Mirkarimi, M. Sigalas, and G. Girolami, "Ultracompact biochemical sensor built with two-dimensional photonic crystal microcavity," Opt. Lett. 29, 1093-1095 (2004).
    [CrossRef] [PubMed]
  15. H. Chen, K. K. Tsia and A. W. Poon, "Surface modes in two-dimensional photonic crystal slabs with a flat dielectric margin," Opt. Express 14, 7368-7377 (2006).
    [CrossRef] [PubMed]
  16. O. Painter, J. Vuckovic, and A. Scherer, "Defect modes of a two-dimensional photonic crystal in an optically thin dielectric slab," J. Opt. Am. B 16, 275-285 (1999).
    [CrossRef]
  17. I. D. Kuntz and W. Kauzmann, "Hydration of proteins and polypeptides," Adv. Protein Chem. 28, 239-345 (1974).
    [CrossRef] [PubMed]
  18. P. G. Squire, P. Moser, and C. T. O'Konski, "Hydrodynamic properties of bovine serum albumin monomer and dimer," J. Biochem. 7, 4261-4272 (1968).
    [CrossRef]
  19. H. Ouyang, C. C. Striemer, and P. M. Fauchet, "Quantitative analysis of the sensitivity of porous silicon optical biosensors," Appl. Phys. Lett. 88, 163108 (2006).
    [CrossRef]
  20. V. Kanda, J. K. Kariuki, D. J. Harrison and M. T. McDermott, "Label-Free Reading of Microarray-Based Immunoassays with Surface Plasmon Resonance Imaging," Anal. Chem. 76, 7257-7262 (2004).
    [CrossRef] [PubMed]
  21. D. Nedelkov, K. A. Tubbs and R. W. Nelson, "Surface plasmon resonance-enabled mass spectrometry arrays," Electrophoresis 27, 3671 (2006).
    [CrossRef] [PubMed]

2006

I. D. Block, L. L. Chan and B. T. Cunningham, "Photonic crystal optical biosensor incorporating structured low-index porous dielectric," Sens. Actuators B 120, 187-193 (2006).
[CrossRef]

H. Ouyang, C. C. Striemer, and P. M. Fauchet, "Quantitative analysis of the sensitivity of porous silicon optical biosensors," Appl. Phys. Lett. 88, 163108 (2006).
[CrossRef]

D. Nedelkov, K. A. Tubbs and R. W. Nelson, "Surface plasmon resonance-enabled mass spectrometry arrays," Electrophoresis 27, 3671 (2006).
[CrossRef] [PubMed]

H. Chen, K. K. Tsia and A. W. Poon, "Surface modes in two-dimensional photonic crystal slabs with a flat dielectric margin," Opt. Express 14, 7368-7377 (2006).
[CrossRef] [PubMed]

2005

J. J. Saarinen, S. M. Weiss, P. M. Fauchet, and J. E. Sipe, "Optical sensor based on resonant porous silicon structures," Opt. Express 13, 3754-3764 (2005).
[CrossRef] [PubMed]

H. Ouyang, M. Christophersen, R. Viard, B. L. Miller and P. M. Fauchet, "Macroporous silicon microcavity for macromolecule detection," Adv. Funct. Mater. 15, 1851-1859 (2005).
[CrossRef]

2004

V. Kanda, J. K. Kariuki, D. J. Harrison and M. T. McDermott, "Label-Free Reading of Microarray-Based Immunoassays with Surface Plasmon Resonance Imaging," Anal. Chem. 76, 7257-7262 (2004).
[CrossRef] [PubMed]

B. Schmidt, V. Almeida, C. Manolatou, S. Preble, and M. Lipson, "Nanocavity in a silicon waveguide for ultrasensitive nanoparticle detection," Appl. Phys. Lett. 85, 4854-4856 (2004).
[CrossRef]

E. Chow, A. Grot, L. W. Mirkarimi, M. Sigalas, and G. Girolami, "Ultracompact biochemical sensor built with two-dimensional photonic crystal microcavity," Opt. Lett. 29, 1093-1095 (2004).
[CrossRef] [PubMed]

2003

Y. Akahane, T. Asano, B. Song, and S. Noda, "High-Q photonic nanocavity in a two-dimensional photonic crystal," Nature 425, 944-947 (2003).
[CrossRef] [PubMed]

2002

B. T. Cunningham, P. Li, B. Lin, and J. Pepper, "Colorimetric resonant reflection as a direct biochemical assay technique," Sens. Actuators B 81, 316-328 (2002).
[CrossRef]

F. Cunin, T. A. Schmedake, J. R. Link, Y. Y. Li, J. Koh, S. N. Bhatia and M. J. Sailor, "Biomolecular screening with encoded porous-silicon photonic crystals," Nat. Mater. 1, 39-41 (2002).
[CrossRef]

K. Srinivasan and O. Painter, "Momentum space design of high-Q photonic crystal optical cavities," Opt. Express 10, 670-684 (2002).
[PubMed]

2001

S. Chan, S. R. Horner, P. M. Fauchet, and B. L. Miller, "Identification of gram negative bacteria using nanoscale silicon microcavities," J. Am. Chem. Soc. 123, 11797-11798 (2001).
[CrossRef] [PubMed]

2000

S. Chan, P. M. Fauchet, Y. Li, L. J. Rothberg, and B. L. Miller, "Porous silicon microcavities for biosensing applications," Phys. Stat. Sol. A. 182, 541-546 (2000).
[CrossRef]

1999

O. Painter, J. Vuckovic, and A. Scherer, "Defect modes of a two-dimensional photonic crystal in an optically thin dielectric slab," J. Opt. Am. B 16, 275-285 (1999).
[CrossRef]

1997

V. S.-Y. Lin, K. Motesharei, K. Motesharei, K.-P. S. Dancil, M. J. Sailor, and M. R. Ghadir, "A porous silicon-based optical interferometric biosensor," Science 278, 840-843 (1997).
[CrossRef] [PubMed]

1993

B. Liedberg, I. Lundstrom, and E. Stenberg, "Principles of biosensing with an extended coupling matrix and surface plasmon resonance," Sens. Actuators B 11, 63-72 (1993).
[CrossRef]

1974

I. D. Kuntz and W. Kauzmann, "Hydration of proteins and polypeptides," Adv. Protein Chem. 28, 239-345 (1974).
[CrossRef] [PubMed]

1968

P. G. Squire, P. Moser, and C. T. O'Konski, "Hydrodynamic properties of bovine serum albumin monomer and dimer," J. Biochem. 7, 4261-4272 (1968).
[CrossRef]

Akahane, Y.

Y. Akahane, T. Asano, B. Song, and S. Noda, "High-Q photonic nanocavity in a two-dimensional photonic crystal," Nature 425, 944-947 (2003).
[CrossRef] [PubMed]

Almeida, V.

B. Schmidt, V. Almeida, C. Manolatou, S. Preble, and M. Lipson, "Nanocavity in a silicon waveguide for ultrasensitive nanoparticle detection," Appl. Phys. Lett. 85, 4854-4856 (2004).
[CrossRef]

Asano, T.

Y. Akahane, T. Asano, B. Song, and S. Noda, "High-Q photonic nanocavity in a two-dimensional photonic crystal," Nature 425, 944-947 (2003).
[CrossRef] [PubMed]

Bhatia, S. N.

F. Cunin, T. A. Schmedake, J. R. Link, Y. Y. Li, J. Koh, S. N. Bhatia and M. J. Sailor, "Biomolecular screening with encoded porous-silicon photonic crystals," Nat. Mater. 1, 39-41 (2002).
[CrossRef]

Block, I. D.

I. D. Block, L. L. Chan and B. T. Cunningham, "Photonic crystal optical biosensor incorporating structured low-index porous dielectric," Sens. Actuators B 120, 187-193 (2006).
[CrossRef]

Chan, L. L.

I. D. Block, L. L. Chan and B. T. Cunningham, "Photonic crystal optical biosensor incorporating structured low-index porous dielectric," Sens. Actuators B 120, 187-193 (2006).
[CrossRef]

Chan, S.

S. Chan, S. R. Horner, P. M. Fauchet, and B. L. Miller, "Identification of gram negative bacteria using nanoscale silicon microcavities," J. Am. Chem. Soc. 123, 11797-11798 (2001).
[CrossRef] [PubMed]

S. Chan, P. M. Fauchet, Y. Li, L. J. Rothberg, and B. L. Miller, "Porous silicon microcavities for biosensing applications," Phys. Stat. Sol. A. 182, 541-546 (2000).
[CrossRef]

Chen, H.

Chow, E.

Christophersen, M.

H. Ouyang, M. Christophersen, R. Viard, B. L. Miller and P. M. Fauchet, "Macroporous silicon microcavity for macromolecule detection," Adv. Funct. Mater. 15, 1851-1859 (2005).
[CrossRef]

Cunin, F.

F. Cunin, T. A. Schmedake, J. R. Link, Y. Y. Li, J. Koh, S. N. Bhatia and M. J. Sailor, "Biomolecular screening with encoded porous-silicon photonic crystals," Nat. Mater. 1, 39-41 (2002).
[CrossRef]

Cunningham, B. T.

I. D. Block, L. L. Chan and B. T. Cunningham, "Photonic crystal optical biosensor incorporating structured low-index porous dielectric," Sens. Actuators B 120, 187-193 (2006).
[CrossRef]

B. T. Cunningham, P. Li, B. Lin, and J. Pepper, "Colorimetric resonant reflection as a direct biochemical assay technique," Sens. Actuators B 81, 316-328 (2002).
[CrossRef]

Dancil, K.-P. S.

V. S.-Y. Lin, K. Motesharei, K. Motesharei, K.-P. S. Dancil, M. J. Sailor, and M. R. Ghadir, "A porous silicon-based optical interferometric biosensor," Science 278, 840-843 (1997).
[CrossRef] [PubMed]

Fauchet, P. M.

H. Ouyang, C. C. Striemer, and P. M. Fauchet, "Quantitative analysis of the sensitivity of porous silicon optical biosensors," Appl. Phys. Lett. 88, 163108 (2006).
[CrossRef]

H. Ouyang, M. Christophersen, R. Viard, B. L. Miller and P. M. Fauchet, "Macroporous silicon microcavity for macromolecule detection," Adv. Funct. Mater. 15, 1851-1859 (2005).
[CrossRef]

J. J. Saarinen, S. M. Weiss, P. M. Fauchet, and J. E. Sipe, "Optical sensor based on resonant porous silicon structures," Opt. Express 13, 3754-3764 (2005).
[CrossRef] [PubMed]

S. Chan, S. R. Horner, P. M. Fauchet, and B. L. Miller, "Identification of gram negative bacteria using nanoscale silicon microcavities," J. Am. Chem. Soc. 123, 11797-11798 (2001).
[CrossRef] [PubMed]

S. Chan, P. M. Fauchet, Y. Li, L. J. Rothberg, and B. L. Miller, "Porous silicon microcavities for biosensing applications," Phys. Stat. Sol. A. 182, 541-546 (2000).
[CrossRef]

Ghadir, M. R.

V. S.-Y. Lin, K. Motesharei, K. Motesharei, K.-P. S. Dancil, M. J. Sailor, and M. R. Ghadir, "A porous silicon-based optical interferometric biosensor," Science 278, 840-843 (1997).
[CrossRef] [PubMed]

Girolami, G.

Grot, A.

Harrison, D. J.

V. Kanda, J. K. Kariuki, D. J. Harrison and M. T. McDermott, "Label-Free Reading of Microarray-Based Immunoassays with Surface Plasmon Resonance Imaging," Anal. Chem. 76, 7257-7262 (2004).
[CrossRef] [PubMed]

Horner, S. R.

S. Chan, S. R. Horner, P. M. Fauchet, and B. L. Miller, "Identification of gram negative bacteria using nanoscale silicon microcavities," J. Am. Chem. Soc. 123, 11797-11798 (2001).
[CrossRef] [PubMed]

Kanda, V.

V. Kanda, J. K. Kariuki, D. J. Harrison and M. T. McDermott, "Label-Free Reading of Microarray-Based Immunoassays with Surface Plasmon Resonance Imaging," Anal. Chem. 76, 7257-7262 (2004).
[CrossRef] [PubMed]

Kariuki, J. K.

V. Kanda, J. K. Kariuki, D. J. Harrison and M. T. McDermott, "Label-Free Reading of Microarray-Based Immunoassays with Surface Plasmon Resonance Imaging," Anal. Chem. 76, 7257-7262 (2004).
[CrossRef] [PubMed]

Kauzmann, W.

I. D. Kuntz and W. Kauzmann, "Hydration of proteins and polypeptides," Adv. Protein Chem. 28, 239-345 (1974).
[CrossRef] [PubMed]

Koh, J.

F. Cunin, T. A. Schmedake, J. R. Link, Y. Y. Li, J. Koh, S. N. Bhatia and M. J. Sailor, "Biomolecular screening with encoded porous-silicon photonic crystals," Nat. Mater. 1, 39-41 (2002).
[CrossRef]

Kuntz, I. D.

I. D. Kuntz and W. Kauzmann, "Hydration of proteins and polypeptides," Adv. Protein Chem. 28, 239-345 (1974).
[CrossRef] [PubMed]

Li, P.

B. T. Cunningham, P. Li, B. Lin, and J. Pepper, "Colorimetric resonant reflection as a direct biochemical assay technique," Sens. Actuators B 81, 316-328 (2002).
[CrossRef]

Li, Y.

S. Chan, P. M. Fauchet, Y. Li, L. J. Rothberg, and B. L. Miller, "Porous silicon microcavities for biosensing applications," Phys. Stat. Sol. A. 182, 541-546 (2000).
[CrossRef]

Li, Y. Y.

F. Cunin, T. A. Schmedake, J. R. Link, Y. Y. Li, J. Koh, S. N. Bhatia and M. J. Sailor, "Biomolecular screening with encoded porous-silicon photonic crystals," Nat. Mater. 1, 39-41 (2002).
[CrossRef]

Liedberg, B.

B. Liedberg, I. Lundstrom, and E. Stenberg, "Principles of biosensing with an extended coupling matrix and surface plasmon resonance," Sens. Actuators B 11, 63-72 (1993).
[CrossRef]

Lin, B.

B. T. Cunningham, P. Li, B. Lin, and J. Pepper, "Colorimetric resonant reflection as a direct biochemical assay technique," Sens. Actuators B 81, 316-328 (2002).
[CrossRef]

Lin, V. S.-Y.

V. S.-Y. Lin, K. Motesharei, K. Motesharei, K.-P. S. Dancil, M. J. Sailor, and M. R. Ghadir, "A porous silicon-based optical interferometric biosensor," Science 278, 840-843 (1997).
[CrossRef] [PubMed]

Link, J. R.

F. Cunin, T. A. Schmedake, J. R. Link, Y. Y. Li, J. Koh, S. N. Bhatia and M. J. Sailor, "Biomolecular screening with encoded porous-silicon photonic crystals," Nat. Mater. 1, 39-41 (2002).
[CrossRef]

Lipson, M.

B. Schmidt, V. Almeida, C. Manolatou, S. Preble, and M. Lipson, "Nanocavity in a silicon waveguide for ultrasensitive nanoparticle detection," Appl. Phys. Lett. 85, 4854-4856 (2004).
[CrossRef]

Lundstrom, I.

B. Liedberg, I. Lundstrom, and E. Stenberg, "Principles of biosensing with an extended coupling matrix and surface plasmon resonance," Sens. Actuators B 11, 63-72 (1993).
[CrossRef]

Manolatou, C.

B. Schmidt, V. Almeida, C. Manolatou, S. Preble, and M. Lipson, "Nanocavity in a silicon waveguide for ultrasensitive nanoparticle detection," Appl. Phys. Lett. 85, 4854-4856 (2004).
[CrossRef]

McDermott, M. T.

V. Kanda, J. K. Kariuki, D. J. Harrison and M. T. McDermott, "Label-Free Reading of Microarray-Based Immunoassays with Surface Plasmon Resonance Imaging," Anal. Chem. 76, 7257-7262 (2004).
[CrossRef] [PubMed]

Miller, B. L.

H. Ouyang, M. Christophersen, R. Viard, B. L. Miller and P. M. Fauchet, "Macroporous silicon microcavity for macromolecule detection," Adv. Funct. Mater. 15, 1851-1859 (2005).
[CrossRef]

S. Chan, S. R. Horner, P. M. Fauchet, and B. L. Miller, "Identification of gram negative bacteria using nanoscale silicon microcavities," J. Am. Chem. Soc. 123, 11797-11798 (2001).
[CrossRef] [PubMed]

S. Chan, P. M. Fauchet, Y. Li, L. J. Rothberg, and B. L. Miller, "Porous silicon microcavities for biosensing applications," Phys. Stat. Sol. A. 182, 541-546 (2000).
[CrossRef]

Mirkarimi, L. W.

Moser, P.

P. G. Squire, P. Moser, and C. T. O'Konski, "Hydrodynamic properties of bovine serum albumin monomer and dimer," J. Biochem. 7, 4261-4272 (1968).
[CrossRef]

Motesharei, K.

V. S.-Y. Lin, K. Motesharei, K. Motesharei, K.-P. S. Dancil, M. J. Sailor, and M. R. Ghadir, "A porous silicon-based optical interferometric biosensor," Science 278, 840-843 (1997).
[CrossRef] [PubMed]

V. S.-Y. Lin, K. Motesharei, K. Motesharei, K.-P. S. Dancil, M. J. Sailor, and M. R. Ghadir, "A porous silicon-based optical interferometric biosensor," Science 278, 840-843 (1997).
[CrossRef] [PubMed]

Nedelkov, D.

D. Nedelkov, K. A. Tubbs and R. W. Nelson, "Surface plasmon resonance-enabled mass spectrometry arrays," Electrophoresis 27, 3671 (2006).
[CrossRef] [PubMed]

Nelson, R. W.

D. Nedelkov, K. A. Tubbs and R. W. Nelson, "Surface plasmon resonance-enabled mass spectrometry arrays," Electrophoresis 27, 3671 (2006).
[CrossRef] [PubMed]

Noda, S.

Y. Akahane, T. Asano, B. Song, and S. Noda, "High-Q photonic nanocavity in a two-dimensional photonic crystal," Nature 425, 944-947 (2003).
[CrossRef] [PubMed]

O'Konski, C. T.

P. G. Squire, P. Moser, and C. T. O'Konski, "Hydrodynamic properties of bovine serum albumin monomer and dimer," J. Biochem. 7, 4261-4272 (1968).
[CrossRef]

Ouyang, H.

H. Ouyang, C. C. Striemer, and P. M. Fauchet, "Quantitative analysis of the sensitivity of porous silicon optical biosensors," Appl. Phys. Lett. 88, 163108 (2006).
[CrossRef]

H. Ouyang, M. Christophersen, R. Viard, B. L. Miller and P. M. Fauchet, "Macroporous silicon microcavity for macromolecule detection," Adv. Funct. Mater. 15, 1851-1859 (2005).
[CrossRef]

Painter, O.

K. Srinivasan and O. Painter, "Momentum space design of high-Q photonic crystal optical cavities," Opt. Express 10, 670-684 (2002).
[PubMed]

O. Painter, J. Vuckovic, and A. Scherer, "Defect modes of a two-dimensional photonic crystal in an optically thin dielectric slab," J. Opt. Am. B 16, 275-285 (1999).
[CrossRef]

Pepper, J.

B. T. Cunningham, P. Li, B. Lin, and J. Pepper, "Colorimetric resonant reflection as a direct biochemical assay technique," Sens. Actuators B 81, 316-328 (2002).
[CrossRef]

Poon, A. W.

Preble, S.

B. Schmidt, V. Almeida, C. Manolatou, S. Preble, and M. Lipson, "Nanocavity in a silicon waveguide for ultrasensitive nanoparticle detection," Appl. Phys. Lett. 85, 4854-4856 (2004).
[CrossRef]

Rothberg, L. J.

S. Chan, P. M. Fauchet, Y. Li, L. J. Rothberg, and B. L. Miller, "Porous silicon microcavities for biosensing applications," Phys. Stat. Sol. A. 182, 541-546 (2000).
[CrossRef]

Saarinen, J. J.

Sailor, M. J.

F. Cunin, T. A. Schmedake, J. R. Link, Y. Y. Li, J. Koh, S. N. Bhatia and M. J. Sailor, "Biomolecular screening with encoded porous-silicon photonic crystals," Nat. Mater. 1, 39-41 (2002).
[CrossRef]

V. S.-Y. Lin, K. Motesharei, K. Motesharei, K.-P. S. Dancil, M. J. Sailor, and M. R. Ghadir, "A porous silicon-based optical interferometric biosensor," Science 278, 840-843 (1997).
[CrossRef] [PubMed]

Scherer, A.

O. Painter, J. Vuckovic, and A. Scherer, "Defect modes of a two-dimensional photonic crystal in an optically thin dielectric slab," J. Opt. Am. B 16, 275-285 (1999).
[CrossRef]

Schmedake, T. A.

F. Cunin, T. A. Schmedake, J. R. Link, Y. Y. Li, J. Koh, S. N. Bhatia and M. J. Sailor, "Biomolecular screening with encoded porous-silicon photonic crystals," Nat. Mater. 1, 39-41 (2002).
[CrossRef]

Schmidt, B.

B. Schmidt, V. Almeida, C. Manolatou, S. Preble, and M. Lipson, "Nanocavity in a silicon waveguide for ultrasensitive nanoparticle detection," Appl. Phys. Lett. 85, 4854-4856 (2004).
[CrossRef]

Sigalas, M.

Sipe, J. E.

Song, B.

Y. Akahane, T. Asano, B. Song, and S. Noda, "High-Q photonic nanocavity in a two-dimensional photonic crystal," Nature 425, 944-947 (2003).
[CrossRef] [PubMed]

Squire, P. G.

P. G. Squire, P. Moser, and C. T. O'Konski, "Hydrodynamic properties of bovine serum albumin monomer and dimer," J. Biochem. 7, 4261-4272 (1968).
[CrossRef]

Srinivasan, K.

Stenberg, E.

B. Liedberg, I. Lundstrom, and E. Stenberg, "Principles of biosensing with an extended coupling matrix and surface plasmon resonance," Sens. Actuators B 11, 63-72 (1993).
[CrossRef]

Striemer, C. C.

H. Ouyang, C. C. Striemer, and P. M. Fauchet, "Quantitative analysis of the sensitivity of porous silicon optical biosensors," Appl. Phys. Lett. 88, 163108 (2006).
[CrossRef]

Tsia, K. K.

Tubbs, K. A.

D. Nedelkov, K. A. Tubbs and R. W. Nelson, "Surface plasmon resonance-enabled mass spectrometry arrays," Electrophoresis 27, 3671 (2006).
[CrossRef] [PubMed]

Viard, R.

H. Ouyang, M. Christophersen, R. Viard, B. L. Miller and P. M. Fauchet, "Macroporous silicon microcavity for macromolecule detection," Adv. Funct. Mater. 15, 1851-1859 (2005).
[CrossRef]

Vuckovic, J.

O. Painter, J. Vuckovic, and A. Scherer, "Defect modes of a two-dimensional photonic crystal in an optically thin dielectric slab," J. Opt. Am. B 16, 275-285 (1999).
[CrossRef]

Weiss, S. M.

Adv. Funct. Mater.

H. Ouyang, M. Christophersen, R. Viard, B. L. Miller and P. M. Fauchet, "Macroporous silicon microcavity for macromolecule detection," Adv. Funct. Mater. 15, 1851-1859 (2005).
[CrossRef]

Adv. Protein Chem.

I. D. Kuntz and W. Kauzmann, "Hydration of proteins and polypeptides," Adv. Protein Chem. 28, 239-345 (1974).
[CrossRef] [PubMed]

Anal. Chem.

V. Kanda, J. K. Kariuki, D. J. Harrison and M. T. McDermott, "Label-Free Reading of Microarray-Based Immunoassays with Surface Plasmon Resonance Imaging," Anal. Chem. 76, 7257-7262 (2004).
[CrossRef] [PubMed]

Appl. Phys. Lett.

H. Ouyang, C. C. Striemer, and P. M. Fauchet, "Quantitative analysis of the sensitivity of porous silicon optical biosensors," Appl. Phys. Lett. 88, 163108 (2006).
[CrossRef]

B. Schmidt, V. Almeida, C. Manolatou, S. Preble, and M. Lipson, "Nanocavity in a silicon waveguide for ultrasensitive nanoparticle detection," Appl. Phys. Lett. 85, 4854-4856 (2004).
[CrossRef]

Electrophoresis

D. Nedelkov, K. A. Tubbs and R. W. Nelson, "Surface plasmon resonance-enabled mass spectrometry arrays," Electrophoresis 27, 3671 (2006).
[CrossRef] [PubMed]

J. Am. Chem. Soc.

S. Chan, S. R. Horner, P. M. Fauchet, and B. L. Miller, "Identification of gram negative bacteria using nanoscale silicon microcavities," J. Am. Chem. Soc. 123, 11797-11798 (2001).
[CrossRef] [PubMed]

J. Biochem.

P. G. Squire, P. Moser, and C. T. O'Konski, "Hydrodynamic properties of bovine serum albumin monomer and dimer," J. Biochem. 7, 4261-4272 (1968).
[CrossRef]

J. Opt. Am. B

O. Painter, J. Vuckovic, and A. Scherer, "Defect modes of a two-dimensional photonic crystal in an optically thin dielectric slab," J. Opt. Am. B 16, 275-285 (1999).
[CrossRef]

Nat. Mater.

F. Cunin, T. A. Schmedake, J. R. Link, Y. Y. Li, J. Koh, S. N. Bhatia and M. J. Sailor, "Biomolecular screening with encoded porous-silicon photonic crystals," Nat. Mater. 1, 39-41 (2002).
[CrossRef]

Nature

Y. Akahane, T. Asano, B. Song, and S. Noda, "High-Q photonic nanocavity in a two-dimensional photonic crystal," Nature 425, 944-947 (2003).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Phys. Stat. Sol. A.

S. Chan, P. M. Fauchet, Y. Li, L. J. Rothberg, and B. L. Miller, "Porous silicon microcavities for biosensing applications," Phys. Stat. Sol. A. 182, 541-546 (2000).
[CrossRef]

Science

V. S.-Y. Lin, K. Motesharei, K. Motesharei, K.-P. S. Dancil, M. J. Sailor, and M. R. Ghadir, "A porous silicon-based optical interferometric biosensor," Science 278, 840-843 (1997).
[CrossRef] [PubMed]

Sens. Actuators B

B. T. Cunningham, P. Li, B. Lin, and J. Pepper, "Colorimetric resonant reflection as a direct biochemical assay technique," Sens. Actuators B 81, 316-328 (2002).
[CrossRef]

I. D. Block, L. L. Chan and B. T. Cunningham, "Photonic crystal optical biosensor incorporating structured low-index porous dielectric," Sens. Actuators B 120, 187-193 (2006).
[CrossRef]

B. Liedberg, I. Lundstrom, and E. Stenberg, "Principles of biosensing with an extended coupling matrix and surface plasmon resonance," Sens. Actuators B 11, 63-72 (1993).
[CrossRef]

Other

G. J. Sonek, "Integrated photonic crystal waveguides for micro-bioanalytical devices" in Proceedings of IEEE Conference on Microtechnologies in Medicine and Biology (IEEE, 2005), pp. 333-335.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Scanning electron microscopy photograph of a typical device and schematic of the experimental setup. A tunable laser (1440 nm to 1590 nm) is used as the source. Light is coupled in and out of the PC using tapered ridge waveguides. A polarization controller is used to maximize the TE mode signal, and an InGaAs detector is used to measure the transmission signal.

Fig. 2.
Fig. 2.

Schematic of bio-molecule recognition: (a) the target molecules are captured by the probe molecules. (b) The bio-molecules form a uniform layer on the internal surface of the sensor. In reality the layer thickness is very small compared with the pore size.

Fig. 3.
Fig. 3.

Normalized transmission spectra of the PC microcavity. Curve (a) indicates the initial spectrum resonance after oxidation and silanization, curve (b) is measured after glutaraldehyde attaches to the pore walls, and curve (c) is obtained after infiltration of BSA molecules.

Fig. 4.
Fig. 4.

(a) Calculated resonance redshift versus the monolayer coating thickness on the pore wall, bottom, and top of the device. (b) Red curve shows the calculated resonance redshift versus the coating thickness on the pore wall. Blue dots show the protein layer thicknesses measured by ellipsometry. The ellipsometric data are in agreement with the model.

Fig. 5.
Fig. 5.

(a) Schematic of field confinement in a 2-D PC microcavity (the scales are in μm). The colorbar indicates the scale of electric field intensity. (b) Resonance redshift versus coating thickness on the pore walls. The blue curve shows the redshift due to the uniform infiltration of bio-molecules in all the pores. The red curve shows the redshift due to the infiltration only in the central defect. The inset at the top left shows the normalized sensitivity (Δλ/Δt) vs. the surface area covered by the bio-molecules. If the region coated with bio-molecules extends to pores away from the defect, the sensitivity first increases rapidly and then saturates.

Fig. 6.
Fig. 6.

(a) Schematic of biotin-streptavidin binding recognition. (b) Amount of resonance red-shift resulting from device exposure to different solutions. Bar (A) shows the amount of redshift resulting from specific binding of streptavidin to biotin. Bar (B) shows that the contribution to the shift from non-specific binding (no probe molecule) is negligible. Bar (C) shows that there is no contribution by the buffer alone.

Metrics